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Predictive Second Order Sliding Control of Constrained Linear Systems

with Application to Automotive Control Systems

Mohammad Reza Amini†, Mahdi Shahbakhti‡, and Jing Sun†

Abstract— This paper presents a new predictive second order
sliding controller (PSSC) formulation for setpoint tracking of
constrained linear systems. The PSSC scheme is developed by
combining the concepts of model predictive control (MPC)
and second order discrete sliding mode control. In order to
guarantee the feasibility of the PSSC during setpoint changes,
a virtual reference variable is added to the PSSC cost function
to calculate the closest admissible set point. The states of
the system are then driven asymptotically to this admissible
setpoint by the control action of the PSSC. The performance
of the proposed PSSC is evaluated for an advanced automotive
engine case study, where a high fidelity physics-based model
of a reactivity controlled compression ignition (RCCI) engine
is utilized to serve as the virtual test-bed for the simulations.
Considering the hard physical constraints on the RCCI engine
states and control inputs, simultaneous tracking of engine load
and optimal combustion phasing is a challenging objective to
achieve. The simulation results of testing the proposed PSSC on
the high fidelity RCCI model show that the developed predictive
controller is able to track desired engine load and combustion
phasing setpoints, with minimum steady state error, and no
overshoot. Moreover, the simulation results confirm the robust
tracking performance of the PSSC during transient operations,
in the presence of engine cyclic variability.

I. INTRODUCTION

Feasibility and stability of model predictive control (MPC)

scheme for a tracking control problem, where the desired

trajectory changes, are challenging to be guaranteed. Addi-

tion of a virtual reference, as an extra optimization variable,

to the cost function of the MPC has been proposed in the

literature [1]–[3] to solve this issue. This approach is similar

to the so-called command governor technique [4] for tracking

problem of constrained linear systems, in which a nonlinear

low-pass filter of the reference is added (the output of the

filter can be seen as the virtual reference) to ensure the

admissible evolution of the system to the reference. For

the proposed approach in [1]–[3], an additional term in the

cost function of the MPC reflects the difference between the

original and the virtual references. Moreover, an augmented

space consisting of the original system’s states and the

virtual reference, is used to formulate a terminal invariant

set to guarantee the persistent feasibility of the constrained

optimization problem, which is then utilized to prove the

asymptotic stability of model predictive controllers [3], [5].

The disadvantage of this approach is the increased complex-
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ity of the invariant set computation due to extra variable

introduced to the optimization problem.

Sliding mode control (SMC) is proven to be a robust and

computationally efficient solution for tracking problems of

linear and nonlinear systems with a great deal of uncer-

tainty [6]. The key feature of SMC is converting a high di-

mensional tracking control problem into a lower dimensional

stabilization control problem. On the other side, conventional

SMCs do not consider the constraints on the states and inputs

of the system. This is because the control input of the SMC

is mainly calculated based on the present information of the

system, and information from future events is not considered

in the controller formulation. A novel combination of MPC

and first order discrete SMC (DSMC) has been proposed

in [7] to handle state and input constraints within the sliding

controller by taking into account the future information via

a receding horizon sliding control (RHSC) scheme.

The concept of second order DSMC has been proposed in

the authors’ previous works [8], [9], where the asymptotic

stability of the second order sliding mode controller is also

proven. The main advantage of a second order DSMC in

comparison with the first order controller is its enhanced

smoothness in the tracking, and improved response to up-

coming changes [8]–[10]. This is due to the fact that in a

second order DSMC, in addition to the sliding variable, its

derivative is also driven to zero [11].

The second order DSMC provides fast and computation-

ally efficient tracking performance [12], [13]. However, as

mentioned earlier, the constraints on the states and inputs of

the system can not be incorporated in the controller design,

which may cause saturation in the controller system [7].

Therefore, formulating the second order sliding controller

in a predictive scheme, not only preserves the key features

of the sliding control and MPC, but also allows for handling

the input and state constraints within the sliding controller

formulation [14]. In this paper, a novel predictive second

order sliding controller (PSSC) is presented. The proposed

PSSC enables handling of the constraint on the inputs and

states by direct inclusion of the future information. Moreover,

the PSSC ensures asymptotic tracking of any admissible

piecewise setpoints, or the closest admissible setpoint, if the

target trajectory is not admissible.

The performance of the proposed PSSC is evaluated

for control of an advanced automotive engine including a

Reactivity Controlled Compression Ignition (RCCI). RCCI

technology offers significantly higher fuel conversion effi-

ciency compared to conventional automotive engines through

creating optimum heat release shape by exploiting reactivity
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gradients inside the combustion chamber. RCCI typically

runs with lean air-fuel mixture, and has low combustion

temperature, resulting in much lower NOx and PM engine-

out emissions, compared to conventional engines [15]. On the

other side, simultaneous combustion phasing and engine load

control is hard to achieve due to the strong nonlinearity and

internal coupling in the dynamics of RCCI engines, specifi-

cally during the transients. It will be shown in this paper that

the PSSC is able to handle the coupling within the RCCI

engine to achieve simultaneous engine load and combustion

phasing tracking, with consideration of the constraints on the

control signals during the engine transient operation.

The main contribution of this paper includes the first

development of a predictive second order sliding controller

(PSSC) for tracking of constrained linear systems. The PSSC

is formulated with respect to a novel invariant sliding domain

to ensure feasibility and stability of the controller. Moreover,

this paper presents the first application of a predictive sliding

controller for simultaneous load and combustion phasing

tracking in RCCI engines.

II. DISCRETE SECOND ORDER SLIDING CONTROL

A linear multi-input multi-output system can be repre-

sented by the following discrete-time state space equations:

x(k + 1) = Ax(k) +Bu(k), (1)

y(k) = Cx(k), (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
m are the state, input, and

output of the linear system, respectively. A ∈ R
n×n, B ∈

R
n×m, C ∈ R

m×n are the system matrices. Moreover, it

is assumed that the state and input of the linear system in

Eq. (1) are constrained: x ∈ X ⊆ R
n, u ∈ U ⊆ R

m. X and

U sets are restricted to have the origin in their interior and

be polyhedral [5]. The control objective is to drive the output

of the system (y) to its desired value (yd) in the presence of

the state and input constraints. To this end, an error function

(e) is defined:
e(k) = y(k)− yd(k) (3)

and the control objective is set to drive e to zero. Here, the

first order sliding function (s) definition of a linear system

with relative degree of d1, · · · , dm from [5] is adopted to

define the second order sliding function (ξ), which will

be used later to formulate the predictive sliding controller.

Moreover, it is assumed that the linear system in Eq. (1) is

minimum-phase [16]. The first order sliding variable can be

defined with respect to Eq. (3) as follows:

s(k) =







s1(k)
...

sm(k)






= (4)







α
1,0

e1(k) + α
1,1

e1(k + 1) + · · ·+ α
1,l1

e1(k + l1)
...

α
m,0

em(k) + α
m,1

em(k + 1) + · · ·+ α
m,lm

em(k + lm)







where li = di − 1, and αi,li 6= 0, i = 1, · · · ,m. By

substituting Eq. (3) into Eq. (4), s can be simplified as:

s(k) = Gx(k)−H(k) (5)

where:

G =

















c1
l1
∑

j=0

α
1,j
Aj

...

cm
lm
∑

j=0

α
m,j

Aj

















, (6)

H(k) =







α
1,0

y
d,1

(k) + · · ·+ α
1,l1

y
d,1

(k + l1)
...

α
m,0

y
d,m

(k) + · · ·+ α
m,lm

y
d,m

(k + lm)






(7)

where ci, i = 1, · · · ,m is the ith row of C . The interesting

point about Eq. (6) is that ciA
jB = 0, i = 1, · · · ,m, j =

1, · · · , li [5]. Therefore no term containing B appears in

Eq. (6). If ciA
jB 6= 0, then the ith output of the system

has a relative degree less than di, which violates the initial

statement of assuming the ith output to have a relative degree

of di, thus ciA
jB = 0.

In the discrete time, the second order sliding variable

(ξ(k)) is defined with respect to Eq. (4) as follows [9], [10]:

ξ(k) = s(k + 1) + βs(k) (8)

where β ∈ R
m×m, which manipulates the rate of state

convergence to the sliding manifold, is chosen such that all

the eigenvalues are inside the unit circle [8]. The equiva-

lent control input of the second order sliding controller is

achieved by solving the following equality [9]:

ξ(k + 1) = ξ(k) = 0. (9)

Applying Eq. (9) leads to the following equivalent control

input (ueq(k)) of the second order DSMC:

ueq(k) = (10)

−(GB)−1
(

(

GA+ βG
)

x(k)−
(

H(k + 1) + βH(k)
)

)

.

Eq. (10) calculates a vector of control input signals (u)

based on the model matrices, current states (x), and also

current and future information of the desired trajectories

(yd,i(k), · · · , yd,i(k+li+1), i = 1, · · · ,m). Moreover, since

it is assumed that the system in Eq. (1) has a relative degree

of d1, · · · , dm, the existence of (GB)−1 is ensured [5], [16].

III. PREDICTIVE SECOND ORDER SLIDING CONTROL

In this section, a novel combination of the second order

sliding controller with MPC, as the predictive second order

sliding control (PSSC) scheme is presented for constrained

linear system tracking. To this end, following the procedure

proposed in [1], [5], first a terminal invariant second order

sliding domain is calculated. Next, this invariant set is used

as extended terminal constraint to formulate the PSSC.

In the first step, it is required to determine a terminal state

feedback control law, based on the second order sliding con-

trol, in order to characterize the steady states and inputs [17].

Moreover, the reference output (yd) in Eq. (3) is replaced

with a virtual fixed but arbitrary reference (ỹd) to calculate

the invariant second order sliding domain, according to the



procedure in [1], [5]. By substituting ỹd in Eq. (3), the

error becomes: ẽ(k) = y(k)− ỹd. It was shown in [5] that

substitution of ẽ(k) in Eq. (5) results in the following first

order sliding function:

s(k) = Gx(k)− H̃ỹd (11)

where:

H̃ =

















l1
∑

j=0

α
1,j

. . .
lm
∑

j=0

α
m,j

















(12)

Thus, the second order sliding function becomes:

ξ(k) = Gx(k + 1)− H̃ỹd + β
(

Gx(k)− H̃ỹd

)

, (13)

and, the equivalent control input from Eq. (10) is calculated
as:

ueq(k) = −(GB)−1

(

(

GA+ βG
)

x(k)−
(

I + β
)

H̃ỹd

)

.

(14)

Eq. (14) can be written in the following form:

ueq(k) = Kx(k) +Lỹd (15)

where, K = −(GB)−1(GA+βG) and L = (GB)−1(I+
β)H̃ . It can be seen from Eq. (15) that the equivalent control

input has two terms, the standard state feedback term (Kx),

and Lỹd, which accounts for changes in the reference.

In the second step, ueq from Eq. (15) is used as a terminal

control input to determine the invariant set for tracking. To

this end, the equivalent control input from Eq. (15) is plugged

into Eq. (1):

x(k + 1) = (A+BK)x(k) +BLỹd. (16)

The state (x) and ỹd vectors are then augmented (w =
[x⊺ ỹ

⊺

d ]
⊺) with respect to Eq. (15) to define the equivalent

dynamic [1], [18] of the linear system in Eq. (1):

w(k + 1) = Aeqw(k) (17)

where:

Aeq =

[

A + BK BL

0m×n Im×m

]

. (18)

Moreover, the state and input constraints can be re-written

for the augmented system in Eq. (17) as:

Weq = {w : [In×n 0n×m]w ∈ X , [K L]w ∈ U} (19)

Finally, the invariant set (T ) is calculated as:

T = {w : Ak
eqw ∈ Weq, ∀k ≥ 0 } (20)

and, the projected domain of T (Eq. (20)) on the original

state space (x) is called Z:

Z = projx(T ). (21)

A. Predictive Controller Formulation

In this section, the formulation of a predictive second order

sliding controller (PSSC) is presented by incorporating the

calculated invariant second order sliding domain for tracking

from Eq. (20). The second order sliding variable from

Eq. (13) over an N -step prediction horizon is constructed

for the PSSC, as follows:

Ξ(k + 1) = [ξ(k + 1) · · · ξ(k +N)]. (22)

In a similar manner, the state and input vectors over the

prediction horizon are defined as:

X(k) = [x(k) · · · x(k +N)] (23)

U(k) = [u(k) · · · u(k +N − 1)] (24)

Eventually, based on the vectors defined in Eq. (22)-(24),

the PSSC, as a constrained finite-time control problem, is

formulated:
min

X(k),U(k),ỹd

‖Ξ(k + 1)‖2 + ‖ỹd − yd(k)‖1

subject to s(i) = Gx(i)− H̃ỹd, i=k+1,··· ,k+N

ξ(i) = s(i+ 1) + βs(i), i=k+1,··· ,k+N−1

x(i+ 1) = Ax(i) +Bu(i), i=k,··· ,k+N−1

x(i) ∈ X ,u(i) ∈ U , i=k,··· ,k+N−1

[x⊺(k +N) ỹ
⊺

d]
⊺ ∈ T

(25)

ỹd in Eq. (25) is now an optimization variable which

is chosen by the PSCC optimization algorithm. Moreover,

‖ỹd − yd(k)‖1 is an offset cost in order to account for the

deviation of ỹd from yd [1], [5]. It should be noted that

the concept of second order sliding mode control is utilized

to calculate the invariant set, via the equivalent control input

ueq from Eq. (15), as a terminal constraint in the formulation

of the PSSC. Moreover, in the absence of the constraints, and

assuming a prediction horizon of N=1, the PSSC becomes

the ideal second order DSMC. The feasibility and stability

analysis of the proposed PSSC in Eq. (25) can be proven

by exploiting the results from [1], [5], [17], with respect to

the calculated invariant second order sliding domain from

Eq. (20). This analysis is skipped here, as it is out of the

scope of this paper. The next section centers on illustration

of the PSSC for a challenging automotive control problem.

IV. CASE STUDY: RCCI ENGINE CONTROL

An RCCI engine, with highly nonlinear and internally

coupled dynamics is chosen for the case study in this

paper. The RCCI is a promising engine technology with

challenging control design issues. Its performance is sensitive

to operating conditions, and the combustion can become

unstable if not controlled properly. Moreover, the engine,

as a nonlinear dynamic plant, is subject to actuator and

state constraints. These features make the RCCI engine an

appropriate candidate for evaluating the proposed PSSC,

as it can be designed based on a linear structure, and be

implemented on the nonlinear plant while enforcing the

physical constraints.

A. High Fidelity Physics-Based RCCI Model

A high fidelity physics-based RCCI engine model

from [19], [20] is used to evaluate the performance of the

proposed PSSC. The model is developed, and has been ex-

perimentally validated, to predict start of combustion (SOC),

crank angle for 50% fuel burnt (CA50), and indicated mean



effective pressure (IMEP). The details of the high fidelity

physics-based RCCI dynamic model, specifications of the

RCCI engine (4-cylinder 2-liter GM engine), and experimen-

tal validation results of the model are available in [19].

The highly nonlinear nature of the physics-based RCCI

model makes it difficult to use in the design of linear

controllers. Thus, in order to design the PSSC for CA50

and IMEP tracking, first the high fidelity model is linearized

around an operation point. The linearized model has four

states in the state space:

x = [CA50 Tsoc Psoc IMEP ]⊺ (26)

where Psoc and Tsoc are pressure and temperature at SOC.

The output vector (y) of the linear model is:

y = [CA50 IMEP ]⊺ (27)

and the control input vector is:

u = [SOI FQ]⊺ (28)

where, FQ is the total injected fuel quantity, and SOI is

the start of injection. Since CA50 and IMEP are the only

measurable outputs of the RCCI model, a Kalman filter is

designed to estimate the Psoc and Tsoc, with respect to the

linearized model [19]. The Kalman filter is updated every

cycle based on the outputs of the high fidelity RCCI model.

Finally, the PSSC is formulated to track the desired setpoints

of IMEP and CA50 as shown in Fig. 1. Since both outputs

of the linearized model have a relative degree of one with

respect to either of the inputs, the vector of the first order

sliding function is defined as follows:

s(k) =

[

CA50(k)− CA50target(k)
IMEP (k)− IMEPtarget(k)

]

(29)

and, the second order sliding function is calculated with

respect to Eq. (8). The PSSC simulations on the RCCI

model are performed in MATLAB®/SIMULINK® by using

YALMIP [21] for formulating the optimization problem. The

predication horizon is set to N=5 engine cycles.

Fig. 1. Schematic of the designed predictive second order sliding controller
for adjusting RCCI combustion phasing (CA50) and load (IMEP).

B. Predictive Sliding Control of the RCCI Engine

Figs. 2 shows the performance of the proposed PSSC

and the second order DSMC in tracking variable CA50

and IMEP trajectories, where the high fidelity physics-based

RCCI model is considered as the plant according to Fig. 1.

The constraints on the control inputs are selected to avoid

unstable combustion. The matrix (β) of the second order

Fig. 2. CA50 and IMEP control using PSSC and second order DSMC.
Plant: High Fidelity Model. Operating conditions: PR= 20, Tin= 333.1
K , Pin= 95 kPa, Ne= 1000 RPM , FQmin=15 mg/cycle.

sliding vector is the same for the PSSC and the second order

DSMC. However, there are fundamental differences between

the tracking performances of these two controllers. Since the

original reference (yd) is feasible, the admissible reference

(ỹd) is the same as yd. Thus, it is expected that by applying

the second order DSMC to the physics-based RCCI model,

the controller shows smooth and offset-free performance.

However, Fig. 2-a and b show that overshoots occur during

the early 10 cycles of the RCCI engine operation. Moreover,

there are steady state errors in CA50 and IMEP tracking,

specifically at higher CA50, and higher loads (IMEP). This

deviation in the second order DSMC performance can be

explained with respect to the error in the linearization process

of the highly nonlinear physics-based RCCI model around

specific operation point. By comparing the second order

DSMC with PSSC in Fig. 2-a and b, it can be observed that

the PSSC reacts to the upcoming changes in the reference

trajectories faster than the second order DSMC. This is

due to the fact that the PSSC takes into account the future

information via the receding horizon strategy.

By changing the constraints on the control signals, the per-

formance of the tracking controller is considerably affected,

as the reference trajectories may not be feasible anymore.

Fig. 3 shows the influence of changing the operation bound

of FQmin from 15 mg/cycle in Fig. 2, to 19 mg/cycle.

Due to the change in the control input constraint, the lower

IMEP level is not reachable. Since the second order DSMC

does not consider the future information and cannot handle

the constraints on the control input, the calculated FQ signal

saturates (Fig. 3-d), which results in a steady state error in

IMEP tracking (Fig. 3-b).

On the other hand, the proposed PSSC calculates the

feasible (ỹd) with respect to actual references (yd). Based

on the calculated feasible CA50 and IMEP references, the

PSSC puts the efforts to reach the desired trajectories with



Fig. 3. CA50 and IMEP control using PSSC and second order DSMC.
Operating conditions: PR= 20, Tin= 333.1 K , Pin= 95 kPa, Ne= 1000
RPM , FQmin=19 mg/cycle.

lower steady state errors, and with no overshoots, compared

to the second order DSMC. The better performance of the

PSSC in tracking is due to its awareness of the reachable

references, despite the error in the linearized RCCI model,

and also the early reaction to the upcoming changes in the

desired trajectories.

The optimization algorithm of the PSSC determines the

feasible reference (ỹd), and provides a baseline to compare

the behavior of the second order DSMC with the PSSC. The

tracking results in Fig. 3 show that while the PSSC tracks the

feasible IMEP reference accurately, the tracking performance

for CA50 is not affected due to the constraint on the FQ,

and the small steady state error is because of the error in the

RCCI model linearizion. On the other side, because of the

linearizion process error, and the saturation in the control

signal of the second order DSMC, both CA50 and IMEP

tracking are affected, and steady state errors can be seen for

both references, specifically at higher loads (IMEP). Addi-

tionally, it can be observed that overshoots happen during

the first 10 cycles of the second order DSMC operation,

while the PSSC provides overshoot-free performance for

both desired trajectories.

The states of the RCCI engine are highly coupled. Thus,

maintaining one of the outputs at a constant level, while the

other output is set to follow a variable reference is challeng-

ing to achieve. For example, it is common to maintain an

optimum CA50, while IMEP is changing. In order to eval-

uate the PSSC performance during these specific operating

conditions, the simulations are performed for two different

scenarios. In the first case, the objective is to maintain a

constant CA50, while the desired IMEP is changing (Fig. 4-

a1−4). In the second case, it is desired to change CA50,

while IMEP needs to be at a constant level of 600 kPa
(Fig. 4-b1−4). This represents situations on the RCCI engine

that CA50 needs to be changed due to engine-out emission

constraint, or pressure rise rate constraint.

It can be observed in Fig. 4 that despite the large over

shoot at the be beginning of the engine operation from the

second order DSMC, both PSSC and DSMC show acceptable

IMEP tracking results (Fig. 4-a2). However, Fig. 4-a1 depicts

that the DSMC is not able to maintain CA50 at the desired

level, and there is an average error of 2 CAD for reference

CA50 tracking from the second order DSMC. On the other

side, the PSSC shows better CA50 tracking results with an

average tracking error of 0.5 CAD.

Similarly in Fig. 4-b, the PSSC outperforms the second

order DSMC in maintaining the desired IMEP, while track-

ing the desired CA50 accurately. Specifically, it can be seen

that the second order DSMC fails to keep IMEP at 600 kPa
when the reference CA50 drops to 6 CAD at the 41th engine

cycle. Additionally, the predictive controller does not have

the large overshoots and steady state error as those seen in

the second order DSMC.

Finally, in order to evaluate the PSSC under the RCCI

engine cyclic variability and measurement noise, the PSCC

is studied in Fig. 5 for tracking the same CA50 and IMEP

trajectories evaluated in Fig. 4. It can be observed that under

the introduced measurement noise and cyclic variability, the

PSSC is able to achieve the desired loads (IMEP), while

maintaining CA50 at a constant level (Fig. 5-a1,2). Similarly,

Fig. 5-b1,2 illustrates good PSSC performance with average

tracking errors of 11.4 kPa and 0.4 CAD in maintaining the

engine at a constant IMEP, while desired CA50 changes.

V. SUMMARY AND CONCLUSIONS

A new formulation of a predictive sliding controller based

on the concept of second order sliding mode, in combina-

tion with MPC, was presented in this paper for tracking

of constrained linear systems. A virtual reference, as the

admissible reference, was added to the cost function of

the predictive controller to account for the changes in the

setpoint. Since inclusion of the virtual reference requires

computation of a terminal set to guarantee the feasibility

of the proposed predictive second order sliding controller

(PSSC), an extended invariant second order sliding domain

was calculated based on the augmented state space of the

system states and the virtual reference. The performance

of the proposed PSSC was demonstrated in a multi-input

multi-output structure for a highly nonlinear and internally

coupled RCCI engine tracking problem. An experimentally

validated physics-based model of an RCCI engine was used

to design and assess the proposed PSSC for simultaneous

load (IMEP) and combustion phasing (CA50) tracking under

hard constraints on the control inputs of the engine. Compar-

ing to the second order DSMC, the proposed PSSC showed

better tracking results, with minimum steady state error, and

no overshoot for different tracking scenarios. Moreover, the

simulation results confirm the robustness of the PSSC under

measurement noise and the engine cyclic variability.
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Fig. 4. CA50 and IMEP control using PSSC and second order DSMC for maintaining (a) constant CA50, and (b) constant IMEP . Operating
conditions: PR= 20, Tin= 333.1 K , Pin= 95 kPa, Ne= 1000 RPM , FQmin=15 mg/cycle
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Fig. 5. CA50 and IMEP control using PSSC
under measurement noise and cyclic variability for (a) constant CA50,
and (b) constant IMEP . Operating conditions: PR= 20, Tin= 333.1 K ,
Pin= 95 kPa, Ne=1000 RPM , cyclic variability of 2o for CA50, and
25 kPa for IMEP , based on the RCCI engine experimental data in [19].
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