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Abstract—In a sensor network governed by a linear dynamical
system, often due to practical constraints such as computational
and power limitations, it is desired to select a small subset to
perform the state estimation task. In this paper, we formulate this
task as the combinatorial problem of maximizing a monotone set
function under a uniform matroid constraint. By introducing the
notion of curvature we show that the proposed objective function
is weak submodular under certain conditions by establishing
an upperbound on its maximum element-wise curvature. To
efficiently solve the proposed combinatorial problem, we develop
a randomized greedy algorithm that is significantly faster than
state-of-the-art methods. we analyze the performance of the
proposed algorithm and establish performance guarantees on
the mean square error (MSE) of the linear estimator that uses
the selected sensors in terms of the optimal MSE. Extensive
simulation results demonstrate efficacy of the randomized greedy
algorithm in a comparison with greedy and semidefinite program-
ming relaxation methods.

Index Terms—sensor selection, sensor networks, Kalman fil-
tering, weak submodularity

I. INTRODUCTION

MODERN sensor networks, acquire myriads of measure-

ments from a dynamical system through communica-

tion of a large number of sensors and sensor fusion centers.

In these networks, due to various practical considerations

and limitations on resources including computational and

communication constraints, the fusion center which aggregates

information typically queries only a small subset of the

available sensors. This scenario, also known as the sensor

selection problem, arises in various applications in control

systems and signal processing including sensor selection for

Kalman filtering [1]–[3], batch state estimation and stochastic

process estimation [4], [5], minimal actuator placement [6],

[7], voltage control and meter placement in power networks

[8]–[10], sensor scheduling in wireless sensor networks [1],

[11], and subset selection in machine learning [12].

Although an optimal solution to the sensor selection prob-

lem can be achieved by means of branch-and-bound algo-

rithms [13], this requires finding solution to a computationally

challenging combinatorial optimization problem which by a

reduction to the set cover problem is shown to be NP-hard

[14]. This in turn has motivated development of heuristics and

approximate algorithms. For instance, in [15], sensor selection

problem is formulated as the maximization (minimization) of

the log det of the Fisher information matrix (error covariance

matrix) and a semidefinite programming relaxation is pro-

posed. The computational complexity of the SDP relaxation

is cubic in the number of sensors in the network which limits

practical feasibility of this scheme, especially for the modern

sensor networks characterized by a growing number of sensors

in the network. Additionally, the SDP relaxation does not

come with any performance guarantees. To overcome these

drawbacks, Shamaiah et al. [2] proposed a greedy algorithm

for the log det maximization formulation of the sensor se-

lection problem whose complexity is lower than that of the

SDP relaxation. Since the log det of the Fisher information

matrix is a monotone submodular function, the greedy scheme

in [2] is a (1− 1/e)-approximation algorithm. More recently,

the greedy algorithm for log det maximization was employed

and analyzed in a number of other practical settings [3]–

[5], [7]. All the prior work consider log det of the Fisher

information matrix which is related to the volume of the η-

confidence ellipsoid. However, this criterion is not explicitly

related to the mean-square error (MSE) which is often the

natural performance measure of interest in sensor selection and

state estimation problems. The MSE, i.e., the trace of the error

covariance matrix, is not supermodular [16], [17]. Therefore,

the search for an approximation algorithm with performance

guarantees on the estimator’s achievable MSE remains an open

research problem.

Sensor selection is related to the problem of maximizing a

monotone submodular function subject to a uniform matroid

constraint. Nemhauser et al. [18] considered this problem

and showed that the greedy algorithm that iteratively selects

items with maximum marginal gain provides a (1 − 1/e)-
approximation factor. In [12], a (1 − 1/e − ǫ)-approximation

stochastic-greedy algorithm is developed for the maximization

of monotone increasing submodular functions under cardi-

nality constraint that reduces the complexity of the greedy

algorithm proposed in [18]. However, the assumption of sub-

modularity in [12], [18] does not hold in the sensor selection

problem with MSE objective. Recently, Wang et al. [19] ana-

lyzed the performance of the greedy algorithm in the general

setting where the function is monotone non-decreasing, but

not necessarily submodular. They defined a total curvature

µ and showed that the greedy algorithm provides a ( 1
1+µ

)-
approximation under matroid constraint. However, determin-

ing the elemental curvature defined in [19] is itself an NP-hard

task. Therefore, finding an explicit approximation factor for

the settings where the objective function is not supermodular,

e.g., trace of the error covariance matrix in sensor scheduling

for state estimation via Kalman filtering, remains a challenge.

As we stated before, the natural objective function that is

typically of interest in sensor selection applications, the MSE,

is not submodular (or supermodular, in case one considers
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the minimization formulation of the problem). Hence, the

performance guarantees for the greedy scheme derived in [18],

[20] no longer hold. Moreover, processing massive amounts

of data collected by modern large-scale networks may be

challenging even when relying on greedy algorithms. To

address these challenges, in this paper we formulate the task of

sensor selection in a large-scale sensor network as the problem

of maximizing a monotone non-submodular objective function

directly related to the MSE of the linear estimator of the states

in a linear dynamical system. By introducing the notion of

curvature c, we derive sufficient conditions under which the

objective function of the proposed framework is weak submod-

ular. An implication of these results is that in the important

scenarios of Gaussian and Bernoulli measurement vectors

that frequently come up in dimensionality-reduced Kalman

filtering using random projections [21], the MSE objective

is with high probability weak submodular. Since state-of-the-

art sensor selection schemes based on greedy optimization

and SDP relaxation face computational burden in modern

sensor networks, we further propose a randomized greedy

algorithm and find a bound on the MSE of the state estimate

formed by the Kalman filter that uses the measurements of the

sensors selected by the randomized greedy algorithm. Using

extensive simulations on real and synthetic data, we illustrate

that the proposed randomized greedy sensor selection scheme

significantly outperforms both greedy and SDP relaxation

methods in terms of runtime and computational complexity

while providing nearly equivalent or improved performance.

The rest of the paper is organized as follows. Section II

explains the system model. In Section III we present the novel

formulation of sensor selection problem and establish bound

on curvature of its MSE-related objective. In Section IV, we

introduce the randomized greedy algorithm and analyze its

performance. Section V presents the simulation results while

the concluding remarks are stated in Section VI. MATLAB

implementation of the proposed algorithm in this paper is

freely available at https://github.com/realabolfazl/RGSS.

Before proceeding to subsequent section, we first briefly

summarize the notation used in the paper. Bold capital letters

refer to matrices and bold lowercase letters represent vectors.

Hij denotes the (i, j) entry of H, hj is the j th row of H,

HS is a submatrix of H that contains rows indexed by set

S, and λmax(H) and λmin(H) are maximum and minimum

eigenvalues of H, respectively. Spectral (ℓ2) norm of a matrix

is denoted by ‖.‖. In ∈ R
n×n is the identity matrix. Moreover,

let [n] := {1, 2, . . . , n}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a linear time-varying dynamical system and its

measurement model,

x(t+ 1) = A(t)x(t) +w(t)

y(t) = H(t)x(t) + v(t),
(1)

where x(t) ∈ R
m is the state vector, y(t) ∈ R

n is the mea-

surement vector, w(t) and v(t) are zero-mean Gaussian noises

with covariances Q(t) and R(t), respectively, A(t) ∈ R
m×m

is the state transition matrix and H(t) ∈ R
n×m is the matrix

whose rows at time t are the measurement vectors hi(t) ∈ R
m.

We assume that the states x(t) are uncorrelated with w(t) and

v(t). In addition, for simplicity of exposition we assume that

x(0) ∼ N (0,Σx), Q(t) = σ2Im, and R(t) = σ2In.

Due to limited resources, fusion center aims to select k out

of n sensors and use their measurements to estimate the state

vector x(t) by minimizing the mean squared error (MSE) in

the Kalman filtering setting. Note that we assume that the

measurement vectors hi(t) are available at the fusion center.

Let Pt|t−1 and Pt|t be the prediction and filtered error

covariance at time instant t, respectively. Then

Pt|t−1 = A(t)Pt−1|t−1A(t)⊤ +Q(t)

Pt|t =
(

P−1
t|t−1 +HSt

(t)⊤RSt
(t)−1HSt

(t)
)−1

,

where St is the set of selected sensors at time t and P0|0 = Σx.

Since R(t) = σ2In and the measurements are uncorrelated

across sensors, it holds that

Pt|t =
(

P−1
t|t−1 + σ−2HSt

(t)⊤HSt
(t)
)−1

= F−1
St

where FSt
= P−1

t|t−1 + σ−2
∑

i∈St
hi(t)hi(t)

⊤ is the corre-

sponding Fisher information matrix. Let

x̂(t) =
1

σ2
F−1

St
HSt

(t)⊤y(t) (2)

be the linear minimum mean-square estimator (LMMSE) of

x(t). Then its MSE at time t is expressed by the trace of the

filtered error covariance matrix Pt|t. That is,

MSE = E

[

∥

∥x(t) − x̂t|t
∥

∥

2

2

]

= Tr
(

F−1
St

)

(3)

where x̂t|t denotes the filtered estimate of the state vector at

time t. To minimize MSE (3) at each time step t the fusion

center seeks a solution to the following optimization problem:

min
S

Tr
(

F−1
S

)

s.t. S ⊂ [n], |S| = k. (4)

The combinatorial optimization problem (4) is NP-hard by

a reduction to the well-known set cover problem [14]. Intu-

itively, the reason is that one needs to exhaustively search over

all schedules of k sensors to find the optimal solution. Using

the techniques established in [15] (although for a different

optimality criterion from MSE) an approximate solution, i.e.,

a schedule of sensors that results in a sub-optimal MSE, can

be found by the following SDP relaxation (see Appendix I for

the details of the derivation),

min
z,Y

Tr(Y)

s.t. 0 ≤ zi ≤ 1, ∀i ∈ [n]
n
∑

i=1

zi = k

[

Y I

I P−1
t|t−1 + σ−2

∑n

i=1 zihi(t)hi(t)
⊤

]

� 0.

(5)

The complexity of the SDP algorithm scales as O(n3) which

is infeasible in practice. Furthermore, there is no guarantee

on the achievable MSE performance of the SDP relaxation.

When the number of sensors in a network and the size of the

state vector x(t) are relatively large, even the greedy algorithm

proposed in [2] may be computationally prohibitive.



3

III. PROPOSED FORMULATION BASED ON

WEAK SUBMODULARITY

In this section, we propose a new formulation for optimizing

MSE in a sensor selection task for state estimation via Kalman

filtering in a sensor network by leveraging the idea of weak

submodularity. First, we overview some definitions that are

essential in the development of the proposed framework.

Definition 1. A set function f : 2X → R is monotone non-

decreasing if f(S) ≤ f(T ) for all S ⊆ T ⊆ X .

Definition 2. A set function f : 2X → R is submodular if

f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ) (6)

for all subsets S ⊆ T ⊂ X and j ∈ X\T . The term fj(S) =
f(S ∪ {j})− f(S) is the marginal value of adding element j
to set S.

A closely related concept to submodularity is the notion

of curvature of a set function that quantifies how close the

function is to being submodular. Here, we define the element-

wise curvature.

Definition 3. The element-wise curvature of a monotone non-

decreasing function f is defined as

Cl = max
(S,T,i)∈Xl

fi(T )/fi(S), (7)

where Xl = {(S, T, i)|S ⊂ T ⊂ X, i ∈ X\T, |T \S| =
l, |X | = n}. Furthermore, the maximum element-wise cur-

vature is given by Cmax = maxn−1
l=1 Cl.

When Cmax > 1, f(S) is called a weak submodular set

function. Note that a set function is submodular if and only

if Cmax ≤ 1. Further, we say f(S) is weak submodular iff it

has a bounded Cmax.

Definition 4. Let X be a finite set and let I be a collection

of subsets of X . The pair M = (X, I) is a matroid if the

following properties hold:

• Hereditary property. If T ∈ I, then S ∈ I for all S ⊆ T .

• Augmentation property. If S, T ∈ I and |S| < |T |, then

there exists e ∈ T \S such that S ∪ {e} ∈ I.

The collection I is called the set of independent sets of the

matroid M. A maximal independent set is a basis. It is easy to

show that all the bases of a matroid have the same cardinality.

Given a monotone non-decreasing set function f : 2X → R

with f(∅) = 0, and a uniform matroid M = (X, I), we are

interested in the combinatorial problem

max
S∈I

f(S). (8)

Next, we establish the proposed framework. Let

f(S) = Tr
(

Pt|t−1 − F−1
S

)

.

Evidently, since Pt|t−1 is known, given the value of f(S) one

can easily infer the corresponding MSE of linear estimator

using subset S of sensors selected at time t. Then, we can

express the optimization problem in (4) as

max
S

f(S) s.t. S ⊂ [n], |S| = k. (9)

We now argue that (9) is indeed an instance of the gen-

eral combinatorial problem (8). By defining X = [n] and

I = {S ⊂ X ||S| = k}, it is easy to see that M = (X, I) is

a matroid. In Proposition 1 below we characterize important

properties of f(S) and develop a recursive scheme to effi-

ciently compute the marginal gain of querying a sensor. The

formula for the marginal gain of f(S) is also of interest in

our subsequent analysis of its weak submodularity properties.

Proposition 1. Let f(S) = Tr
(

Pt|t−1 − F−1
S

)

. Then, f(S)
is a monotonically increasing set function, f(∅) = 0, and

fj(S) =
hj(t)

⊤F−2
S hj(t)

σ2 + hj(t)⊤F
−1
S hj(t)

, (10)

where,

F−1
S∪{j} = F−1

S −
F−1

S hj(t)hj(t)
⊤F−1

S

σ2 + hj(t)⊤F
−1
S hj(t)

. (11)

Proof. See Appendix II. �

Recall, as we stated it is shown that MSE is not supermod-

ular [16], [17]. This immediately implies that the proposed

objective f(S) = Tr
(

Pt|t−1 − F−1
S

)

is not submodular as it is

the additive inverse of MSE. However as we show in Theorem

1, under certain conditions, f(S) is characterized with a

bounded maximum element-wise curvature Cmax. Theorem 1

also states a probabilistic theoretical upper bound on Cmax in

scenarios where at each time step the measurement vectors

hj(t)’s are i.i.d. random vectors.

Before proceeding to Theorem 1 and its proof, we first state

the matrix Bernstein inequality [22] that will be used in the

proof of Theorem 1.

Lemma 1. (Theorem 6.6.1 in [22].) Let {Xℓ}nℓ=1 be a finite

collection of independent, random, Hermitian matrices in

R
m×m. Assume that for all ℓ ∈ [n],

E [Xℓ] = 0, λmax(Xℓ) ≤ L. (12)

Let Y =
∑n

ℓ=1 Xℓ. Then, for all q > 0, it holds that

Pr{λmax(Y) ≥ q} ≤ m exp

(

−q2/2

‖E [Y2] ‖+ Lq/3

)

. (13)

We now proceed to the statement and proof of Theorem 1.

Theorem 1. Let Cmax be the maximum element-wise curva-

ture of f(S), i.e., the objective function of sensor scheduling

problem and assume ‖hj(t)‖22 ≤ C for all j and t. Then, if

1

σ2
λmax(H(t)⊤H(t)) ≤

1

φ
−

1

λmin(Pt|t−1)
(14)

for some 0 < φ < λmin(Pt|t−1), it holds that

Cmax ≤
λmax(Pt|t−1)

2(σ2 + λmax(Pt|t−1)C)

φ2(σ2 + φC)
, (15)

Furthermore, if hj(t)’s are independent zero-mean random

vectors with covariance matrix σ2
hIm such that for all j, σ2

h <
C, for all q > 0 with probability

p ≥ 1−m exp

(

−q2/2

(C − σ2
h)(nσ

2
h + q/3)

)

(16)
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it holds that

φ ≥

(

1

λmin(Pt|t−1)
+

nσ2
h + q

σ2

)−1

. (17)

Proof. First, from the definition of element-wise curvature and

(10) we obtain that

Cl = max
(S,T,j)∈Xl

(hj(t)
⊤F−2

T hj(t))(σ
2 + hj(t)

⊤F−1
S hj(t))

(hj(t)⊤F
−2
S hj(t))(σ2 + hj(t)⊤F

−1
T hj(t))

≤ max
(S,T,j)∈Xl

λmax(F
−2
T )(σ2 + λmax(F

−1
S )‖hj(t)‖22)

λmin(F
−2
S )(σ2 + λmin(F

−1
T )‖hj(t)‖22)

,

(18)

where the last inequality follows from the Courant–Fischer

min-max theorem [23]. Notice that λmax(F
−1
S ) =

λmin(FS)
−1 and λmin(FT ) ≥ λmin(FS) ≥ λmin(F∅) =

λmin(P
−1
t|t−1). This fact, along with the definition of Cmax

implies

Cmax ≤
λmax(Pt|t−1)

2(σ2 + λmax(Pt|t−1)‖hj(t)‖22)

λmax(FS)−2(σ2 + λmax(FT )−1‖hj(t)‖22)
(a)

≤
λmax(Pt|t−1)

2(σ2 + λmax(Pt|t−1)‖hj(t)‖22)

λmax(F[n])−2(σ2 + λmax(F[n])−1‖hj(t)‖22)

(b)

≤
λmax(Pt|t−1)

2(σ2 + λmax(Pt|t−1)C)

λmax(F[n])−2(σ2 + λmax(F[n])−1C)
,

(19)

where (a) follows from the fact that λmax(FS) ≤
λmax(FT ) ≤ λmax(F[n]) and (b) holds since

g(x) =
σ2 + λmax(Pt|t−1)x

σ2 + λmax(F[n])−1x
(20)

is a monotonically increasing function for x > 0. Now, since

the maximum eigenvalue of a positive definite matrix satisfies

the triangle inequality, we have

λmax(F[n]) ≤
1

λmin(Pt|t−1)
+

1

σ2
λmax(

n
∑

j=1

hj(t)hj(t)
⊤)

≤
1

λmin(Pt|t−1)
+

1

σ2
λmax(H(t)⊤H(t))

(21)

Hence, by combining the condition (14) and (19), we obtain

the results stated in (15). Next, to obtain the expression for the

scenario of i.i.d random measurement vectors we now bound

λmax(F[n]) using the matrix Bernstein inequality [22]. Let

Xj = hj(t)hj(t)
⊤ − σ2

hIm and Y =
∑n

j=1 Xj . To use the

result of Lemma 1, one should find the quantities in (12). Note

that,

E[Xj ] = E[hj(t)hj(t)
⊤ − σ2

hIm]

= E[hj(t)hj(t)
⊤]− σ2

hIm = 0.
(22)

This in turn implies that E[Y] = 0. Since Xj’s are indepen-

dent,

‖E[Y2]‖ = ‖E[
n
∑

j=1

X2
j ]‖ ≤

n
∑

j=1

‖E[X2
j ]‖ (23)

by the linearity of expectation and triangle inequality. It just

remains to determine λmax(Xj) and E[X2
j ].

First, we verify hj is an eigenvector of Xj :

Xjhj =
(

hj(t)hj(t)
⊤ − σ2

hIm
)

hj

=
(

‖hj(t)‖
2
2 − σ2

h

)

hj .
(24)

where hj(t)hj(t)
⊤ − σ2

hIm is the corresponding eigenvalue.

Since hj(t)hj(t)
⊤ is a rank-1 matrix, other eigenvalues of Xj

are all equal to −σ2
h. Hence,

λmax(Xj) ≤ C − σ2
h > 0. (25)

We now establish an upper-bound for E[X2
j ] as follows:

E[X2
j ] = E[

(

hj(t)hj(t)
⊤ − σ2

hIm
) (

hj(t)hj(t)
⊤ − σ2

hIm
)

]

=
(

‖hj(t)‖
2
2 − σ2

h

)

E[hj(t)hj(t)
⊤]

− σ2
h E[

(

hj(t)hj(t)
⊤ − σ2

hIm
)

]

=
(

‖hj(t)‖
2
2 − σ2

h

)

σ2
hIm � (C − σ2

h)σ
2
hIm

(26)

where we have used the fact that E[Xj ] = 0. Thus, L = C−σ2
h

and ‖E[Y2]‖ ≤ n(C − σ2
h)σ

2
h. Now, according to Lemma 1,

for all q > 0 it holds that Pr{λmax(Y) ≤ q} ≥ p where

p = 1−m exp

(

−q2/2

(C − σ2
h)(nσ

2
h + q/3)

)

. (27)

Therefore,

λmax(F[n]) ≤
1

λmin(Pt|t−1)
+

nσ2
h + q

σ2
= φ−1 (28)

with probability p. This completes the proof. �

Remark 1: The setting of i.i.d. random vectors described

in Theorem 1 arises in scenarios where sketching techniques,

such as random projections are used to reduce dimensionality

of the measurement equation (see [21] for more details). Such

sketching schemes give rise to the following important and

widely-used examples:

1) Multivariate Gaussian measurement vectors: Let

hj(t) ∼ N (0, 1
m
Im) for all j. It is easy to show that

E[‖hj(t)‖22] = 1 for all j. Furthermore, it can be shown

that ‖hj(t)‖22 is with high probability distributed around

its expected value. Therefore, for this case, σ2
h = 1

m

and C = 1.

2) Centered Bernoulli measurement vectors: Let each entry

of hj(t) be set to ± 1√
m

with equal probability. There-

fore, ‖hj(t)‖22 = 1 = C. Additionally, σ2
h = 1

m
since

the entries of hj(t) are i.i.d. zero-mean random variables

with variance 1
m

.

The conditions stated in Theorem 1 can be interpreted as

conditions on the condition number of Pt|t−1 as explained

next. For sufficiently large m, and when σ2
h = 1

m
, we can

approximate C ≈ 1. Assume φ ≥ λmax(Pt|t−1)/∆ for some

∆ > 1. Define

SNR =
λmax(Pt|t−1)

σ2
, (29)

and let

κ =
λmax(Pt|t−1)

λmin(Pt|t−1)
≥ 1 (30)
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Algorithm 1 Randomized Greedy Sensor Scheduling

1: Input: Pt|t−1, Ht, k, ǫ.
2: Output: Subset St ⊆ [n] with |St| = k.

3: Initialize S
(0)
t = ∅, F

S
(0)
t

= P−1
t|t−1.

4: for i = 0, . . . , k − 1
5: Choose R by sampling s = n

k
log (1/ǫ) indices uni-

formly at random from [n]\S
(i)
t .

6: is = argmaxj∈R

hj(t)
⊤
F

−2

S
(i)
t

hj(t)

σ2+hj(t)⊤F
−1

S
(i)
t

hj(t)
.

7: Set S
(i+1)
t = S

(i)
t ∪ {is}.

8: F−1

S
(i+1)
t

= F−1

S
(i)
t

−
F

−1

S
(i)
t

his (t)his (t)
⊤
F

−1

S
(i)
t

σ2+his (t)
⊤F

−1

S
(i)
t

his (t)

9: end for

10: return St = S
(k)
t .

be the condition number of Pt|t−1. Then, with some ele-

mentary numerical approximations we obtain the following

corollary.

Corollary 1.1. Assume

∆ ≥ κ+ c1
n

m
SNR, (31)

for some c1 > 1. Then, with probability

p ≥ 1−m exp(−
n

m
c2), (32)

it holds that Cmax ≤ ∆3 for some c2 > 0.

Hence, informally, Theorem 1 states that for a well-

conditioned Pt|t−1, curvature of f(S) is small, implying

weak-submodularity of f(S). Furthermore, the probability

of such event is exponentially increasing in the number of

available measurements.

IV. RANDOMIZED GREEDY SENSOR SELECTION

In the this section, we present a randomized greedy algo-

rithm to approximately solve optimization problem (9) and

provide its performance guarantees.

Given prohibitive complexity of SDP relaxation and greedy

schemes for sensor scheduling in large-scale systems, to pro-

vide practical feasibility, inspired by the algorithm developed

in [12] that only works for submodular objectives, we propose

a computationally efficient randomized greedy algorithm (see

Algorithm 1) that finds an approximate solution to (9) with

a guarantee on its achievable MSE. Algorithm 1 performs

the task of sensor scheduling in the following way. At each

iteration of the algorithm, a subset R of size s is sampled

uniformly at random and without replacement from the set

of sensors. The marginal gain provided by each of these s
sensors to the objective function is computed using (10), and

the one yielding the highest marginal gain is added to the set

of selected sensors. Then the efficient recursive formula in (11)

is used to update F−1
S so it can be used in the next iteration.

This procedure is repeated k times.

Remark 2: The parameter ǫ in Algorithm 1, e−k ≤ ǫ < 1,

denotes a predefined constant that is chosen to strike a desired

balance between performance and complexity. When ǫ = e−k,

each iteration includes all of the non-selected sensors in R
and Algorithm 1 coincides with the greedy scheme. However,

as ǫ approaches 1, |R| and thus the overall computational

complexity decreases.

A. Performance Analysis of the Proposed Scheme

In this section we analyze performance and complexity

of Algorithm 1 and in Theorem 2 provide a bound on the

performance of the proposed randomized greedy scheme when

applied to finding an approximate solution to the maximization

(9).

Before stating the main results, we first provide two lemmas.

Lemma 2 upper-bounds the difference between the values

of the objective corresponding to two sets having different

cardinalities while Lemma 3 provides a lower bound on the

expected marginal gain.

Lemma 2. Let {Cl}
n−1
l=1 be the element-wise curvatures of

f(S). Let S and T be any schedules of sensors such that

S ⊂ T ⊆ [n] with |T \S| = r. Then, it holds that

f(T )− f(S) ≤ C(r)
∑

j∈T\S
fj(S), (33)

where C(r) = 1
r
(1 +

∑r−1
l=1 Cl).

Proof. See Appendix III. �

Lemma 3. Let S
(i)
t be the set of selected sensors at the end

of the ith iteration of Algorithm 1. Then

E

[

f(i+1)s(S
(i)
t )|S

(i)
t

]

≥
1− ǫβ

k

∑

j∈Ot\S(i)
t

fj(S
(i)
t ), (34)

where Ot is the set of optimal sensors at time t, is is the index

of the selected sensor at the ith iteration, β = 1+max{0, s
2n−

1
2(n−s)}, and s = n

k
log (1/ǫ).

Proof. See Appendix IV. �

Theorem 2 below states that Algorithm 1 provides an

approximate solution to the sensor scheduling problem. In

particular, if f(S) is characterized by a bounded maximum

element-wise curvature, Algorithm 1 returns a subset of

sensors yielding an objective that is on average within a

multiplicative factor of the objective achieved by the optimal

schedule.

Theorem 2. Let Cmax be the maximum element-wise curva-

ture of f(S), i.e., the objective function of sensor scheduling

problem in (9). Let St denote the schedule of sensors selected

by Algorithm 1 at time t, and let Ot be the optimum solution

of (9) such that |Ot| = k. Then f(St) is on expectation a

multiplicative factor away from f(Ot). That is,

E [f(St)] ≥

(

1− e−
1
c −

ǫβ

c

)

f(Ot), (35)

where c = max{Cmax, 1}, e−k ≤ ǫ < 1, and β =
1 + max{0, s

2n − 1
2(n−s)}. Furthermore, the computational
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complexity of Algorithm 1 is O(nm2 log(1
ǫ
)) where n is the

total number of sensors and m is the dimension of xt.

Proof. Consider S
(i)
t , the set generated at the end of the ith

iteration of Algorithm 1. Employing Lemma 2 with S = S
(i)
t

and T = Ot ∪ S
(i)
t , and using monotonicity of f yields

f(Ot)− f(S
(i)
t )

1
r

(

1 +
∑r−1

l=1 Cl
) ≤

f(Ot ∪ S
(i)
t )− f(S

(i)
t )

1
r

(

1 +
∑r−1

l=1 Cl
)

≤
∑

j∈Ot\S(i)
t

fj(S
(i)
t ),

(36)

where |Ot\S
(i)
t | = r. Now, using Lemma 3 we obtain

E

[

f(i+1)s(S
(i)
t )|S

(i)
t

]

≥
(

1− ǫβ
) f(Ot)− f(S

(i)
t )

k
r

(

1 +
∑r−1

l=1 Cl
) . (37)

Applying the law of total expectation yields

E

[

f(i+1)s(S
(i)
t )
]

= E

[

f(S
(i+1)
t )− f(S

(i)
t )
]

≥
(

1− ǫβ
)

f(Ot)− E

[

f(S
(i)
t )
]

k
r

(

1 +
∑r−1

l=1 Cl
) .

(38)

Using the definition of the maximum element-wise curvature,

we obtain

1

r

(

1 +
r−1
∑

l=1

Cl

)

≤
1

r
(1 + (r − 1)Cmax) = g(r). (39)

It is easy to verify, e.g., by taking the derivative, that g(r) is

decreasing (increasing) with respect to r if Cmax < 1 (Cmax >
1). Let c = max{Cmax, 1}. Then

1

r

(

1 +

r−1
∑

l=1

Cl

)

≤
1

r
(1 + (r − 1)Cmax) ≤ c. (40)

Hence,

E

[

f(S
(i+1)
t )− f(S

(i)
t )
]

≥
1− ǫβ

kc

(

f(Ot)− E

[

f(S
(i)
t )
])

.

(41)

By induction and due to the fact that f(∅) = 0,

E[f(St)] ≥

(

1−

(

1−
1− ǫβ

kc

)k
)

f(Ot). (42)

Finally, using the fact that (1 + x)y ≤ exy for y > 0 and the

easily verifiable fact that eax ≤ 1 + axea for 0 < x < 1,

E[f(St)] ≥

(

1− e−
1−ǫβ

c

)

f(Ot)

≥

(

1− e−
1
c −

ǫβ

c

)

f(Ot).

(43)

To take a closer look at computational complexity, note

that step 6 costs O(n
k
m2 log(1

ǫ
)) as one needs to compute

n
k
log(1

ǫ
) marginal gains, each with complexity O(m2). Step

8 requires O(m2) arithmetic operations. Since there are k such

iterations, running time of Algorithm 1 is O(nm2 log(1
ǫ
)).

This completes the proof. �

Using the definition of f(S) we obtain Corollary 2.1 stating

that, at each time step, the achievable mean-square error in (3)

obtained by forming an estimate using sensors selected by the

randomized greedy algorithm is within a factor of the optimal

mean-square error.

Corollary 2.1. Instate the notation and hypothesis of Theorem

2 and let α = 1 − e−
1
c − ǫ

c
. Let MSESt

denote the mean-

square estimation error obtained by forming an estimate using

information provided by the sensors selected by Algorithm 1 at

time t, and let MSEo be the optimal mean-square error formed

using information collected by optimum solution of (9). Then

the expected MSESt
is bounded as

E [MSESt
] ≤ αMSEo + (1− α)Tr(Pt|t−1). (44)

Remark 3: Since the proposed scheme is a randomized

algorithm, Theorem 2 and Corollary 2.1 state that the expected

MSE associated with the solution returned by Algorithm 1

is a multiplicative factor α away from the optimal MSE.

Notice that, as we expect, α is decreasing in both c and ǫ.
If f(S) is characterized by a small curvature, then f(S) is

nearly submodular and randomized greedy algorithm delivers a

near-optimal scheduling. As we decrease ǫ, α increases which

in turn results in a better approximation factor. In the limit,

if ǫ = e−k, then α = 1 − e−
1
c − e−k

c
corresponds to the

approximation factor of the greedy algorithm. Notice that the

negligible term − e−k

c
stems from the specific analysis that we

employed to treat the randomization step of Algorithm 1. In

fact, one can show α = 1− e−
1
c for the greedy algorithm by

following a similar argument as that of the classical analysis

given in [18].

Remark 4: The computational complexity of the greedy

method for sensor selection that utilizes the efficient recur-

sions given in Proposition (1) to find the marginal gains is

O(knm2). Hence, our proposed scheme provides a reduction

in complexity by k/ log(1
ǫ
) which may be particularly benefi-

cial in large-scale networks, as we illustrate in our simulation

results.

Next, we study the performance of the randomized greedy

algorithm using the tools of probably approximately correct

(PAC) learning theory [24]. The randomized selection step of

Algorithm 1 can be interpreted as approximating the marginal

gains of the selected sensors using a greedy scheme [2]. More

specifically, for the ith iteration it holds that fjrg (S
(i)
t ) =

η
(i)
t fjg(S

(i)
t ), where subscripts rg and g refer to the sensors

selected by the randomized greedy (Algorithm 1) and the

greedy algorithm, respectively, and ℓi(ǫ) ≤ η
(i)
t ≤ 1 for all

i ∈ [k] are random variables with mean µi(ǫ).
1 In view of this

argument, we obtain Theorem 3 which states that if f(S) is

characterized by a bounded maximum element-wise curvature

and {η
(i)
t }ki=1 are independent random variables, Algorithm

1 returns a subset of sensors yielding an objective that with

high probability is only a multiplicative factor away from the

objective achieved by the optimal schedule.

1Notice that ℓi(ǫ) and µi(ǫ) are time-varying quantities where the time
index is omitted for simplicity of the notation.
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Theorem 3. Instate the notation and hypotheses of Theorem

2. Assume {η
(i)
t }ki=1 is a collection of random variables such

that ℓi(ǫ) ≤ η
(i)
t ≤ 1, and E[η

(i)
t ] = µi(ǫ) for all i and t. let

ℓmin(ǫ) = mini,t{ℓi(ǫ)} and µmin(ǫ) = mini,t{µi(ǫ)}. Then

f(St) ≥
(

1− e−
ℓmin(ǫ)

c

)

f(Ot), (45)

Furthermore, if {η
(i)
t }ki=1 are independent, for all 0 < q < 1,

with probability at least 1− e−Ck it holds that

f(St) ≥
(

1− e−
(1−q)µmin(ǫ)

c

)

f(Ot), (46)

for some C > 0.

Proof. Consider S
(i)
t , the set generated at the end of the

ith iteration of Algorithm 1 and let (i + 1)g and (i + 1)rg
denote the sensors selected by greedy and randomized greedy

algorithm at ith iteration, respectively. Let c = max{Cmax, 1}.

Employing Lemma 2 with S = S
(i)
t and T = Ot ∪ S

(i)
t , and

using monotonicity of f yields

f(Ot)− f(S
(i)
t ) ≤ f(Ot ∪ S

(i)
t )− f(S

(i)
t )

≤ c
∑

j∈Ot\S(i)
t

fj(S
(i)
t ). (47)

Using the fact that

fj(S
(i)
t ) ≤ f(i+1)rg (S

(i)
t ) ≤ f(i+1)g (S

(i)
t ) (48)

for all j, we obtain

f(Ot)− f(S
(i)
t ) ≤ ckf(i+1)g (S

(i)
t ). (49)

On the other hand,

f(S
(i+1)
t )− f(S

(i)
t ) = f(i+1)rg (S

(i)
t )

= η
(i+1)
t f(i+1)g (S

(i)
t ).

(50)

Combining (49) and (50) yields

f(S
(i+1)
t )− f(S

(i)
t ) ≥

η
(i+1)
t

kc

(

f(Ot)− f(S
(i)
t )
)

. (51)

Using a similar inductive argument as we did in the proof of

Theorem 2 and due to the fact that f(∅) = 0,

f(St) ≥

(

1−

(

1−
k
∑

i=1

η
(i)
t

kc

))

f(Ot)

(a)

≥

(

1− e−
∑k

i=1

η
(i)
t
kc

)

f(Ot),

(52)

where to obtain (a) we use the fact that (1 + x)y ≤ exy for

y > 0. To obtain the stated result, we apply the Bernstein’s

inequality [25] on the term
∑k

i=1 η
(i)
t that is a sum of inde-

pendent random variables. Note that since {η
(i)
t } are bounded

random variables, by Popoviciu’s inequality [25] for all i ∈ [k]
it holds that

Var[η
(i)
t ] ≤

1

4
(1− ℓi(ǫ))

2. (53)

Hence, by Bernstein’s inequality for all 0 < q < 1

Pr{
k
∑

i=1

η
(i)
t < (1− q)

k
∑

i=1

µi} < p (54)

where

p = exp

(

−
(1− q)2(

∑k

i=1 µi(ǫ))
2

1−q
3

∑k
i=1 µi(ǫ) +

1
4

∑k
i=1(1− ℓi(ǫ))2

)

(a)

≤ exp

(

−
k(1− q)2µ2

min(ǫ)
1−q
3 µmin(ǫ) +

1
4 (1− ℓmin(ǫ))2

)

= e−C(ǫ,q)k

(55)

where (a) follows as p only increases by lower bounding µi(ǫ)
and ℓi(ǫ). Finally, employing this results in (52) yields

f(St) ≥
(

1− e−
(1−q)µmin(ǫ)

c

)

f(Ot), (56)

with probability at least 1−eC(ǫ,q)k. This completes the proof.

�

Indeed, in simulation studies (see Section V) we empirically

verify the results of Theorems 2 and 3 and illustrate that

Algorithm 2 performs favorably compared to the competing

schemes both on average and for each individual sensor

scheduling tasks.

Similar to Corollary 2.1, we now obtain a probabilistic

bound on the achievable mean-square error in (3) at each

time step using the proposed randomized greedy algorithm,

as stated in Corollary 3.1 below.

Corollary 3.1. Instate the notation and hypotheses of Corol-

lary 2.1 and Theorem 3. Let 0 < q < 1 and define

α = 1 − exp(− (1−q)µmin(ǫ)
c

). Then, with probability at least

1− e−Ck it holds that

MSESt
≤ αMSEo + (1− α)Tr(Pt|t−1), (57)

for some C > 0.

V. SIMULATION RESULTS

To test the performance of the proposed randomized greedy

algorithm, we compare it with the classic greedy algorithm and

the SDP relaxation in a variety of settings as detailed below.

We consider the problem of Kalman filtering for state

estimation in a linear time-varying system. For simplicity, let

us assume that the system is in steady state and H = Im.

The initial state is a zero-mean Gaussian random vector with

covariance Σx = Im. We further specify zero-mean Gaussian

process and measurement noises with covariance matrices

Q = 0.05Im and R = 0.05In, respectively. At each time step,

the measurement vectors, i.e., the rows of the measurement

matrix H(t), are drawn according to N ∼ (0, 1
m
Im).

The MSE values and running time of each scheme is

averaged over 10 Monte-Carlo simulations. The time horizon

for each run is T = 10. The greedy and randomized greedy

algorithms are implemented in MATLAB while the SDP relax-

ation scheme is implemented via CVX [26]. All experiments

were run on a laptop with 2.0 GHz Intel Core i7-4510U CPU

and 8.00 GB of RAM.

We first consider the system having state dimension m =
50, the number of measurements n = 400, and k = 55, and

compare the MSE values of each method over the time horizon

of interest. For randomized greedy we set ǫ = 0.001. Fig. 1
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Fig. 1: MSE comparison of randomized greedy, greedy, and SDP relaxation
sensor selection schemes employed in Kalman filtering.

shows that the greedy method consistently yields the lowest

MSE while the MSE of the randomized greedy algorithm is

slightly higher. The MSE performance achieved by the SDP

relaxation is considerably larger than those of the greedy

and randomized greedy algorithms. The running time of each

method is given in Table I. Both the greedy algorithm and

the randomized greedy algorithm are much faster than the

SDP formulation. The randomized greedy scheme is nearly

two times faster than the greedy method. Note that, in this

Randomized Greedy Greedy SDP Relaxation

0.20 s 0.38 s 249.86 s

Table I: Running time comparison of randomized greedy, greedy, and SDP
relaxation sensor selection schemes (m = 50, n = 400, k = 55, ǫ = 0.001).

example, in each iteration of the sensor selection procedure

the randomized scheme only computes the marginal gain for

a sampled subset of size 50. As a comparison, the greedy

approach computes the marginal gain for all 400 sensors. In

summary, the greedy method yields the lowest MSE but is

much slower than the proposed randomized greedy algorithm.

To study the effect of the number of selected sensors on

performance, we vary k from 55 to 115 with increments of

10. The MSE values at the last time step (i.e., t = 10)

for each algorithm are shown in Fig. 2(a). As the number

of selected sensors increases, the estimation becomes more

accurate, as reflected by the MSE of each algorithm. Further,

the difference between the MSE values consistently decreases

as more sensors are selected. The running times shown in

Fig. 2(b) indicate that the randomized greedy scheme is nearly

twice as fast as the greedy method, while the SDP method is

orders of magnitude slower than both greedy and randomized

greedy algorithms.

Finally, we compare the performance of the randomized

greedy algorithm to that of the greedy algorithm as the size of

the system increases. We run both methods for 20 different

sizes of the system. The initial size was set to m = 20,

n = 200, and k = 25 and all three parameters are scaled by β
where β varies from 1 to 20. In addition, to evaluate the effect

of ǫ on the performance and runtime of the randomized greedy

60 70 80 90 100 110
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4

5

6
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(a) MSE comparison
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100

101

102

103

(b) Running time comparison

Fig. 2: Comparison of randomized greedy, greedy, and SDP relaxation
schemes as the number of selected sensors increases.

approach, we repeat experiments for ǫ ∈ {0.1, 0.01, 0.001}.

Note that the computational complexity of the SDP relaxation

scheme is prohibitive in this setting. Fig. 3(a) illustrates the

percentage difference of the MSE between the two methods.

In particular, we show

%∆MSE =
MSERG −MSEG

MSEG
× 100

where “RG” and “G” refer to the randomized greedy and

greedy algorithms, respectively. It can be seen that this differ-

ence between the MSEs reduces as the system scales up. The

running time is plotted in Fig. 3(b). As the figure illustrates,

the gap between the running times grows with the size of

the system and the randomized greedy algorithm performs

nearly 25 times faster than the greedy method for the largest

network. Fig. 3 shows that using a smaller ǫ results in a

lower MSE while it slightly increases the running time. These

results suggest that, for large systems, the randomized greedy

provides almost the same MSE while being much faster than

the greedy algorithm.
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Fig. 3: A comparison of the randomized greedy and greedy algorithms for
varied network size.

VI. CONCLUSION

In this paper, we considered the problem of state estimation

in large-scale linear time-varying dynamical systems. We

proposed a randomized greedy algorithm for selecting sensors

to query such that their choice minimizes the estimator’s mean-

square error at each time step. We established the perfor-

mance guarantee for the proposed algorithm and analyzed its

computational complexity. To our knowledge, the proposed

scheme is the first randomized algorithm for sensor scheduling

with an explicit bound on its achievable mean-square error. In

addition, we provided a probabilistic theoretical bound on the

element-wise curvature of the objective function. Furthermore,

in simulations we demonstrated that the proposed algorithm is

superior to the classical greedy and SDP relaxation methods

in terms of running time while providing the same or better

utility.

As a future work, we intend to extend this approach to

nonlinear dynamical systems and obtain a theoretical guaran-

tee on the quality of the resulting approximate solution found

by randomized greedy algorithm. Moreover, it would be of

interest to extend the framework established in this manuscript

to related problems such as minimal actuator placement.

APPENDIX A

DERIVATION OF SDP RELAXATION OF (5)

Let zi ∈ {0, 1} indicate the membership of the ith sensor in

the selected subset at time t and define z = [z1, z2, . . . , zn]
⊤.

Hence, (9) can be written as

min
z

Tr





(

P−1
t|t−1 + σ−2

n
∑

i=1

zihi(t)hi(t)
⊤
)−1





s.t. zi ∈ {0, 1}, ∀i ∈ [n]
n
∑

i=1

zi = k.

The convex relaxation of the above optimization problem is

given by

min
z

Tr





(

P−1
t|t−1 + σ−2

n
∑

i=1

zihi(t)hi(t)
⊤
)−1





s.t. 0 ≤ zi ≤ 1, ∀i ∈ [n]
n
∑

i=1

zi = k.

(58)

In order to obtain an SDP in standard form, let Y be a positive

semidefinite matrix such that

Y �

(

P−1
t|t−1 + σ−2

n
∑

i=1

zihi(t)hi(t)
⊤
)−1

(59)

Then, (58) can equivalently be written as

min
z,Y

Tr(Y)

s.t. 0 ≤ zi ≤ 1, ∀i ∈ [n]
n
∑

i=1

zi = k

Y −

(

P−1
t|t−1 + σ−2

n
∑

i=1

zihi(t)hi(t)
⊤
)−1

� 0

(60)

Note that the expression on the left hand side of last constraint

in (60) can be thought of as the Schur complement [27] of the

block PSD matrix

B =

[

Y I

I P−1
t|t−1 + σ−2

∑n

i=1 zihi(t)hi(t)
⊤

]

. (61)

Since Schur complement of B is positive semidefinite if and

only if B � 0, we obtain the SDP relaxation given in (5).

The solution to the SDP may take fractional values, in which

case some kind of sorting and rounding need to be employed

in order to obtain the desired solution. Here, we select the

sensors corresponding to the k zi’s with largest values, as

originally suggested by [15].
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APPENDIX B

PROOF OF PROPOSITION 1

First, note that

f(∅) = Tr
(

Pt|t−1 − F−1
∅
)

= Tr
(

Pt|t−1 −Pt|t−1

)

= 0.

Now, for j ∈ [n]\S it holds that

fj(S) = f(S ∪ {j})− f(S)

= Tr
(

Pt|t−1 − F−1
S∪{j}

)

− Tr
(

Pt|t−1 − F−1
S

)

= Tr
(

F−1
S

)

− Tr
(

F−1
S∪{j}

)

= Tr
(

F−1
S

)

− Tr
(

(

FS + σ−2hj(t)hj(t)
⊤)−1

)

(a)
= Tr

(

F−1
S hj(t)hj(t)

⊤F−1
S

σ2 + hj(t)⊤F
−1
S hj(t)

)

(b)
=

hj(t)
⊤F−2

S hj(t)

σ2 + hj(t)⊤F
−1
S hj(t)

(62)

where (a) is by applying matrix inversion lemma (Sher-

man–Morrison formula) [23] on (FS + σ−2hj(t)hj(t)
⊤)−1,

and (b) is by properties of trace of a matrix. Finally, since FS

is a symmetric positive definite matrix, fj(S) > 0 which in

turn implies monotonicity.

APPENDIX C

PROOF OF LEMMA 2

Let S ⊂ T and T \S = {j1, . . . , jr}. Therefore,

f(T )− f(S) = f(S ∪ {j1, . . . , jr})− f(S)

= fj1(S) + fj2(S ∪ {j1}) + . . .

+ fjr(S ∪ {j1, . . . , jr−1}). (63)

Applying definition of element-wise curvature yields

f(T )− f(S) ≤ fj1(S) + C1fj2(S) + · · ·+ Cr−1fjr (S)

= fj1(S) +
r−1
∑

l=1

Clfjt(S).

(64)

Note that (64) is invariant to the ordering of elements in

T \S. In fact, it is straightforward to see that given ordering

{j1, . . . , jr}, one can choose a set P = {P1, . . . ,Pr} with r
permutations – e.g., by defining the right circular-shift operator

Pt({j1, . . . , jr}) = {jr−t+1, . . . , j1, . . . } for 1 ≤ t ≤ r –

such that Pp(j) 6= Pq(j) for p 6= q and ∀j ∈ T \S. Hence,

(64) holds for r such permutations. Summing all of these r
inequalities we obtain

r(f(T )− f(S)) ≤

(

1 +

r−1
∑

l=1

Cl

)

∑

j∈T\S
fj(S). (65)

Rearranging (65) yields the desired result.

APPENDIX D

PROOF OF LEMMA 3

First, we aim to bound the probability of the event that the

random set R contains at least an index from the optimal set

of sensor as this is a necessary condition to reach the optimal

MSE. Consider S
(i)
t , the set of selected sensors at the end of

ith iteration of Algorithm 1 and let Φ = R∩(O\S
(i)
t ). It holds

that2

Pr{Φ = ∅} =

s−1
∏

l=0

(

1−
|O\S

(i)
t |

|[n]\S
(i)
t | − l

)

(a)

≤

(

1−
|O\S

(i)
t |

s

s−1
∑

l=0

1

|[n]\S
(i)
t | − l

)s

(b)

≤

(

1−
|O\S

(i)
t |

s

s−1
∑

l=0

1

n− l

)s

(66)

where (a) is by the inequality of arithmetic and geometric

means, and (b) holds since |[n]\Si| ≤ n. Now recall for any

integer p,

Hp =

p
∑

l=1

1

p
= log p+ γ + ζp (67)

where, Hp is the pth harmonic number, γ is the Eu-

ler–Mascheroni constant, and ζp = 1
2p − O( 1

p4 ) is a mono-

tonically decreasing sequence related to Hurwitz zeta function

[28]. Therefore, using the identity (67) we obtain

Pr{Φ = ∅} ≤ (1−
|O\S

(i)
t |

s
(Hn −Hn−s))

s

= (1−
|O\S

(i)
t |

s
(log(

n

n− s
) + ζn − ζn−s))

s

(a)

≤ (1−
|O\S

(i)
t |

s
(log(

n

n− s
)−

s

2n(n− s)
))s

(b)

≤ ((1 −
s

n
)e

s
2n(n−s) )|O\S(i)

t |

(68)

where (a) follows since ζn−ζn−s =
1
2n−

1
2(n−s)+O( 1

(n−s)4 ),

and (b) is by the fact that (1+x)y ≤ exy for any real number

y > 0. Next, the fact that log(1−x) ≤ −x− x2

2 for 0 < x < 1
yields

(1−
s

n
)e

s
2n(n−s) ≤ e−

β1s

n (69)

where β1 = 1 + ( s
2n − 1

2(n−s) ). On the other hand, we can

also upper bound Pr{Φ = ∅} as

Pr{Φ = ∅} ≤

(

1−
|O\S

(i)
t |

s

s−1
∑

l=0

1

n− l

)s

≤

(

1−
|O\S

(i)
t |

n

)s

≤ e−
s
n
|O\S(i)

t |

(70)

where we again employed the inequality (1+x)y ≤ exy. Now,

let β = max{1, β1}. Thus,

Pr{Φ 6= ∅} ≥ 1− e−
βs
n

|O\S(i)
t | ≥

1− ǫβ

k
(|O\S

(i)
t |) (71)

2Note that without loss of generality and for simplicity we assume that s
is an integer.
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by definition of s and the fact that 1 − e−
βs
n

x is a concave

function. Finally, according to Lemma 2 in [12],

E[f(i+1)s(S
(i)
t )|S

(i)
t ] ≥

Pr{Φ 6= ∅}

|O\S
(i)
t |

∑

j∈Ot\S(i)
t

fo(S
(i)
t ). (72)

Combining (71) and (72) yields the stated results.
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