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On Reachable Sets of Hidden CPS Sensor Attacks

Carlos Murguia and Justin Ruths

Abstract— For given system dynamics, observer structure,
and observer-based fault/attack detection procedure, we provide
mathematical tools – in terms of Linear Matrix Inequalities
(LMIs) – for computing outer ellipsoidal bounds on the set
of estimation errors that attacks can induce while maintaining
the alarm rate of the detector equal to its attack-free false
alarm rate. We refer to these sets to as hidden reachable sets.
The obtained ellipsoidal bounds on hidden reachable sets quan-
tify the attacker’s potential impact when it is constrained to
stay hidden from the detector. We provide tools for minimizing
the volume of these ellipsoidal bounds (minimizing thus the
reachable sets) by redesigning the observer gains. Simulation
results are presented to illustrate the performance of our tools.

I. INTRODUCTION

There has recently been significant interest and work

in the broad area of security of cyber-physical systems

(CPS), see for example [1]-[8]. This topic investigates the

properties of conventional control systems in the presence

of adversarial disturbances. Control theory has shown great

ability to robustly deal with disturbances and uncertainties

[9]. However, adversarial attacks raise all-new issues due to

the aggressive and strategic nature of the disturbances that

attackers might inject into the system.

This paper focuses on attack detection and attack capa-

bilities in CPSs. A majority of the work on attack detec-

tion leverages the established literature of fault detection

[1],[2],[10],[11]. A fault detection approach uses an estima-

tor to forecast the evolution of the system dynamics. When

the residual (the difference between what is measured and

the estimation), or some function of the residual, is larger

than a predetermined threshold, an alarm is raised. Arguably

the most insidious attacks are those that occur without our

knowledge. Fault detectors impose limits on the attacker, if

the attacker aims to avoid being identified. Beyond retooling

these existing methods for the new attack detection context,

a fundamental question is: given a chosen fault detection

approach, how does this method constrain the influence of

an attacker? More specifically, what is an attacker able to

accomplish when a system employs certain fault detection

procedure?

Different methodologies exist for evaluating the impact

of attacks. Most of the existing work uses some measure
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of state (or state estimate) deviation. In [2], the authors

identify that if the attacker can take advantage of the zero

dynamics of a (noise-free) input-output system, it can modify

the system dynamics without reflecting its influence in the

residual variables. This type of attacks are stealthy to any

fault detector. A number of groups have studied the system

response when the attacks are constrained by the detector.

An important distinction between the collection of existing

work – and the work discussed here – is the definition of

how the attacker is constrained. We suggest the following

terminology. While the term stealthy attack is used very

broadly, we suggest that this refer to the zero-dynamics case,

as discussed in [2], because these attacks do not propagate

to the residual. Some work has investigated the case of

system response due to what we here call zero-alarm attacks,

i.e., attacks such that the detector threshold is never crossed

[12]-[16]. Because real systems (with noise) always have a

nonzero rate of false alarms raised by the detector, this attack

model yields a relatively obvious attack signature because

the alarms stop as soon as the attack starts. Other papers

identify attacks that mimic the false alarm rate, thus making

the alarm rate during the attack very close to the false alarm

rate before the attack started [17],[18]. These attacks we

call hidden attacks because although they do change the

distribution of the residual, these changes are hidden from

the way the detector evaluates the distribution. A majority of

this work uses state bounds or steady-state limits to quantify

the impact that an attacker can have. The exceptions to this

are [17],[18], which quantify the reachable set of states and

estimation errors when driven by the attack input.

This paper fuses several of these successful lines of

research with a more strict interpretation of hidden attacks.

The papers [17],[18] consider hidden attacks, however, they

permit the alarm rate to change by a small value; the attacker

capabilities that are derived are associated with this small

deviation rather than the full scope of allowable attacks.

Here, we fix the alarm rate exactly to study true hidden

attacks (i.e., alarm rate exactly equal to the false alarm

rate), and characterize the reachable sets on the estimation

error dynamics associated with this broader definition of

possible attack vectors. In this work, we characterize the

hidden reachable sets that the attacker can induce through

manipulation of sensor data. Because in general, it is quite

difficult to compute these sets exactly, for given system

dynamics and attack detection scheme, we derive ellipsoidal

bounds on the hidden reachable sets using Linear Matrix

Inequalities (LMIs) [19]. Then, we provide synthesis tools

for minimizing these bounds (minimizing thus the hidden

reachable set) by properly redesigning the detectors.
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This builds off of our previous work in [18]. The strict

interpretation of hidden attacks requires more direct handling

of the effect of noise. To derive finite ellipsoidal bounds,

we introduce the notion of p-probable reachable sets, which

provides a nested set of ellipsoidal bounds based on the

probability of the driving random sequences taking certain

values. Because the derivation of the reachable set of states

from the reachable set of estimation errors is captured in [18]

(for a class of observer-based output feedback controllers),

and similar techniques can be used in this paper, we report

here only on estimation error reachable sets. Note that the

problem formulation in this paper, while seemingly similar,

requires an entirely different characterization from [18].

II. SYSTEM DESCRIPTION & ATTACK DETECTION

We study LTI stochastic systems of the form:
{

x(tk+1) = Fx(tk) +Gu(tk) + v(tk),

y(tk) = Cx(tk) + η(tk),
(1)

with sampling time-instants tk, k ∈ N, state x ∈ R
n,

measured output y ∈ R
m, control input u ∈ R

l, matrices F ,

G, and C of appropriate dimensions, and i.i.d. multivariate

zero-mean Gaussian noises v ∈ R
n and η ∈ R

m with

covariance matrices R1 ∈ R
n×n, R1 ≥ 0 and R2 ∈ R

m×m,

R2 ≥ 0, respectively. The initial state x(t1) is assumed

to be a Gaussian random vector with covariance matrix

R0 ∈ R
n×n, R0 ≥ 0. The processes v(tk), k ∈ N and

η(tk), k ∈ N and the initial condition x(t1) are mutually

independent. It is assumed that (F,G) is stabilizable and

(F,C) is detectable. At the time-instants tk, k ∈ N, the

output of the process y(tk) is sampled and transmitted over

a communication network. The received output ȳ(tk) is used

to compute control actions u(tk) which are sent back to the

process, see Fig. 1. The complete control-loop is assumed to

be performed instantaneously, i.e., the sampling, transmis-

sion, and arrival time-instants are supposed to be equal. In

this paper, we focus on attacks on sensor measurements. That

is, in between transmission and reception of sensor data, an

attacker may replace the signals coming from the sensors

to the controller, see Fig. 1. After each transmission and

reception, the attacked output ȳ takes the form:

ȳ(tk) := y(tk) + δ(tk) = Cx(tk) + η(tk) + δ(tk), (2)

where δ(tk) ∈ R
m denotes additive sensor attacks. Denote

xk := x(tk), uk := u(tk), vk := v(tk), ȳk := ȳ(tk), ηk :=
η(tk), and δk := δ(tk). Using this new notation, the attacked

system is written as follows
{

xk+1 = Fxk +Guk + vk,
ȳk = Cxk + ηk + δk.

(3)

A. Observer

In order to estimate the state of the process, we use the

following Luenberger observer [20]

x̂k+1 = F x̂k +Guk + L
(

ȳk − Cx̂k

)

, (4)

with estimated state x̂k ∈ R
n, x̂1 = E[x(t1)], where E[ · ]

denotes expectation, and observer gain matrix L ∈ R
n×m.

Define the estimation error ek := xk − x̂k. Given the system

Fig. 1. Cyber-physical system under attacks on the sensor measurements.

dynamics (3) and the observer (4), the estimation error is

governed by the following difference equation

ek+1 =
(

F − LC
)

ek − Lηk − Lδk + vk. (5)

The pair (F,C) is detectable; hence, the observer gain L can

be selected such that (F − LC) is Schur. Moreover, under

detectability of (F,C), if there are no attacks (i.e., δk = 0),

where 0 denotes the zero matrix of appropriate dimensions,

the covariance matrix Pk := E[eke
T
k ] converges to steady

state in the sense that limk→∞ Pk = P exists, see [21]. For

a given L and δk = 0, it can be verified that the asymptotic

covariance matrix P = limk→∞ Pk is given by the solution

P of the following Lyapunov equation:

(F − LC)P (F − LC)T − P +R1 + LR2L
T = 0. (6)

It is assumed that the system has reached steady state before

an attack occurs.

B. Residuals and Hypothesis Testing

In this manuscript, we characterize the effect that output

injection attacks can induce in the system with being detected

by fault detection techniques. The main idea behind fault

detection theory is the use of an estimator to forecast the

evolution of the system. If the difference between what

it is measured and the estimation is larger than expected,

there may be a fault in or attack on the system. Although

the notion of residuals and model-based detectors is now

routine in the fault detection literature, the primary focus

has been on detecting and isolating failures that have known

signatures in the degradation of measurement quality, i.e.,

faults with specific structures. Now, in the context of an

intelligent adversarial attacker for which there is no known

attack signature, new challenges arise to understand the effect

that an adaptive intruder can have on the system without

being detected. In this paper, we use the linear observer

introduced in the previous section as our estimator. Define

the residual sequence rk, k ∈ N, as

rk := ȳk − Cx̂k = Cek + ηk + δk, (7)

which evolves according to the difference equation:
{

ek+1 =
(

F − LC
)

ek − Lηk − Lδk + vk,

rk = Cek + ηk + δk.
(8)

If there are no attacks, the steady state mean of rk is

E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1, (9)

and its asymptotic covariance matrix is given by

Σ := E[rk+1r
T
k+1] = CPCT +R2. (10)



It is assumed that Σ ∈ R
m×m is positive definite. For this

residual, we identify two hypotheses to be tested: H0 the

normal mode (no attacks) and H1 the faulty mode (with

faults/attacks). Then, we have

H0 :

{

E[rk] = 0m×1,

E[rkr
T
k ] = Σ,

H1 :

{

E[rk] 6= 0m×1, or

E[rkr
T
k ] 6= Σ,

where 0m×1 denotes an m-dimensional vector composed of

zeros only. In this manuscript, we use the chi-squared proce-

dure for examining the residual and subsequently detecting

attacks.

C. Distance Measure and Chi-squared Procedure

The input to any detection procedure is a distance measure

zk ∈ R, k ∈ N, i.e., a measure of how deviated the

estimator is from the sensor measurements. We employ

distance measures any time we test to distinguish between

H0 and H1. The chi-squared test uses a quadratic form

on the residual as distance measure to test for substantial

variations in mean and variance of the error between the

measured output and the estimate. Consider the residual

sequence rk , (8), and its covariance matrix Σ, (10). The chi-

squared procedure is defined as follows.

Chi-squared procedure:

If zk := rTk Σ
−1rk > α, k̃ = k. (11)

Design parameter: threshold α ∈ R>0.

Output: alarm time(s) k̃.

Thus, the procedure is designed so that alarms are triggered if

zk exceeds the threshold α. The normalization by Σ−1 makes

setting the value of the threshold α system independent. This

quadratic expression leads to a sum of the squares of m
normally distributed random variables which implies that the

distance measure zk follows a chi-squared distribution with

m degrees of freedom, see, e.g., [22] for details.

D. False Alarms

The occurrence of an alarm in the chi-squared procedure

when there are no attacks to the CPS is referred to as a false

alarm. The threshold α must be selected to fulfill a desired

false alarm rate A∗. Let A ∈ [0, 1] denote the false alarm

rate of the chi-squared procedure defined as the expected

proportion of observations which are false alarms, i.e., A :=
pr[zk ≥ α], where pr[·] denotes probability, see [23] and [24].

Proposition 1 [13]. Assume that there are no attacks on

the system and consider the chi-squared procedure (11)

with residual rk ∼ N (0,Σ) and threshold α ∈ R>0. Let

α = α∗ := 2P−1(m
2
, 1 − A∗), where P−1(·, ·) denotes the

inverse regularized lower incomplete gamma function (see

[22]), then A = A∗.

III. HIDDEN REACHABLE SETS

In this section, we provide tools for quantifying (for

given L) and minimizing (by selecting L) the impact of the

attack sequence δk on the estimation error ek when the chi-

squared procedure is used for attack detection. To quantify

the effect of attacks, we need to introduce some measure

of impact. However, because malicious adversaries may

launch any arbitrary attack, we need a measure which can

capture all possible trajectories that the attacker can induce

in the estimation error dynamics, given how it accesses the

dynamics (i.e., through residual variables by tampering with

sensor measurements). We propose to use the reachable set

of the attack sequence δk as our measure of impact. We

are interested in attacks that do not change the false alarm

rate of the detector A, i.e., Ā = A, where Ā denotes the

alarm rate under the attacker’s action. This class of attacks

is what we refer to as hidden attacks and the trajectories

that hidden attacks can induce in the system are referred to

as hidden reachable sets. In this section, we provide tools

based on Linear Matrix Inequalities (LMIs) for computing

outer ellipsoidal bounds on the hidden reachable sets induced

by the attack sequence δk given the system dynamics, the

chi-squared procedure, the noise, and the false alarm rate A.

A. Attack Model and Hidden Reachable Sets

We assume that the attacker has perfect knowledge of the

system dynamics, the observer, measurements, and detection

procedure (chi-squared). It is further assumed that all the

sensors can be compromised by the attacker at each time

step (the case where not all the sensors are attacked is left as

future work). By considering this strong, worst-case attacker,

we are able to construct an upper bound on the abilities of

the attacker. Consider the estimation error dynamics (8), the

residual sequence rk = Cek + ηk + δk, and the distance

measure

zk = ||Σ− 1

2 rk||
2 = ||Σ− 1

2 (Cek + ηk + δk)||
2, (12)

where Σ− 1

2 denotes the symmetric squared root matrix of

Σ−1. The set of feasible attack sequences that the opponent

can launch while satisfying Ā = A can be written as the

following constrained control problem on δk:
{

δk ∈ R
m

∣

∣

∣

∣

∣

ek satisfies (8), and

pr[||Σ− 1

2 (Cek + ηk + δk)||2 > α ] = A,

}

, (13)

for k ∈ N. We are interested in the error trajectories that

the attacker can induce in the system restricted to satisfy

(13). Note that, as long as Ā = A, the attacker may

induce any arbitrary random sequence δk. This and the fact

that vk and ηk are Gaussian (thus having infinite support)

imply that deterministic reachable sets induced by δk and

the noise sequences are generally unbounded. To overcome

this obstacle, we introduce the notion of p-probable hidden

reachable sets Rp
α. Define ζk := Σ− 1

2 (Cek + ηk + δk) and

note that the estimation error dynamics (8) can be written in

terms of ζk as:
{

ek+1 = Fek − LΣ
1

2 ζk + vk,

ζk = Σ−
1

2 (Cek + ηk + δk).
(14)

For given false alarm rate A and probability p ∈ (0, 1), the

p-probable hidden reachable set of the attack sequence δk in

(14), Rp
α, is defined as the set of ek ∈ R

n, k ∈ N that can



be reached from the origin e1 = 0 due to the the attacker’s

action δk restricted to satisfy Ā = A and

pr[||ζk||
2 ≤ ζ̄p] = pr[‖vk‖

2 ≤ v̄p] = p, (15)

for some constants ζ̄p, v̄p ∈ R>0, i.e.,

Rp
α :=

{

ek ∈ R
n

∣

∣

∣

∣

e1 = 0,
ek, δk, vk satisfy (13)-(15),

}

. (16)

By restricting the probabilities in (15), we are delimiting the

support of the attack and noise sequences to compact sets.

Then, the p-probable hidden reachable sets correspond to the

trajectories of the system when the driving random sequences

are restricted to satisfy Ā = A and (15). For delimited vk and

δk, we can characterize reachable sets using deterministic

tools. In general, it is analytically intractable to compute

Rp
α exactly. Instead, using LMIs, for some positive definite

matrix Pp
α ∈ R

n×n, we derive outer ellipsoidal bounds of

the form Ep
α := {ek ∈ R

n|eTkP
p
αek ≤ 1} containing Rp

α.

Remark 1 Note, from (14), that if for some k = k∗, ek∗ 6=
0 and ρ[F ] > 1, where ρ[·] denotes spectral radius, then

||ek|| diverges to infinity as k → ∞ for any non-stabilizing

ζk. That is, Rp
α is unbounded if the system is open-loop

unstable. If ρ[F ] ≤ 1, then ||ek|| may or may not diverge to

infinity depending on algebraic and geometric multiplicities

of the eigenvalues with unit modulus of F (a known fact from

stability of LTI systems), see [21] for details.

Given Remark 1, in what follows, we consider open-loop

stable systems (ρ[F ] < 1). The following result is used to

compute the ellipsoidal bounds Ep
α.

Lemma 1 [25] Let ξk ∈ R
n, ξ1 = 0, Vk := ξTk Pξk, for

some positive definite matrix P ∈ R
n×n, and ωT

k ωk ≤ ω̄,

ω̄ ∈ R>0. If there exists a constant b ∈ (0, 1) such that

Vk+1 − bVk −
1− b

ω̄
ωT
k ωk ≤ 0, ∀ k ∈ N, (17)

then, Vk = ξTk Pξk ≤ 1.

B. Case 1: p ∈ [0, 1−A]

Because the attack sequence is restricted to satisfy (13),

we start computing the ellipsoidal bounds corresponding to

p = 1 − A, i.e., E1−A
α . It is easy to verify using Lemma 1

that Ep
α ⊆ E1−A

α for p ∈ [0, 1−A] because ζ̄p ≤ ζ̄1−A = α
and v̄p ≤ v̄1−A in (15); i.e., all p-probable ellipsoidal bounds

for p ∈ [0, 1 −A] lie within the 1 −A-probable ellipsoidal

bound. It follows that Rp
e ⊆ E1−A

α for p ∈ [0, 1−A], i.e., for

p in this interval, we only need to compute the ellipsoidal

bound corresponding to p = 1−A. Characterizing p-probable

sets for small p values is of little interest because they do not

provide a informative bound on system trajectories (since the

smaller p is, the more trajectories lie outside the p-probable

ellipsoidal bound). We work with the data available in this

setting, namely the number of alarms raised by the detector,

to bound the most informative p = 1−A probable reachable

set; in Case 2, we extend these results for larger p values.

Theorem 1 For given system matrix F , observer gain L,

residual covariance matrix Σ, and false alarm rate A,

consider the set R1−A
α in (16). If there exists a positive

definite matrix P ∈ R
n×n and b ∈ (0, 1) satisfying the

following matrix inequality:
















bP FTP 0 0 0 0

PF P P −PLΣ
1

2 0 0

0 P 1−b
ω̄

I 0 0 0

0 −Σ
1

2LTP 0
1−b
ω̄

I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

















≥ 0; (18)

for ω̄ = α + v̄1−A; then, R1−A
α ⊆ E1−A

α with P1−A
α = P ,

i.e., the (1−A)-probable hidden reachable set is contained

in the ellipsoid E1−A
α = {ek ∈ R

n|eTkP
1−A
α ek ≤ 1}.

Proof : For a positive definite matrix P ∈ R
n×n, consider

the function Vk := eTkPek, then, from (16), inequality (17)

takes the form:

= −ϑT
k





bP − FTPF FTPLΣ
1

2 −FTP

Σ
1

2LTPF 1−b
ω̄

I − Σ
1

2LTPLΣ
1

2 Σ
1

2LTP

−PF PLΣ
1

2
1−b
ω̄

I − P



ϑk

=: −ϑT
kQeϑk ≤ 0,

where ϑ := (eTk , ζ
T
k , v

T
k )

T . The above inequality is satisfied

if and only if Qe ≥ 0. Matrix Qe can be written as the

Schur complement of a higher dimensional matrix Q′
e; hence,

Qe ≥ 0 ↔ Q′
e ≥ 0, i.e.,

Qe ≥ 0 ↔

Q′
e :=

















bP 0 0 FTP 00

0
1−b
ω̄

I 0 −Σ
1

2LTP 00

0 0
1−b
ω̄

I P 00

PF−PLΣ
1

2 P P 00

0 0 0 0 I 0
0 0 0 0 0I

















≥ 0.
(19)

Finally, inequality (18) follows from (19) by a simple re-

ordering of rows and columns.The result follows now from

Lemma 1 by taking P1−A
α = P and ω̄ = α+ v̄1−A. �

The result in Theorem 1 provides a tool for computing

ellipsoidal bounds on R1−A
α . To make the bounds most

useful, we next construct ellipsoids with minimal volume,

i.e., the tightest possible ellipsoid bounding R1−A
α . In this

case, we have to minimize detP−1 subject to (18) (because

detP−1 is proportional to the volume of eTkPek = 1). This

is formally stated in the following corollary of Theorem 1,

see [19] for further details.

Corollary 1 For given matrices (F,L,Σ), false alarm rate

A, and b ∈ (0, 1), the solution P of the following convex

optimization:
{

minP − log detP ,

s.t. P > 0 and (18),
(20)

for ω̄ = α + v̄1−A, minimizes the volume of the ellipsoid

E1−A
α (with P1−A

α = P) bounding R1−A
α .

See [26] for an example of how to solve (26) using

YALMIP.

As we now move toward redesigning L to minimize

the ellipsoids, we note that as ||L|| → 0, the volume of

E1−A
α goes to zero because the attack-dependent term in

(14), LΣ
1

2 ζk, vanishes. In other words, without any other



considered criteria, the observer gain leading to the minimum

volume ellipsoid is trivially given by L = 0. While this is

effective at eliminating the impact of the attacker, it implies

that we discard the observer altogether and, therefore, forfeit

any ability to build a reliable estimate of the system state.

If we impose a performance criteria that the observer must

satisfy in the attack-free case (e.g., convergence speed, noise-

output gain, and minimum asymptotic variance), it has to be

added into the minimization problem (26) so as to minimize

the volume of E1−A
α while still achieving the observer

performance in the attack-free case. For completeness, in

the following proposition, we provide an LMI criteria for

ensuring that the H∞ gain from the noise to the residual rk
in (8) is less than or equal to some γ ∈ R>0. Then, using

this criteria and Theorem 1, we provide a synthesis tool for

minimizing the volume of E1−A
α while ensuring a desired

H∞ performance in the attack-free case.

Proposition 2 For given matrices (F,C, L), if there exist a

positive definite matrix P ∈ R
n×n and constant γ ∈ R>0

satisfying the following matrix inequality:












P 0 0 (F − LC)TP CT

0 γ2I 0 −LTP I
0 0 γ2I P 0

P(F − LC) −PL P P 0

C I 0 0 I













≥ 0, (21)

then, the H∞ gain from the noise νk := (ηTk , v
T
k )

T to the

residual rk = Cek+ηk of the estimation error dynamics (8)

is less than or equal to γ.

The proof of Proposition 2 is omitted here due to the page

limit. However, this is a standard result and details about

the proof can be found in, e.g., [9] and references therein.

In the following corollary of Theorem 1 and Proposition 2,

we formulate the optimization problem for designing the

observer gain L such that the volume of the ellipsoid E1−A
α

is minimized and a desired H∞ performance is achieved in

the attack-free case.

Corollary 2 For given system matrices (F,C), residual

covariance matrix Σ, false alarm rate A, b ∈ (0, 1), and

γ ∈ R>0, if there exist matrices P ∈ R
n×n and M ∈ R

n×m

solution to the following convex optimization:










































































minP,M − log detP ,

s.t. P > 0,















bP F T
P 0 0 0 0

PF P P −MΣ
1

2 0 0

0 P
1−b

ω̄
I 0 0 0

0 −Σ
1

2 MT
0

1−b

ω̄
I 0 0

0 0 0 0 I 0

0 0 0 0 0 I















≥ 0, and









P 0 0 F T
P − CTMT CT

0 γ2I 0 −MT I

0 0 γ2I P 0

PF −MC −M P P 0

C I 0 0 I









≥ 0,

(22)

for ω̄ = α + v̄1−A; then, the observer gain L = P−1M
minimizes the volume of the ellipsoid E1−A

α (with P1−A
α =

P) bounding R1−A
α and guarantees that the H∞ gain from

the noise νk = (ηTk , v
T
k )

T to the residual rk of (8) is less

than or equal to γ in the attack-free case.

Proof : This follows from Theorem 1, Proposition 2, and the

linearizing change of variables M = PL. �

C. Case 2: p ∈ (1−A, 1]

Note that, for p ∈ (1 − A, 1], ζ̄p > ζ̄1−A = α according

to (15). Then, we can write ζ̄p = α + ǫp and pr[‖ζk‖
2 ≤

α+ ǫp] = 1−A+ap, for some ǫp ∈ (0,∞) and ap ∈ (0,A].
To be able to compute ellipsoidal bounds, the constant ǫp
corresponding to a given probability 1−A+ap is required. If

ǫp is available, we can restrict ζk to compact sets as in Case 1.

Note, however, that the distribution of the attack sequence

δk (and thus the one of ζk) is generally unknown. Actually,

the attacker may induce any arbitrary (and possibly) non-

stationary random sequence ζk in (14) as long as Ā = A.

Nevertheless, we can obtain bounds on ǫp using Markov’s

inequality [22] to link the statistical properties of ζk with ǫp.

This is stated in the following proposition.

Proposition 3 Denote Mk := E[ζkζ
T
k ] and µk := E[ζk].

For given false alarm rate A, probability p = 1 −A + ap,

and ap ∈ (0,A), the following is satisfied:














pr[‖ζk‖
2 ≤ α+ ǫp] ∈ [1−A+ ap, 1],

for all ǫp ≥ ǫp :=
tr[Mk] + µT

k µk

A− ap
− α.

(23a)

(23b)

Proof : The probability pr[‖ζk‖
2 ≤ α+ ǫp] can be written as

pr[‖ζk‖
2 ≤ α + ǫp] = 1 − pr[‖ζk‖

2
> α + ǫp]. Then, using

Markov’s inequality [22], we can write the following

pr[‖ζk‖
2 > α+ ǫp] = 1− pr[‖ζk‖

2 ≤ α+ ǫp] ≤
E[‖ζk‖

2
]

α+ ǫp
.

Therefore, if ǫp satisfies E[‖ζk‖
2]/(α+ ǫp) ≤ A− ap, then

pr[‖ζk‖
2
> α+ǫp] ≤ A−ap and hence pr[‖ζk‖

2 ≤ α+ǫp] ∈
[1−A+ ap, 1]. The expectation of the quadratic form ζTk ζk
is given by E[‖ζk‖

2
] = E[ζTk ζk] = tr[Mk] + µT

k µk [22];

then, E[‖ζk‖
2
]/(α+ ǫp) ≤ A−ap is satisfied for all ǫp ≥ ǫp

with ǫp as defined in (23b), and the assertion follows. �

Using Proposition 3, for given false alarm rate A and

probability p = 1 − A + ap ∈ (1 − A, 1], ap ∈ (0,A),
we can characterize p-probable hidden reachable sets, R̃p

α,

by using the lower bounds on pr[‖ζk‖
2 ≤ α+ ǫp] and ǫp in

(23). Specifically, for p > 1−A, the set R̃p
α of the sequence

δk is defined as the set of ek ∈ R
n that can be reached from

e1 = 0 restricted to satisfy Ā = A and
{

pr[‖vk‖
2 ≤ v̄p] = 1−A+ ap and

ǫp = ǫp → pr[‖ζk‖
2 ≤ α+ ǫp] ∈ [1−A+ ap, 1],

(24)

for some constant v̄p ∈ R>0 and ǫp as defined in (24), i.e.,

R̃p
α :=

{

ek ∈ R
n

∣

∣

∣

∣

e1 = 0,
ek, ζk, vk, satisfy (13)-(14),(24),

}

. (25)

Remark 2 For a p-probable reachable set, we select ap such

that p = 1 − A + ap, then determine ǫp using (23b). Note

that, because the attacker can induce an attack sequence with



Fig. 2. Ellipsoid E
1−A
α for different values of false alarm rate A.

arbitrarily large covariance Mk and mean µk, the lower

bound on ǫp, ǫp, in (23b) can be made arbitrarily large for

any ap. Therefore, if δk (and thus ζk) is only restricted to

satisfy Ā = A, the opponent can induce arbitrarily large

reachable sets R̃p
α.

Remark 2 implies that if we only monitor the alarms raised

by the detector, the attacker can inject arbitrarily large signals

in the residual sequence rk without changing the alarm rate.

Consequently, the sets R̃p
α can be made arbitrarily large for

arbitrarily small ap. If we place additional assumptions on

the attacker, namely that the mean and covariance of the

attack sequence ζk are finite, the reachable sets will be

bounded by Proposition 3. In particular, if we assume the

attacker maintains the mean and covariance of the attack-free

scenario, i.e., E[ζk] = µk = 0 and E[ζkζ
T
k ] = Mk = Im,

then ǫp = m
A−ap

−α. Hence, if in addition to imposing Ā =
A, the attack is restricted to keep the statistical properties of

ζk in the attack-free case, i.e., µk = 0 and Mk = Im, the

reachable sets R̃p
α are bounded for each ap ∈ (0,A) (because

ǫp is bounded); and therefore, in this case, we can compute

ellipsoidal bounds on R̃p
α. This additional assumption could

be enforced by adding detectors that identify anomalies in

the sample mean and sample covariance of the residual. Such

detectors would force the attacker to avoid arbitrarily large

attack values in order to avoid detection by these additional

mean and covariance detectors.

As before, we characterize, for some positive definite

matrix P̃p
α ∈ R

n×n, outer ellipsoidal bounds of the form

Ẽp
α := {ek ∈ R

n|eTk P̃
p
αek ≤ 1} containing R̃p

α. The results

corresponding to Theorem 1, and Corollary 1 for Case 1 are

stated in the following corollary.

Corollary 3 For given false alarm rate A, probability p =
1 − A + ap, ap ∈ (0,A), threshold ǫp = ǫp = m

A−ap

− α,

and matrices (F,L,Σ), consider the set R̃p
α in (25). Then,

for given b ∈ (0, 1), if there exists a matrix P ∈ R
n×n

solution of the following convex optimization:
{

minP − log detP ,

s.t. P > 0 and (18),
(26)

for ω̄ = α+ ǫp+ v̄p; then, R̃p
α ⊆ Ẽp

α (with P̃p
α = P) and Ẽp

α

has minimum volume, i.e., the p-probable hidden reachable

set R̃p
α is contained in the minimum volume ellipsoid Ep

α =
{ek ∈ R

n|eTkP
p
αek ≤ 1}.

Fig. 3. The improvement in the (1 − A)-probable hidden reachable set

ellipsoidal bound E
1−A
α , for A = 0.01, through application of Corollary 2

to design the optimal observer gain.

Fig. 4. Ellipsoidal bound Ẽ
p
α for different values of ap obtained using

Corollary 3.

A result for redesigning the observer gain for minimizing

the volume of the above ellipsoids, as in Corollary 2 for Case

1, can be stated in a similar manner as the corollary above;

however, this is omitted here due to the page limit.

IV. SIMULATION EXPERIMENTS

Consider the closed-loop system (3)-(4) with matrices:


































F =

(

0.84 0.23
−0.47 0.12

)

, G =

(

0.07
0.23

)

, C =
(

1 0
)

,

L =

(

1.16
−0.69

)

, R1 =

(

0.45 −0.11
−0.11 0.45

)

,

R0 =

(

1 0
0 1

)

, R2 = 1, Σ = 3.26.

(27)

We start with Case 1. Using Proposition 2, the observer

gain L is designed such that the H∞ gain from the noise

to the residual rk of (8) is less than or equal to γ =
1.86 in the attack-free case. Consider the false alarm rates

A = {0.01, 0.05, 0.10, 0.20} and the corresponding α =
{6.63, 3.84, 2.70, 1.64}, obtained using Proposition 1. The

thresholds v̄1−A in (15) are computed such that pr[‖vk‖
2 ≤

v̄1−A] = 1−A. Because the entries on the diagonal of R1 are

equal and vk ∼ N (0, R1), the random sequence ‖vk‖
2
, k ∈

N follows a gamma distribution, Γ(κ, θ), with shape param-

eter κ = 1 and scale parameter θ = 0.90, see [22]. It follows

that, for these A, v̄1−A = {4.14, 2.69, 2.07, 1.44}. For these

values of v̄1−A and α, in Figure 2, we depict the ellipsoidal

bounds E1−A
α on the (1−A)-probable hidden reachable sets

R1−A
α obtained using Theorem 1 and Corollary 1. Next, for

A = 0.01, using Corollary 2, we redesign the observer gain



L to minimize the volume of E1−A
α while maintaining the

H∞ performance below γ = 1.86. The obtained optimal

ellipsoidal bound, E1−A
α , is depicted in Figure 3 for the

optimal observer gain L = (0.1272,−0.0160)T . For Case

2, let A = 0.05, p = 1 − A + ap, ap = {0.01, 0.03},

and L as in (27); then, the corresponding v̄p are v̄p =
{2.8970, 3.5208} and the ǫp, computed through (23), are

given by ǫp = {21.16, 46.16}. In Figure 4, we show the

ellipsoidal bounds Ẽp
α on the reachable sets R̃p

α obtained

using Corollary 3.

Remark 3 Many numerical results considering hidden at-

tacks with different distributions are presented in the accom-

panying paper [27] (Section 4). Also, extensive Monte-Carlo

simulations showing the tightness of the bounds presented

here are given in [27].

V. CONCLUSION

In this paper, for a class of discrete-time LTI systems

subject to sensor/actuator noise, we have provided tools for

quantifying and minimizing the negative impact of sensor

attacks on the estimation error dynamics performance given

how the opponent accesses the dynamics (i.e., through the

controller by tampering with sensor measurements). We

have proposed to use the reachable set as a measure of

the impact of an attack given a chosen detection method.

For given system dynamics and attack detection scheme,

we have derived ellipsoidal bounds on these reachable sets

using LMIs. Then, we have provided synthesis tools for

minimizing these bounds (minimizing thus the reachable

sets) by properly redesigning the detectors.
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