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Abstract— Opacity is a confidentiality property that char-
acterizes the non-disclosure of specified secret information of
a system to an outside observer. In this paper, we consider
the enforcement of opacity within the discrete-event system
formalism in the presence of multiple intruders. We study
two cases, one without coordination among the intruders and
the other with coordination. We propose appropriate notions
of opacity corresponding to the two cases, respectively, and
propose enforcement mechanisms for these opacity properties
based on the implementation of insertion functions, which
manipulates the output of the system by inserting fictitious ob-
servable events whenever necessary. The insertion mechanism is
adapted to the decentralized framework to enforce opacity when
no coordination exists. Furthermore, we present a coordination
and refinement procedure to synthesize appropriate insertion
functions to enforce opacity when intruders may coordinate
with each other by following an intersection-based coordination
protocol. The effectiveness of the proposed opacity-enforcement
approaches is validated through illustrative examples.

I. INTRODUCTION

Security and privacy have become important issues in the
design of cyber and cyber-physical systems [1]. In this paper,
we focus our study on opacity [2], which is a confidentiality
property that justifies whether a given system’s confidential
information (denoted as “secret”) is kept uncertain from
an external observer (termed as an intruder). Since many
security and privacy properties, such as anonymity [3], trace-
based non-interference [4] and secrecy [5], [6], can be
expressed in terms of opacity [7], it has emerged as an active
research topic in the computer science and control literature,
see, e.g., [8] and the references therein.

Motivated by the fact that many engineering systems are
inherently event-driven, we consider opacity issues in the
framework of discrete-event systems (DES) [9]. An opacity
problem is generally formulated as follows in the context of
DES: (i) the system is modeled as a Petri net [10], [11] or a
finite automaton [12]; (ii) the system possesses a secret that
is expected to be hidden from an intruder; (iii) the intruder
is an observer with full knowledge of the system’s structure
but can only observe part of the system’s behavior. The
system is said to be opaque with respect to the given secret
if the intruder can never determine unambiguously that the
secret has occurred based on its observation of the system’s
behaviors. More specifically, if opacity of the system holds,
then for any behavior that may reveal the secret (termed
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secret behavior), there exists at least one behavior that does
not reveal the secret (termed non-secret behavior) which
shares the same observation of the secret behavior to the
intruder; thus, the intruder can never be sure if the secret or
the non-secret has occurred. Depending on how the secret is
represented, various notions of opacity have been introduced
in the literature, and considerable amount of research efforts
has been devoted to the formal verification of language-based
opacity [7], current-state opacity [13], initial-state opacity
[12], K-step opacity [14] and infinite-step opacity [15].

In case the system fails to be opaque, formal methods have
also been proposed to enforce opacity. Design of opacity-
enforcing supervisory controllers for restricting the system’s
behavior to ensure opacity by disabling any behavior that will
reveal the secret has been studied extensively in literature
[16]–[19]. Nevertheless, the supervisory control approach is
not suitable for situations where the system must execute
its full behavior. A runtime mechanism was developed in
[20] to enforce K-step opacity based on delaying the out-
put; however, this method only ensured opacity of secrets
whose time duration was of concern. Rather than supervisory
control approach, we consider enforcement strategies that
do not alter the behavior of the system and instead ensure
opacity by appropriately manipulating the system’s output
information whenever necessary. One of the enforcement
techniques was implemented by a dynamic observer in [21].
However, the intermittent loss of observability of certain
events may render the observation of the intruder inconsistent
with its knowledge of the system and its original observation
capabilities, which may remind the intruder of the existence
of the opacity-enforcement mechanism. Wu and Lafortune
[22] proposed an enforcement mechanism based on insertion
of fictitious observable events at the system’s output; the in-
serted events were observationally equivalent to the system’s
genuine observable events from the intruder’s perspective,
therefore making the intruder confused.

Recent advances in communication and network tech-
nologies have made large-scale systems with spatially-
decentralized and/or distributed architectures more widely
used in the application; therefore, opacity problems for
DES with decentralized structure are of both academic and
practical importance. For instance, for a cryptosystem that
can be observed by users of multiple security levels, opacity
should be guaranteed in such a way that: (i) users with lower
security level can never infer any information which can only
be accessed by users of high security level [4]; (ii) even if
a user has a high security level, it is still not able to infer
any private information that is possessed by a user with low
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security level [23]. Compared to the fruitful contributions
that have been made to opacity problems in the presence of
a single intruder, limited studies have been made to the cases
where the system can be observed by multiple intruders.
Badouel et al. [23] considered multiple intruders, each of
them having its own observation mapping and the secret
of interest. The system therein was said to be concurrently
opaque if all secrets can be kept safe. A different notion
termed as “joint opacity” was proposed in [24], in which a
team of intruders collaborated through a coordinator to infer
the secret of common interest. Paoli and Lin [25] studied
decentralized opacity issues with and without coordination
among the intruders. Nevertheless, to the best of the authors’
knowledge, most of the existing results are established on
opacity verification problems while no prior work has been
proposed to investigate opacity-enforcement problems in the
presence of multiple intruders.

We are therefore motivated to study opacity-enforcement
problems of DES that can be observed by multiple intruders.
By modeling the system as a finite automaton, we assume
that each intruder has full prior knowledge of the system
model but can only partially observe the behavior of the
system. We investigate opacity problems in two cases, one
assuming no coordination among the intruders and the other
assuming that the intruders may coordinate with each other.
We adopt the enforcement mechanism based on insertion
functions to assure decentralized opacity when no coordi-
nation exists among the intruders. Furthermore, we study
the enforcement of joint opacity when the intruders may
coordinate via an intersection-based protocol. Facing the
coordinated intruders, we propose a centralized coordination
and refinement procedure to construct local insertion func-
tions associated with each intruder’s observation capabilities
such that joint opacity can be guaranteed.

The remainder of this paper is organized as follows.
We present the system model and relevant concepts of
opacity problems in DES and the insertion-based opacity-
enforcement mechanism of DES in Section II. We study
the opacity-enforcement problem of DES in the presence of
multiple non-coordinating intruders and compute appropriate
insertion functions for each intruder in Section III. Under
the assumption that the intruders may coordinate via an
intersection-based protocol, we introduce the notion of joint
opacity in Section IV and develop enforcement schemes for
joint opacity by incorporating the synthesis of local insertion
functions with centralized coordination. Finally, we end this
paper with concluding remarks and discussion of future
research directions in Section V.

II. OPACITY OF DISCRETE-EVENT SYSTEMS

A. Preliminaries of Discrete-event Systems

The following notation and concepts are standard in the
DES literature [9]. For a finite alphabet E of event symbols,
|E| and 2E denote the cardinality and power set of E,
respectively. E∗ stands for the set of all finite strings over
E plus the empty string ε. A subset of L ⊆ E∗ is called
a language over E. The prefix closure of L is defined by

L = {s ∈ E∗|(∃t ∈ E∗)[st ∈ L]}. L is said to be prefix-
closed if L = L.

We consider the DES modeled as a non-deterministic finite
automaton (NFA) G = (X,E, f,X0), where X is the finite
set of states, E is the finite set of events, f : X×E → 2X is
the (partial) transition function, X0 ⊆ X is the set of initial
states. The transition function f can be extended to X ×E∗
in the natural way [9].Given a set X ′ ⊆ X of states, the
language generated by G from X ′ is defined by L(G,X ′) =
{s ∈ E∗|(∃x′ ∈ X ′)[f(x′, s)!]}, where f(x′, s)! means that
the transition f(x′, s) is defined. The generated behavior of
G is then given by L(G,X0). We write L(G) for simplicity
if X0 is clear from the context.

In general, the system G can only be partially observed.
Towards this end, E is partitioned into two disjoint subsets,
i.e., E = Eo∪̇Euo, where Eo is the set of observable events
and Euo is the set of unobservable events. The presence of
partial observation is captured by the natural projection P :
E∗ → E∗o , which is defined as:

P (ε) = ε, and P (se) =

{
P (s)e, if e ∈ Eo
P (s), if e ∈ Euo

(1)

for all s ∈ E∗ and e ∈ E. The inverse projection of P is
defined as P−1(t) = {s ∈ E∗|P (s) = P (t)} for t ∈ E∗o .

B. Current-state Opacity of Discrete-event Systems

The ingredients of an opacity-enforcement problem in
DES include: (i) G has a secret; (ii) the intruder is an
observer with full knowledge of the structure of G; (iii)
the intruder can only observe the behavior of G partially
due to its limited observation capabilities Eo. With the prior
knowledge of G, the intruder can infer the system’s evolution
by constructing estimates on the basis of online observations.
Depending on how the secret is defined, various notions of
opacity have been extensively studied in the literature. In
this paper, we define the secret to be a set of states of G and
consider the notion of current-state opacity. Intuitively, the
system G is current-state opaque if for any secret behavior
that visits a secret state, there always exists a non-secret
behavior of G that visits a non-secret state while the intruder
cannot distinguish between these two behaviors. Formally,
current-state opacity is defined as follows.

Definition 1 (Current-state Opacity (CSO)): Given the
set of observable events Eo ⊆ E, the set of secret states
XS ⊆ X and the set of non-secret states XNS ⊆ X , the
system G = (X,E, f,X0) is said to be current-state opaque
with respect to Eo, XS and XNS if

(∀x0 ∈ X0)(∀t ∈ L(G, x0) : f(x0, t) ∈ XS)⇒ (∃x′0 ∈ X0)

(∃t′ ∈ L(G, x′0))[(f(x′0, t
′) ∈ XNS) ∧ (P (t′) = P (t))].

(2)
Remark 1: We assume without loss of generality in the

rest of this paper that the set of non-secret states is the
complement of the secret state set, i.e., XNS = X \XS .

Remark 2: According to [24], other notions of opacity,
specifically language-based opacity, initial-state opacity and
initial-and-final-state opacity, can all be transformed to CSO



in polynomial time. Thus, our proposed enforcement ap-
proach for CSO of DES applies to the enforcement of other
opacity notions as well.

C. Event Insertion Mechanism

In [22], the authors proposed an opacity-enforcement
mechanism based on the implementation of insertion func-
tions when the system G fails to be CSO. As shown in Fig. 1,
an insertion function serves as a special monitoring interface
between the system and the intruder. The insertion function
receives an output behavior in s ∈ P [L(G)] and inserts
fictitious observable events before s is observed whenever
the intruder may infer the occurrence of the secret from s.
It is worth pointing out that the intruder cannot distinguish
inserted observable events from the system’s genuine observ-
able events.

Fig. 1: Opacity-enforcement based on event insertion.

For the purpose of clear presentation, we associate each
inserted event with an “insertion label” I , and the set of
inserted events is denoted by EI = {eI : e ∈ Eo}.
Formally, the basic structure of an insertion function is
defined as a (possibly partial) mapping fI : E∗o × Eo →
E∗IEo that outputs a string with necessarily inserted events
based on the system’s historical and current output behavior.
Given a string seo ∈ P [L(G)] that has been observed
by the insertion function, the output behavior of the in-
sertion function before the occurrence of eo is defined as
fI(s, eo) = sIeo where sI ∈ E∗I is the inserted string.
In the sequel, we assume additionally that length of sI is
bounded from above. To determine the complete modified
output from the insertion function, we define recursively an
induced insertion function fstrI from fI : fstrI (ε) = ε and
fstrI (sn) = fI(ε, e1)fI(e1, e2) · · · fI(e1e2en−1, en) where
sn = e1e2 · · · en ∈ E∗o .

The modified output Lout of the system G under the
impact of the insertion function fI is then given by

Lout : = fstrI (P [L(G)])

= {s̃ ∈ (E∗i Eo)
∗|∃s ∈ P [L(G)] : s̃ = fstrI (s)}.

(3)

To pursue succinct notations, we use fI and fstrI inter-
changeably in the sequel. Specifically, in this paper we are
looking for the insertion functions that satisfy the private
enforceability [26].

Definition 2 (Private Enforceability): Given a DES G and
the observation mask P , an insertion function fI is privately
enforcing if (i) admissibility: ∀seo ∈ P [L(G)], s ∈ E∗o , eo ∈
Eo, ∃sI ∈ E∗I such that fI(s, eo) = sIeo; (ii) private safety:
Lout ⊆ Lsafe = P [L(G)]\(P [L(G)]\P (LNS))E∗o , where
LNS = {t ∈ L(G,X0)|∃xi ∈ X0, f(xi, t) ∩XNS 6= ∅}.

Intuitively, the admissibility requires that the insertion
function fI is well defined on all the strings from P [L(G)].
The private safety requirement restricts the modified output
Lout from fI to the non-secret behavior of the system
Lsafe, which is the set of projected strings that never reveal
the secret. Therefore, by the definition, a private enforcing
insertion function guarantees CSO.

III. ENFORCEMENT OF DECENTRALIZED OPACITY VIA
INSERTION FUNCTIONS

In this section, we focus our study on opacity problems
of DES with a decentralized architecture. Specifically, we
extend the investigation of opacity-enforcement strategies to
the case in which the system G can be observed by multiple
intruders as shown in Fig. 2.

Fig. 2: The DES G observed by non-coordinating intruders.

We first consider the case where no coordination exists
among intruders. Let Ii, i ∈ N = {1, 2, . . . , N} denote
a team of N intruders. Similar to the centralized scenario,
each intruder has a complete prior knowledge of the system
G. Intruder Ii is associated with the locally observable
events Eo,i ⊆ E, i ∈ N . The partial observation for Ii
is characterized by the projection Pi : E∗ → E∗o,i when
no insertion function exists. The property of decentralized
current-state opacity is formally defined as follows.

Definition 3 (Decentralized CSO (D-CSO)): Given the
set of observable events Eo,i ⊆ E for intruder Ii, i ∈ N ,
the secret state set XS , and the non-secret state set XNS ,
the system G = (X,E, f,X0) is said to be decentralized
current-state opaque with respect to Eo,i i ∈ N , XS and
XNS if

(∀i ∈ N )(∀x0,i ∈ X0)(∀ti ∈ L(G, x0,i) : f(x0,i, ti) ∈ XS)

⇒ (∃x′0,i ∈ X0)(∃t′i ∈ L(G, x′0,i))[(f(x′0,i, t
′
i) ∈ XNS)∧

(Pi(t
′
i) = Pi(ti))].

(4)
The D-CSO of G suggests that any secret state in XS

be not inferred by any one of the intruders. It follows from
Definition 3 that D-CSO can be viewed as a decentralized
counterpart of CSO, which implies that enforcing D-CSO
for G with multiple intruders is equivalent to enforcing
CSO with respect to each individual intruder Ii, i ∈ N .
Motivated by this fact, we can synthesize local opacity-
enforcing insertion function f i for Ii, i ∈ N independently.

We illustrate the idea of synthesizing appropriate insertion
functions for each intruder by the following example.

Example 1: Consider G = (X,E, f,X0) shown in Fig. 3,
where E = {a, b, c, d}. The secret states are XS = {1, 2, 6},
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Fig. 3: An illustrative example, the secret states are shaded
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Fig. 4: Observers for the system G.

which are the shaded states in Fig. 3. We assume that
G is observed by two intruders with different observation
projections induced by Eo,1 = {b, c, d} and Eo,2 = {a, c, d},
respectively. The observer obs1 and obs2 can be constructed
in a standard way [9] as shown in Fig. 4. Each state in obsi
contains the current state estimation of intruder Ii, i = 1, 2.
From Fig. 4, both observers reveal some secrets (the shaded
states in Fig. 4) without the opacity-enforcement mechanism.

Since there is no coordination between the intruders, we
follow the procedures in [27] to construct the all insertion
structure (AIS) that encodes all the valid system and insertion
function moves for each intruder respectively. It is then
possible to extract an insertion function from the AIS.

The AIS (Q,Eo ∪ {ε}, f, q0) can be seen as a game
structure between the system and the insertion function,
where Q = QS ∪ QI , QS denotes the system state set and
QI denotes the insertion function state set. Each q ∈ QS
has a pair of state estimates, the first one is the intruder’s
estimate, which could be wrong due to the inserted events,
and the second estimate is the real system estimate. For each
q ∈ QI , besides the intruder and system’s state estimate, it
also consists of current system output from G. f(q, e) = q′

for q, q′ ∈ Q and e ∈ Eo ∪ {ε} represents the transition
function, q0 ∈ QS is the initial state. As shown in Fig. 5,
the rectangles represent the system states and the ellipses
represent the insertion function states. All the transitions with
events originated from the system states are system moves
that are not controllable, while all the transitions with events
from insertion function states are insertion function moves
that the intruder actually observes.

Theorem 1: [22] CSO is privately enforceable if and only
if the AIS is nonempty.

Remark 3: The main differences of our paper’s AIS def-
inition from [27] are two folds. The first is that we unfold
the moves of the insertion function as well as the intruder’s
state estimate event by event, while in [27], the insertion
function’s move is from E∗o ∪ {ε}, which could denote the
whole string that has been inserted. For example, in our AIS
definition, if we have a transition q0

a−→ q1
b−→ q2

c−→ q3, where

q0, q1, q2 ∈ QI and q3 ∈ QS , in [27]’s definition, the same
transition would be simplified to q0

abc−−→ q3. The second is
that, if the system G contains loops (for the simplest case,
imagine there is a self-loop in some state), it could be the
case that the inserted string contains s∗ for some s ∈ E∗o
and becomes arbitrarily long (for example, Fig. 7 in [27]).
In our paper, we restrict the inserted strings to be ∗-free, that
is, the insertions cannot be arbitrarily long and we replace s∗

with ε. Our definition with unfolding and ∗-free in insertions
are to facilitate the analysis of joint opacity enforcement in
Section IV.
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Fig. 5: AISs for intruders I1 and I2.
The AISs for intruders I1 and I2 in our motivating example



are as shown in Fig 5, where m0 = {0, 1},m1 = {2},m2 =
{3, 4},m3 = {5, 6},m4 = {7},m5 = {8, 9},m6 = {10},
c0 = {0, 2}, c1 = {1}, c2 = {3, 5}, c3 = {4, 6}, c4 =
{7}, c5 = {8, 10}, c6 = {9}. For instance, in AIS1 shown in
Fig. 5 (a), starting from the initial state where the intruder
and the system’s estimates are (m0,m0). If the event b occurs
in the system, AIS1 transits to the insertion function state
((m0,m1), a) since the system observer sees the event b and
the intruder observer observes nothing as the insertion has
not been decided yet. Then if the insertion function decides
to insert c, the system transits to the insertion function state
((m2,m1), c) as the intruder observer observes c and the
system observer will ignore the insertion function outputs.
Then the real system output b is appended and consequently
the AIS transits to the system state (m3,m1).

Theorem 2: Given the system G and N intruders with
observation mask Pi, i ∈ N , D-CSO is privately enforceable
if and only if AISi is nonempty for all i ∈ N .

Proof: On the one hand, D-CSO holds if and only if
local CSO holds for all i ∈ N . On the other hand, for each
intruder Ii, local CSO is privately enforceable if and only if
the AISi is not empty by Theorem 1. Therefore the proof is
completed.

IV. SYNTHESIS OF INSERTION FUNCTIONS FOR JOINT
OPACITY ENFORCEMENT

Rather than observing the same system without coordina-
tion, in many applications, intruders do coordinate among
themselves by exchanging their estimates of the system’s
states. For these applications, decentralized opacity notions
of coordinated intruders need further investigation.

Fig. 6: The DES G observed by intruders with
intersection-based coordination protocols.

A. Intersection-based Coordination Protocol

In this section, we investigate intruders that may coor-
dinate with each other via an intersection-based protocol
[25]. As shown in Fig. 6, we assume that the team of
intruders Ii, i ∈ N not only generate local state estimates but
report the estimates to a coordinator as well. The coordinator
has no knowledge about the system. It forms the so-called
coordinated estimate by taking the intersection of the local

estimates it receives. The communication from the local
intruders to the coordinator is assumed to have no delay. The
collaboration is restricted by the following rules: (1) intruders
have no knowledge of the projections of one another; (2)
the only collaboration between the intruders is through the
coordinator.

Before proceeding to opacity issues in the coordinated
decentralized framework, we first study the intersection-
based coordination protocol in Fig. 6. For the intruder Ii,
i ∈ N , a string-based local estimation map ψi : Pi[L(G)]→
2X is defined as follows: for s ∈ L(G) and si := Pi(s),
ψi(si) = f

(
x0, P

−1
i (si) ∩ L(G)

)
.

Then, we define an intersection-based coordination proto-
col Ψ : Πi∈NPi[L(G)]→ 2X as

Ψ(s1, s2, · · · , sN ) =
⋂
i∈N

ψi(si) (5)

Intuitively, the coordination protocol Ψ takes the intersec-
tion of the local estimates reported by the intruders and forms
a coordinated estimate accordingly.

B. Enforcement Scheme of Joint Opacity in Discrete-event
Systems

We now consider opacity issues of DES that can be
observed by intruders following the intersection-based co-
ordination protocol in Eq. 5. Roughly speaking, the system
is said to be jointly current-state opaque if no coordinated
estimate ever reveals the secret information.

Definition 4 (Joint CSO (J-CSO)): Given the set of ob-
servable events Eo,i ⊆ E for intruder Ii, i ∈ N , the
secret state set XS , the non-secret state set XNS and the
intersection-based coordination protocol Ψ, the system G =
(X,E, f,X0) is said to be jointly current-state opaque with
respect to Eo,i, i ∈ N , XS and XNS if for each intruder,
local CSO holds and

Ψ(s1, s2, · · · , sN )∩XS 6= ∅∧Ψ(s1, s2, · · · , sN )∩XNS 6= ∅
(6)

In this paper, we present a centralized approach to syn-
thesize the individual insertion functions to enforce J-CSO.
The following example shows that, in general, local insertion
functions that enforce D-CSO of a system may not enforce
J-CSO.

Example 2: With AIS1 and AIS2 in Fig. 5, D-CSO is
guaranteed in Example 1. However, if the two intruders can
send their estimates to the intersection-based coordinator,
joint opacity may be violated. For instance, from Fig. 5,
if the string cab happens in the system, it will be projected
to be cb and ca for intruders 1 and 2, respectively. If both
insertion functions choose not to insert anything, which are
valid moves from their local AISs, the resulting estimates
reported by intruders 1 and 2, after observing cb and ca, are
{5, 6} and {4, 6}, respectively. As our coordinator performs
the intersection of the estimation, it will result in {6} ∈ XS ,
which reveals a secret.

Example 2 implies that insertion functions that enforce
D-CSO do not necessarily guarantee J-CSO. Therefore, the



insertion functions need to be specifically coordinated to
enforce the J-CSO.

Our first step is to encode the AIS into a corresponding
Nondeterministic Finite-state Mealy machine (NFM) for a
concise representation.

Definition 5: An NFM is a 5-tuple

M = (Q,ΣIn,ΣOut, q0, fNMF ), (7)

where Q is the set of states, ΣIn and ΣOut are the sets of
input and output symbols, respectively, q0 ∈ Q is the initial
state, fNMF (q, e) = (q′, o) defines the transition and input
output relation for q, q′ ∈ Q, e ∈ ΣIn, o ∈ ΣOut.

The nondeterminism of an NFM comes from the fact that
in general |fNMF (q, e)| ≥ 1, which implies that the same
input on the same state may result in non-unique insertions
and transit to different states. Our NFM formulation is similar
to the insertion automaton [27] but we allow nondeterministic
choices of insertions upon observing a system output e ∈
Eo. The procedure to convert an AIS into an NFM M =
(Q,ΣIn,ΣOut, q0, f) is as follows. Q is the set of all the
systems states of AIS. ΣIn is the set of all the events from
system states and ΣOut is the set of all the possible insertion
strings. The transition function is defined as f(q, e) = (q′, o),
where o = o′ + e, o′ ∈ E∗I , e ∈ Eo, o′ is the inserted string,
e is the system input and o denotes the output from the state
q when the system input is e.

Example 3: Fig. 7 denotes the NFMs corresponding to
AIS1 and AIS2 in Fig. 5, respectively. Note that, different
from AIS, in the NFM formulation, upon observing an event
e, the state directly jumps from q to q′ while outputting the
string o. However, what really happens, as shown in AIS,
is that the intruder’s estimation is updated event by event
for each output of the insertion function. Such estimation
evolution is omitted in the NFM formulation for conciseness
but can be recovered from our AIS.

To keep the NFMs synchronized with the original sys-
tem that intruders try to compromise, we construct another
system observer obs as a DFA with Eobs,o =

⋃
i∈N Eo,i.

That is, if an event is observable to any one of the in-
truders, it is observable to this system observer. In our
example, Eobs,o = E and the observer has the identical
structure with the original system as shown in Fig. 3.
The observer obs can be viewed as an NFM that outputs
empty string ε for all inputs. Given N AISs’ in the form
of NFM Mi = (Qi,Σ

i
In,Σ

i
Out, q

i
0, fi) for i ∈ N and

the system observer obs, we can obtain the composed
NFM G = (QG,ΣIn,ΣOut, q0, f) that describes all the
possible combined insertion behaviors, where Q = Q1 ×
Q2... × QN × Qobs, ΣIn = Σobs,In = Eobs,o, ΣOut =
Σ1,Out × Σ2,Out... × ΣN,Out × {ε}. The transition rela-
tion f((q1, q2, ..., qN , qobs), e) = ((q′1, q

′
2, ..., q

′
N , q

′
obs), o) is

given by

• o = (o1, ..., oN , ε)
• (q′obs, ε) = fobs(qobs, e)
• (q′i, oi) = fi(qi, e) if e ∈ Eo,i; otherwise (q′i, oi) =

(qi, ε)
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Fig. 7: The NFMs converted from AISs.

While constructing this product NFM G, we assume that
when an event e ∈ Σo in the system occurs, it is guaranteed
that for every intruder Ii such that e ∈ Eo,i holds, its
corresponding insertion function will finish outputting the
modified string oi before the next system event e′ ∈ Eo is
generated. It is always possible since we restrict the output
of the insertion functions to be ∗-free. In this regard, every
insertion function is synchronized with the system inputs.

Example 4: Fig. 8 illustrates the G from Example 2 and
the corresponding NFM1 and NFM2 in Fig. 7. For sim-
plicity, in this figure we omit the constant output ε from the
system observer as well as each individual observer’s state
estimation.

For a given transition f((q0, q1, ..., qn−1, qobs), e) =
((q′0, q

′
1, ..., q

′
n−1, q

′
obs), o), it is then possible to check

whether the secrets will be revealed and joint opacity could
be violated during this transition with the help of the AISs,
since as mentioned earlier, the event by event evolution of the
state estimation for each intruder upon observing a modified
string is omitted in the NFM but not AIS.

For example, in the NFM from Fig. 8, starting from the
initial state, when the event c happens and the insertion
functions decide to insert d and ε respectively, the transition
is (m0, c0, 0)

c/(dc,c)−−−−−→ (m5, c2, 3). From the AISs in Fig. 5,
the evolution of each intruder’s estimation can be see as a two
step transition (m0, c0, 0)

d,c−−→ (m4, c2, 3)
c,ε−−→ (m5, c2, 3).

Note that there is an intermediate state (m4, c2, 3) that
is not shown in G. In the first step, upon observing the
system event c, the first insertion function outputs d and the
second insertion function, since it decides to insert nothing,
the system event c is directly outputted. Therefore, the
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Fig. 8: The NFM G, the states in the dashed box are pruned

estimations evolve from m0 to m4, c0 to c2, and the system
observer’s estimation changes from 0 to 3. In the second
step, the first insertion function outputs the system event c
and the second insertion function outputs ε. It can be seen
that our assumption is that the event output (including ε) for
each intruder is synchronized.

To determine if a transition (q, e)→ (q′, o) in G is safe, we
examine every intermediate state from the AISs that evolves
with each output event to see if the joint estimation reveals a
secret. By definition, qobs encodes the true set of states that
the system is currently in. The first element of AISi state —
we denote as esti — represents each intruder’s estimation
of the current state. According to our coordination rule, the
joint estimation Jest is then obtained by taking intersection
among qobs and esti, i = 1, . . . , N .

Jest = qobs ∩ est0 ∩ ... ∩ estn−1
Proposition 1: Jest does not reveal a secret if Jest∩XS 6=

∅ =⇒ Jest ∩XNS 6= ∅
We now define J-CSO in the presence of synthesized

insertion functions as follows.
Definition 6: Given N intruders with unobservable event

sets Euo,1, Euo,2, ..., Euo,N and their insertion functions
fI,1, fI,2, ..., fI,N , the system is J-CSO against the intruders
if
• For each individual intruder i, the insertion function fI,i

enforces local CSO.
• The Jest never reveals the secret.

Furthermore, we define J-CSO to be jointly privately enforce-
able if all individual insertion functions are locally privately
enforcing and Jest never reveals the secret.

An intermediate state is unsafe if its Jest reveals a secret.
A transition (q, e) → (q′, o) in G is unsafe if any of the

intermediate states between q and q′ is unsafe. Similarly,
any state q ∈ Q of G is unsafe if its Jest reveals a secret. If
a transition is found to be unsafe, it will be pruned. If a state
q ∈ Q is found to be unsafe, this state, together with all its
incoming and outgoing transitions, will be pruned. If after the
pruning, at some state q′ ∈ Q, there is no incoming transition
(except the initial state) or there is no outgoing transition
defined on an event e that could happen in this state, which
implies that the system blocks when e happens at q′ since
there is no insertion function available, then such state is also
unsafe and all its incoming and outgoing transitions will be
pruned. Again, such pruning may trigger new deadlocks and
create unsafe states. Therefore, this is an iterative process
until no unsafe state is found or the initial state is pruned.

For example, as shown in Fig. 8, the state (m3, c3, 6) is an
unsafe state that reveals the secret. Because m3∩c3∩{6} =
{5, 6} ∩ {4, 6} ∩ {6} = {6} ∈ XS . Therefore it has to be
pruned, which results in the states (m2, c3, 4) and (m3, c2, 5)
being unsafe since there are no outgoing transitions any
more. Consequently, pruning (m2, c3, 4) and (m3, c2, 5)
makes (m2, c2, 3) unsafe. After deleting (m2, c2, 3), the
pruning process stops. Since no more state or transitions is
found to be unsafe, the resulting G can be found in Fig. 8,
excluding the states in the dashed box.

Theorem 3: Given the system model G and N intruders
with observation projections Pi, i ∈ N , J-CSO is jointly
privately enforceable if and only if G is nonempty after
pruning.

Proof: If J-CSO is jointly privately enforceable, in
our definition, it implies that for each individual intruder
Ii, local opacity is privately enforceable and thus AISi is
nonempty by Theorem 1. Since AISi encodes all the possible
local insertion functions that are privately enforcing, G as



the product of AISs encodes all the possible joint insertion
strategies that are privately enforcing. Since J-CSO is jointly
privately enforceable, there exists at least one local insertion
function for each intruder Ii that is privately enforcing
and the joint estimate never reveals the secret. Thus the
joint insertion strategy is nonempty, which implies that G
is nonempty.

Conversely, non-emptiness of G implies that AISi is
nonempty for any i. Thus, the local opacity is guaranteed.
Furthermore, since G, after pruning, encodes all the valid
privately enforcing insertion functions for each intruder such
that the joint state estimate never reveals the secret, J-CSO
is guaranteed.

C. Complexity Analysis

Given N intruders and the system G with |X| states,
the space and time complexity to construct each AIS is
polynomial with |XE | [27], where |XE | = 2|X| denotes the
total number of states of the state estimator. Each NFM’s
state space is at most the state pace of its AIS. Therefore,
the space complexity to construct G is polynomial in |XE |
and exponential in |N |. The pruning process, in the worst
case, looks over all the states in G and intermediate states,
which is also polynomial in |XE | and exponential in |N |. So
to sum up, the space and time complexity in our proposed
centralized synthesis approach are both polynomial with
|XE | and exponential in |N |.

V. CONCLUSION

In this paper, we investigate the opacity-enforcement
problem for discrete-event systems that can be observed by
multiple intruders. The major contribution of this paper is
summarized as follows. First, we introduce opacity notions
for two cases of DES in the presence of multiple intruders,
one with coordination and the other without coordination.
Next, we adopt the event insertion mechanism to ensure
decentralized opacity for intruders without coordination; the
synthesized insertion functions are further refined to enforce
joint opacity of DES when intruders can coordinate via
an intersection-based protocol. Future research directions
may include: (i) introducing notions of joint opacity cor-
responding to other types of coordination protocols among
the intruders; (ii) development of algorithms for enforcing
other notions of joint opacity with respect to the new types
of coordination protocols.
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