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Abstract— This paper considers iterative learning control
design for non-minimum phase dynamics using a model derived
from an experimental spatially distributed system, i.e., a heating
system. A novel design based on an H∞ setting and convex
optimization with validation in both simulation and experiment.

I. INTRODUCTION

Iterative Learning Control (ILC) is a technique that allows
precision tracking of a reference signal in systems that
perform the same finite duration task over and over again.
High performance are preserved in the presence of plant
model uncertainty and unknown but repetitive disturbances.
In the literature each execution of task is commonly termed a
trial and the trial length is the time taken to complete a trial.
The tracking error is reduced from trial-to-trial by update a
control signal computed using data from the previous trial.

The first work on ILC is widely credited to [1] and
since then ILC has remained an area of control systems
research and implementation, where in the latter case this
has extended from laboratory experiments to actual imple-
mentation. Survey papers such as [2], [3] are possible starting
points for the early literature. Recent examples of the many
experimental validations include [4], [5].

The ILC design for non-minimum phase system poses
extra challenges compared to minimum phase plant model
because a direct inversion of the system is unstable which
leads to undesirably large ILC control signals [2], [6]. The
results in this area applied to an electro-mechanical system
with a finite-dimensional system for experimental verification
are given in [7] but such a behaviour also arises in the area of
spatially distributed systems. This paper reports new results
on ILC design for a distributed heating system pre-stabilized
by state feedback controller with a state and disturbance
observer in order to obtain a small tracking error on the
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Fig. 1. Schematic representation of the heat transfer problem in a metal
rod showing the actuator and sensor locations.

first trial. The considered heating system is approximated
by a non-minimum phase model given in form a state-space
model.

The ILC design for a non-minimum phase systems can be
effectively solved in frequency domain using H∞ method
and convex optimization. But this approach commonly lead
to very large magnitude of the learning filter at high frequen-
cies which can make the ILC system sensitive on, e.g., mea-
surement noise, uncertainty in the plant model and the initial
conditions. In [8], [9] this problem is solved by introduction
of the weighting function defined in frequency domain.
However, this approach can cause difficulties because there
are no guidelines on how to shape this function. To address
this issue direct limitation of the learning filter magnitude, by
specifying its maximum allowable value, is included in the
constraints placed on the convex optimization. The increase
of the ILC convergence speed for the selected frequency
is obtained by adding to the cost function the monotonic
convergence condition for the adopted frequency.

In the remainder of the paper the identity matrix with
compatible dimension is denoted by I and the spectral radius
of a square matrix A is denoted by ρ(A). A symmetric
positive semi-definite matrix is denoted by � 0.

II. CONTROL-ORIENTED MODELLING OF THE
DISTRIBUTED HEATING SYSTEM

Fig. 1 shows a schematic view of a metal rod that can
be heated or cooled from the bottom by four indepen-
dent Peltier elements, i.e., actuators, generating heat flows
Q̇i(t), i = 1, . . . , 4. All of the side surfaces of a rod are
thermally insulated and the top surface is in direct contact
with the atmosphere and temperature ϑa(t). It is assumed
that measurements ϑi(z, t) can be made at the geometric
midpoints of the four segments of the rod. The length l of the
rod is much greater than the height h and the width b. This
paper is based on an experimental facility [10] that has four



actuators but the analysis holds with routine modifications for
any finite number of segments heated by Peltier elements.

Under the assumptions made, a spatial one-dimensional
temperature distribution ϑ(z, t) can be assumed and modeled
by an application of the first law of thermodynamics as [10]

∂q(z, t)

∂z
+ κ1

∂ϑ(z, t)

∂t
+ κ2ϑ(z, t) = µc(z, t) + µd(t) (1)

and by application of Fourier’s heat conduction law

q(z, t) = −λ∂ϑ(z, t)

∂z
, (2)

where q(z, t) is the heat flux density, the coefficients κ1 =
ρcp and κ2 = α

h depend on the density ρ, the specific heat
capacity cp, the convective heat transfer coefficient α, the
height h of the rod and λ is the heat conductivity. The
control input µc(z, t) is generated by the Peltier elements
and described by

µc(z, t) =

4∑
i=1

ac,i(z)Q̇i(t), (3)

where

ac,i(z) =


4

bhl
for z ∈ [zi−1, zi],

0 otherwise.
(4)

The positions zi = i l4 , i = 1, 2, 3, 4, along the z-axis in
Fig. 1 are the edges of the Peltier elements. The spatially
invariant disturbance µd(t) caused by the time-varying am-
bient temperature is represented by

µd(t) = κ2ϑa(t) (5)

and the boundary conditions for the heat flux density q(z, t)
are assumed to be q(0, t) = q̄0(t) and q(l, t) = q̄l(t), where
q̄0(t) = 0 and q̄l(t) = 0 since the side surfaces are isolated.
The initial temperature distribution in the rod is taken as
ϑ(z, 0) = ϑ̄0(z).

Substituting (2) into (1) gives the parabolic partial dif-
ferential equation that describes the spatially distributed
temperature in the rod. In this paper, control system design
is based on approximating the dynamics by a set of ordinary
differential equations (ODEs). To construct this approxima-
tion, the method of integro-differential relations (MIDR)
combined with the projection approach is used [10]. In this
method, the temperature profile in the rod is approximated
by

ϑ̃(z, t) =

4∑
i=1

M∑
m=0

bi,m,M (z)θi,m,M (t), (6)

where θi,m,M are the unknown time-dependent coefficients
and bi,m,M (z) are Bernstein polynomials of degree M.
These polynomials guarantee continuity of the temperature
distribution between neighbouring segments i and i + 1

defined by the edges of the Peltier elements

bi,m,M (z) =

{
bm,Mi (z) for z ∈ [zi−1, zi],
0 otherwise,

bm,Mi (z) =

(
M

m

)(
z − zi−1
zi − zi−1

)m(
zi − z

zi − zi−1

)M−m
.

(7)
Moreover, by inter-segment temperature continuity,

θi,M,M (t) = θi+1,0,M (t). (8)

The heating system model in form of ODEs is derived by
solving [10]∫ zi

zi−1

(
ξ(z, t, ϑ̃) · bi,m,M−1(z)

)
dz = 0 (9)

for each segment i = 1, . . . , 4 and each polynomial degree
m ∈ {0, . . . ,M − 1} and∫ l

0

[
κ1
∂ϑ̃(x, t)

∂t
+ κ2ϑ̃(x, t)

]
dx

=

∫ l

0

µ(x, t)dx+ q̄0(t)− q̄l(t), (10)

where

ξ(z, t, ϑ̃) :=

∫ z

0

[
µ(x, t)− κ1

∂ϑ̃(x, t)

∂t
− κ2ϑ̃(x, t)

]
dx

+ λ
∂ϑ̃(z, t)

∂z
+ q̄0(t) = 0,

(11)
µ(x, t) = µc(x, t) + µd(t). (12)

III. CONTROL CONFIGURATION

The control problem is to track the reference temperature
at the geometric midpoint of the second segment with control
applied only through the first Peltier element in Fig. 1. In
the nominal case, all other heating elements are turned off.
Disturbances result from changes in the ambient temperature
together with actuation of the other heating elements which is
however unknown to the controller. The measurable variable
is only the temperature in the geometric midpoint of the
second segment of the rod. In the remainder of this paper all
state variables are relative to the initial ambient temperature.

The linear continuous-time state-space model of heating
system obtained by solving (9) and (10) for particular case
of M = 3 (selected as one of many choices) is given by

ẋ(t) = Acx(t) +Bcu(t) +Ecd(t),

y(t) = Ccx(t),
(13)

with the state vector x(t) = [θ1,0,3(t) θ1,1,3(t) . . .
θ4,3,3(t)]T ∈ R13 consisting of the Bernstein coefficients,
the control input u(t) = Q̇1(t), the disturbance input d(t) =
ϑa(t) due to changes in the ambient temperature and the
output y(t) = ϑ2(t). The model has been generated using
the following data: l = 0.320 m, b = 0.040 m, h = 0.012 m,
ρ = 7800 kg/m3, cp = 420 J/(kg·K), α = 150 W/(m2·K) and
λ = 55 W/(m·K).



A minimal realisation was constructed by canceling three
stable pole-zero pairs. The resulting model transfer-function
has nine zeros, one of which is in the right-hand half of the
s-plane (at s = 0.1011) and all poles are stable. For ILC
design, this model has been discretized using exact method
with sampling period Ts = 1 s and written in the ILC setting
on trial k + 1 as

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +Edk+1(p),

yk+1(p) = Cxk+1(p).
(14)

where xk+1(p) ∈ R10. The discrete-time plant model (14) is
also non-minimum phase and has the relative degree r = 1.

The developed ILC scheme for the distributed heating
system is shown in Fig. 2. It is based on a state feedback
controller, a state and disturbance Luenberger observer and
a static feedforward controller to result in a small tracking
error starting from the first trial at which the ILC signal
v1(p) = 0.

For disturbance observer design and disturbance compen-
sation purposes, the plant model (14) can be rewritten in the
following equivalent form where the disturbance only acts
on the plant input

xk+1(p+ 1) = Axk+1(p) +B
(
uk+1(p) + δk+1(p)

)
,

yk+1(p) = Cxk+1(p),
(15)

where δk+1(p) is a lumped, additive input disturbance [11]
equivalent to variations of both the ambient temperature and
the non-modelled external disturbance heat flows acting on
the metallic rod. The control law of the internal control loop
shown in Fig. 2 is given by

uk+1(p) = Nwk+1(p)−Ksx̂k+1(p)− δ̂k+1(p), (16)

where N is the static feedforward gain, wk+1(p) is the input
to the state feedback control system, Ks is the feedback
gain vector, x̂k+1(p) is the estimate of xk+1(p) and δ̂k+1(p)
is the estimate of δk+1(p). For constant or slowly varying
disturbance, the commonly used disturbance model is in the
form of the integral action

εk+1(p+ 1) = Adεk+1(p),

δk+1(p) = Cdεk+1(p),
(17)

where both Ad = Cd = 1.
The plant model (15) augmented with disturbance model

(17) is given by

zk+1(p+ 1) = Aazk+1(p) +Bauk+1(p),

y(p) = Cazk+1(p),
(18)

where

Aa =

[
A BCd

0 Ad

]
, zk+1(p) =

[
xk+1(p)
εk+1(p)

]
,

Ba =

[
B
0

]
, Ca =

[
C 0

]
.

(19)

Then, the estimates of the state vector and the equivalent
disturbance δk+1(p) can be obtained using the Luenberger
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Fig. 2. Block diagram of the ILC structure based on a state feedback control
law, a Luenberger state and disturbance observer and the static feedforward
gain N .

observer

ẑk+1(p+ 1) = Aaẑk+1(p) +Bauk+1(p)

+KL

(
yk+1(p)−Caẑk+1(p)

)
,

(20)

where ẑk+1(p) =
[
x̂T
k+1(p) ε̂k+1(p)

]T
is the observer state

vector and KL =
[
KT

L1 KL2

]T
is the observer gain vector.

The state-space model of the internal control loop is given
by

χk+1(p+ 1) = Aclχk+1(p) +Bclwk+1(p) +Ecldk+1(p),

yk+1(p) = Cclχk+1(p),
(21)

where

Acl =

 A −BKs −BCd

KL1C A−BKs −KL1C 0
KL2C −KL2C Ad

 ,
Bcl =

BNBN
0

 , Ecl =

E0
0

 , χk+1(p) =

xk+1(p)
x̂k+1(p)
ε̂k+1(p)

 ,
Ccl =

[
C 0 0

]
.

(22)
The aim of the ILC design is improve tracking perfor-

mance by adding to the reference signal (yref(p)) the ILC
signal vk+1(p)

wk+1(p) = yref(p) + vk+1(p) (23)

such that the tracking error

ek+1(p) = yref(p)− yk+1(p) (24)

not compensated for by the internal control loop with dynam-
ics (21) is reduced over subsequent trials. For this purpose,
the ILC law, see, e.g. [2]

vk+1(p) = Q(q)
(
vk(p) + L(q)ek(p)

)
(25)

is used where Q(q) is a zero-phase, low-pass filter, L(q) is
the learning filter and q is the forward time-shift operator
qek(p) ≡ ek(p+ 1). In this paper it is assumed that Q-filter
is low-pass, Butterworth filter of order n applied forward and
backward to the signal, resulting in a 2n-th order zero-phase



low-pass filter written as

Q(q) =
b0 + b1q

−1 + b2q
−2 + · · ·+ bnq

−n

1 + a1q−1 + a2q−2 + · · ·+ anq−n

· b0 + b1q + b2q
2 · · ·+ bnq

n

1 + a1q + a2q2 + · · ·+ anqn
.

(26)

The learning filter has the form of a finite impulse response
filter

L(q) = l1q + l2q
2 + · · ·+ lsq

s. (27)

In the next section the design of both the internal control
system and the ILC law are described.

IV. CONTROL SYSTEM DESIGN

The standard conditions for monotonic tracking error
convergence of ILC algorithm can be applied to considered
system and lead to [2]

i) ρ(Acl) < 1, (28)

ii) ‖Q(q)
(
1− Pwy(q)L(q)

)
‖∞< 1, ∀q ∈ D (29)

where
Pwy(q) = Ccl

(
qI −Acl

)−1
Bcl, (30)

D =
{
q = ejωTs | ω ∈ [0, ωN]

}
, (31)

ωN is the Nyquist angular frequency.
The first condition requires that Acl is a stable matrix in

the standard linear systems sense. In this case, the separation
principle of linear feedback control and observer design can
be used. To design the state feedback matrix Ks many
possible algorithms exist and in this paper the design is
completed by minimizing the linear quadratic cost function

Js =

∞∑
p=0

(
xT
k+1(p)Qsxk+1(p) +Rsu

2
k+1(p)

)
, (32)

where Qs � 0 and Rs > 0 are an appropriately chosen
weighting matrix and scalar, respectively. This optimization
problem leads to the discrete-time matrix Riccati equation

ATPs

(
I−B(BTPsB+Rs)

−1BTPs

)
A+Qs = Ps. (33)

The solution matrix Ps of this last equation is used to
compute Ks as

Ks = (BTPsB +Rs)
−1(BTPsA). (34)

To design the observer gain vector KL, the following
quadratic cost function is used

Jo =

∞∑
p=0

(
z̆Tk+1(p)Qoz̆k+1(p) +Roy̆

2
k+1(p)

)
, (35)

where z̆k+1(p) = zk+1(p)− ẑk+1(p) is the state estimation
error, y̆k+1(p) = yk+1(p) − ŷk+1(p) the output estimation
error, Qo � 0 and the scalar Ro > 0 are an appropriately
chosen weighting matrix and scalar, respectively. The solu-
tion matrix Po of the following discrete-time matrix Riccati
equation

APo

(
I−CT(CPoC

T+Ro)−1CPo

)
AT+Qo = Po (36)

is used to calculate the optimal observer gain vector

KL =
(
(CPoC

T +Ro)−1(CPoA
T)
)T
. (37)

The ILC design for the non-minimum phase internal
control system will be made in frequency domain by solving
the following convex optimization problem

minimize
L

γ +
∣∣Q(ejωrTs)

(
1− Pwy(ejωrTs)L(ejωrTs)

)∣∣
subject to γ < 1,∣∣Q(ejωiTs)

(
1− Pwy(ejωiTs)L(ejωiTs)

)∣∣ ≤ γ,
|L(ejωiTs)| ≤ g, ∀ωi ∈ [0 < ω1 < . . . < ωN].

(38)
for given Q-filter (26). The approach is an extension of the
H∞ method [8] where the last constraint is added to limit
the maximum value of the learning filter magnitude to the
chosen value g. In [8], [9] this problem has been solved by
an introduction of a weighting function defined in frequency
domain. However, the constraint imposed on the learning
function can cause a decrease of the ILC convergence speed
in the frequency band for which the frequency spectrum of
the reference signal has many components. To avoid this
problem, the cost function has been enriched by adding the
second term that aims to increase a convergence rate for
specified angular frequency ωr.

Note also that the second condition of ILC stability (29)
should be satisfied for every ω belonging to the interval
[0, ωN], i.e. for infinite number of values. This condition
can be relaxed such that only a finite number of reasonable
chosen angular frequency ωi defined in (38) is considered.
The cut-off frequency of the Q-filter can be set from the
analysis of the pass band of the internal control system Pwy

of (30).

V. CASE STUDY

In this section the numerical values of the system model
given in Section III are used. The free parameters in the
optimization problems (32) and (35) have been chosen for the
results given as Qs = CTC, Rs = 0.05, Qo = diag(I, 2)
and Ro = 1 to obtain a compromise between a high dynamic
and a suppression of high frequency noise. The analysis
was performed for the measurement noise with the standard
deviation 0.1 K, as many temperature sensors have such an
accuracy.

Completing the design gives Ks = [−0.0581 0.3766
0.3219 −0.3210 0.2562 0.4222 0.3132 0.2139 −0.1572
0.0329], KL = [−0.6993 0.8131 1.0187 −0.7220 −0.1548
0.4797 −0.1985 −0.0746 −0.3859 −0.1038 1.0739]T. The
static feedforward gain N = 4.8575 has been taken as the
inverse of the DC gain of the closed-loop feedback control
system to ensure a small steady state error for the first trial.
The Bode diagram of the internal control loop between the
input of the state feedback control system (wk+1) and the
plant output (yk+1) calculated based on (30) is shown in
Fig. 3.

The Q-filter (26) was parametrized as a low-pass, 2th-
order Butterworth filter with cutoff frequency of 0.02 Hz.
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For this frequency the internal control loop significantly
damps the input signal wk+1 as the magnitude of Pwy at
this frequency is approximately 0.03. The Bode diagram of
Q-filter is depicted in Fig. 4. The order of the learning filter
(27) ia assumed equal to s = 10, based on the order of
the plant model (14). The internal control loop described by
(21) and (30) is 21th order, where the 11 additional states
are introduced by the state and disturbance observer (20).

For comparison purposes, the coefficients of L(q) were
calculated using i) the H∞ method, ii) the H∞ method with
the additional condition

|L(ejωi)| ≤ g = 20, ∀ωi ∈ [0 < ω1 < . . . < ωN] (39)

limiting the magnitude of L to g = 20 and iii) the optimiza-
tion procedure (38) for the same value of g. All optimization
problems were solved using MATLAB toolboxes CVX and
SDPT3 for 1000 values of ωi in the range [0, ωN = π].

Fig. 5 shows the magnitude of learning filter (top) and the
convergence speed of ILC system (bottom) for the learning
filter coefficients calculated using the first method. For this
design the H∞ norm was 0.093. Theoretically it can lead to
very high convergence speed in wide range of frequency but
due to a large learning filter magnitude at high frequency, the
ILC design is sensitive to measurement noise and modelling
errors.
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Fig. 5. Magnitude of |L| and |Q(1−PL)| for the L coefficients calculated
by minimization of H∞ norm.

The second design of the L coefficients has been un-
dertaken using H∞ method together with additional con-
straint (39) limiting magnitude of L to value g = 20. In
general, the value of g should be determined by user using
trial-and-error method specific to the application consider-
ation. This limitation was added to increase robustness of
the ILC algorithm against the measurement noise and the
uncertainty in the plant model. In this paper, a low value
of g has been assumed demonstrate the feasibility of (38).
The H∞ norm for the second design is 0.869 and the gray
plots in Fig. 6 show the magnitude of L (top) and the ILC
convergence speed (bottom).

Limiting the learning filter magnitude to 20 causes a
decrease of the ILC convergence speed in comparison to
the previous result. To examine the performance of this
design, simulations have been run over 10 trials for the
control scheme of Fig. 2. Fig. 7 shows the reference signal,
i.e., the desired temperature at the geometric midpoint of
the second segment of the rod and the disturbance in form
of the heat flow changes of the third Peltier element Q̇3

starting from the 5th trial, where zero boundary conditions
have been enforced. The output variable is the temperature in
the geometric midpoint of the second segment. To compare
the trial-to-trial convergence, the root-mean-square (RMS)
tracking error RMS(ek) along each trial is used and the gray
plot in Fig. 8 shows the data generated for the second design.

The third design of the L coefficients were completed
using the optimization procedure (38), where the second
component of the cost function was calculated for ωr = 0
because the frequency spectrum of the reference signal
shown in Fig. 7 has many components for low frequencies.
In this case, the H∞ norm was 0.931. The black dashed
plots in Fig. 6 show the magnitude of L (top) and the ILC
convergence speed (bottom). The increase in convergence
speed for low frequencies compared to the previous design
is significant despite the identical limitation of the maximum
value of the learning filter magnitude. An identical set of
simulations as for the previous design were undertaken.
The resulting RMS tracking error is given in Fig. 8 by
the black dashed plot. The result is faster ILC convergence
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for frequency spectrum of the reference signal although the
maximum magnitude of |L| is still ≤ 20.

Finally, experimental validation of the last L design has
been undertaken. The RMS tracking error for this design is
shown in Fig. 8 using black solid line and good agreement
between simulation and experiment is evident. The experi-
mental results also indicate that the control system is robust
against measurement noise, plant model uncertainty, changes
of ambient temperature (during experiment the temperature
in the laboratory increased by about 3 K) and changes
of temperatures in rod caused by heat flow generated by
the third Peltier element. The ILC design needs 3 trials to
obtain an RMS error below 0.1 K. Slow disturbances are
compensated on the current trial by the disturbance observer.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, an ILC design has been developed and
verified by numerical simulations and experimental research
on spatially distributed heating system. For design purposes,
the experimental setup is approximated by a non-minimum
phase model in form of a state-space model. The new ILC
design is in an H∞ method and convex optimization where
additional constraints were added to limit the maximum
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Fig. 8. RMS values of the tracking error.

value of the learning filter magnitude. The increase in the
ILC convergence speed in the frequency band for which
the frequency spectrum of the reference signal has many
components has been obtained by adding to the cost func-
tion a second component that is the convergence condition
for the selected angular frequency ωr. The simulation and
experimental results confirm that the new design is capable of
high control performance. Future works will concentrate on
ILC design for multi-input multi-output of distributed heating
systems and experimental validation of the resulting designs.
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