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Permissive Barrier Certificates for Safe Stabilization Using

Sum-of-squares *

Li Wang, Dongkun Han, and Magnus Egerstedt†

Abstract— Motivated by the need to simultaneously guaran-
tee safety and stability of safety-critical dynamical systems,
we construct permissive barrier certificates in this paper
that explicitly maximize the region where the system can be
stabilized without violating safety constraints. An optimization
strategy is developed to search for the maximum volume barrier
certified region of safe stabilization. The barrier certified region,
which is allowed to take any arbitrary shape, is proved to
be strictly larger than safe regions generated with Lyapunov
sublevel set based methods. The proposed approach effectively
unites a Lyapunov function with multiple barrier functions
that might not be compatible with each other. Iterative search
algorithms are developed using sum-of-squares to compute
the most permissive, that is, the maximum volume, barrier
certificates. Simulation results of the iterative search algorithm
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

The controller design of safety critical dynamical systems,

such as power systems, autonomous vehicles, industrial

robots, and chemical reactors, requires simultaneous satis-

faction of performance specifications and multiple safety

constraints [2], [17], [4]. Violation of safety constraints might

result in system failures and injuries. The problem of safe

stabilization, i.e., to stabilize the system while staying in a

given safe set, poses a serious challenge to the controller

design task.

The formal design for stabilization of nonlinear dynamical

systems is oftentimes achieved using Control Lyapunov

Functions (CLFs). Meanwhile, the safety of dynamical sys-

tems can be established with barrier certificates, which

guarantee that the state of the system never enters specified

unsafe regions [13]. Barrier certificates are useful tools for

safety verification in autonomous dynamical systems, see

[13], [18], and references therein. While in control dynamical

systems, barrier certificates can provably enforce dynamical

safety constraints in various applications, e.g., adaptive cruise

control [26], bipedal walking [7], and multi-agent robotics

[23], [22]. It is important to see that safe stabilization is

not guaranteed in the intersection of the DoA and the safe

region. Since the safety and stabilization objectives might be

in conflict, a common control that satisfies both objectives

does not necessarily exist [16], [25].
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In order to simultaneously achieve safety and stabilization

of dynamical systems, a number of control design methods

have been proposed in the literature to unite CLF with

barrier certificates. For example, a barrier function was

explicitly incorporated into the design phase of the CLF [19],

[16], which resulted in a single feedback control law if a

“control Lyapunov barrier function” inequality was satisfied.

However, no feedback controller can be designed if these

two objectives were in conflict. The condition for multiple

barrier constraints to be compatible with each other was

characterized in [25], [23]. To deal with conflicting safety

and stabilization objectives, an optimization based controller

was developed in [1] such that safety is strictly guaranteed

while convergence to goal is relaxed when conflict occurs.

In contrast to the aforementioned methods, this paper

deals with the conflict between the safety and stabilization

objectives by finding a region of safe stabilization, which is

both contractive to the equilibrium and safe with respect to

state constraints. The region of safe stabilization is a subset

of the intersection of the Domain of Attraction (DoA) and

the safe region. Similar to the problem of estimating the

DoA, it is usually not easy to obtain the exact region of safe

stabilization for arbitrary dynamics. Thus, a good approxima-

tion algorithm to compute the region of safe stabilization is

needed. For instance, safe stabilization funnels were designed

to be sublevel sets of the Lyapunov function in [9]. In this

paper, we will present an approximation algorithm based on

barrier certificates, which generates an estimate of the region

that is strictly larger than the estimate based on Lyapunov

sublevel set. In contrast to [1], [26], no relaxation on the

Lyapunov constraint is needed when it is united with the

permissive barrier certificates, because the certificates and the

Lyapunov constraint are always compatible by construction.

Estimating the region of safe stabilization is closely related

to estimating the DoA of an equilibrium state, except for the

extra consideration of safety constraints. Among the vari-

ous DoA approximation methods proposed in the literature,

methods using the subset of Lyapunov-like functions, such

as quadratic Lyapunov functions [20] and rational polyno-

mial Lyapunov functions [3], are proved to be effective

[12]. Further improvements on the Lyapunov sublevel set

based methods are developed in [6], [21], [5] to reduce the

conservativeness with invariant sets. In this paper, the set

invariance property is established with barrier certificates,

which are allowed to take arbitrary shapes rather than the

sublevel set of the Lypapunov function. This method leads

to a non-conservative estimate of the DoA.

The contribution of this paper is threefold. First, permis-
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sive barrier certificates that are guaranteed compatible with

the Lyapunov function are synthesized to ensure simultane-

ous stabilization and safety enforcement of control dynamical

systems. Second, iterative search algorithms to compute

permissive barrier certified region of safe stabilization are

developed based on sum-of-squares (SOS) programs. Third,

barrier certificates are used to construct a non-conservative

estimate of DoA by allowing the contractive region to take

arbitrary shapes.

The rest of the paper is organized as follows. Preliminary

results on barrier certificates are briefly revisited in Section

II. Barrier certificates for DoA estimation and safe stabi-

lization are the topics of Sections III and IV, respectively.

Conclusions are discussed in Section V.

II. PRELIMINARIES: BARRIER CERTIFICATES FOR

DYNAMICAL SYSTEMS

Preliminary results on barrier certificates are revisited here

to set the stage for DoA estimation and safe stabilization.

More specifically, applications of barrier certificates in safety

verification of autonomous systems and safe controller syn-

thesis for control dynamical systems will be discussed.

A. Barrier Certificates for Autonomous Dynamical Systems

Using the invariant set principle, barrier certificates can

certify that state trajectories starting from an initial set X0 do

not enter an unsafe set Xu. Consider an autonomous system

ẋ = f (x), (1)

where x ∈ X , and f is locally Lipschitz continuous. Both

X0 and Xu are subsets of X . The barrier certificate [13],

h(x) : Rn → R, needs to satisfy

h(x)≥ 0, ∀x ∈ X0,

h(x)< 0, ∀x ∈ Xu,

∂h(x)

∂x
f (x) ≥ 0, ∀x ∈ X , (2)

so that the safety of the system is guaranteed.

The condition (2) is often too restrictive, since h(x) has

to be non-decreasing. A more permissive barrier certificate

is presented in [1], [26]. The condition (2) can be relaxed to

∂h(x)

∂x
f (x) ≥−κ(h(x)),∀x ∈ X , (3)

where κ : R → R is an extended class-κ function (strictly

increasing and κ(0) = 0). Let the certified safe area be

defined as C = {x ∈ X | h(x) ≥ 0}. By allowing the

derivative of the barrier certificate to grow within the safe set

C , this barrier certificate can ensure the forward invariance

of C in a non-conservative manner.

The difference between these two types of barrier cer-

tificates can be illustrated with a simple example. Using

the SOS technique described in [13], we can compute the

certified safe regions for both barrier certificates.

Consider a 2D autonomous dynamical system,
[

ẋ1

ẋ2

]

=

[

x2

−x1 +
1
3
x3

1 − x2

]

.

-4 -2 0 2 4
x1

-4

-2

0

2

4

x
2

Xu

X0

h1 (ḣ1 ≥ 0)

h2 (ḣ2 ≥ −2h2)

Fig. 1: Comparison of two types of barrier certificates. The

barrier certified safe region based on (3) (area between the

solid green lines) is significantly larger than the safe region

based on (2) (area between the dashed red lines).

The initial and unsafe sets are specified as X0 = {x | 0.25−
(x1 − 1.5)2 − (x2 + 1)2 ≥ 0} and Xu = {x | 0.25− (x1 +
1.4)2 − (x2 + 1.6)2 ≥ 0}, respectively. Both types of barrier

certificates can be illustrated in Fig. 1. The area of the barrier

certified safe region generated with (3) is much larger than

(2), which means that (3) allows for a significantly more

permissive safety certificate than (2).

B. Barrier Certificates for Control Dynamical Systems

For a control-affine dynamical system

ẋ = f (x)+ g(x)u, (4)

where x ∈ X and u ∈ U are the state and control of the

system, and f and g are both locally Lipschitz continuous.

The safe set C = {x ∈ X | h(x) ≥ 0} is defined as a

superlevel set of a smooth function h : X →R.

Barrier certificate can be designed to regulate the con-

troller u, such that the safety constraint is never violated.

The barrier certificate for control system is designed with

control barrier functions (CBF). The function h(x) is a CBF,

if there exists an extended class-κ function κ such that

sup
u∈U

{

∂h(x)

∂x
f (x)+

∂h(x)

∂x
g(x)u+κ(h(x))

}

≥ 0,∀x ∈ X .

With h(x), barrier certificates for (4) are defined as

K(x) =

{

u ∈U

∣

∣

∣

∣

∂h(x)

∂x
f (x)+

∂h(x)

∂x
g(x)u+κ(h(x))≥ 0

}

.

By constraining the controller u in K(x), the state trajectory

will never leave the safe set C [1], [26].

The stabilization task can be encoded into a control

Lyapunov function (CLF) V (x). Since a common control that

satisfies both the CBF and the CLF does not necessarily exist,

a typical way to unite the pre-designed CLF and CBF is to



use a QP-based controller [26], [1], [10], i.e.,

u∗ = argmin
u∈Rn

J(u)+ kδ δ 2

s.t.
∂V (x)

∂x
g(x)u ≤−

∂V (x)

∂x
f (x)+ δ ,

−
∂h(x)

∂x
g(x)u ≤

∂h(x)

∂x
f (x)+κ(h(x)),

(5)

where δ is a CLF relaxation factor, such that the non-

negotiable safety constraint is always satisfied. However,

simultaneous stabilization and safety enforcement are not

guaranteed. In this paper, instead of relaxing the stabilization

term, we will compute an estimate of the region of safe sta-

bilization with permissive barrier certificates, such that both

the stabilization and safety constraints are strictly respected.

III. DOA ESTIMATION WITH BARRIER CERTIFICATES

FOR AUTONOMOUS DYNAMICAL SYSTEMS

Computing estimates of the region of safe stabilization is

closely related to computing estimates of DoA, because both

try to maximize the volume of interested region where certain

matrix inequalities are satisfied. In this section, we will show

that the DoA estimate derived with barrier certificates is

strictly larger than the maximum contractive sublevel set of

the Laypunov function. An iterative optimization algorithm

based on SOS program is provided to numerically compute

the most permissive barrier certificates for polynomial sys-

tems. Building upon the results developed in this section,

permissive barrier certificates for safe stabilization will be

presented in Section IV.

A. Expanding Estimate of DoA with Barrier Certificates

Assume the system (1) is locally asymptotically stable

at the origin. Let ψ(t;x0) denote the state trajectory of the

system (1) starting from x0. The DoA of the origin is defined

as the set of all initial states which eventually converge to

the origin as time goes to infinity,

D = {x0 ∈ X | lim
t→∞

ψ(t;x0) = 0}.

A commonly used method to estimate the DoA is to

compute the sublevel set of a given Lyapunov function

V (x). This Lyapunov function should be positive definite,

and its derivative should be locally negative definite. Let

V (c) = {x ∈ X | V (x)≤ c} be a sublevel set of V (x). The

largest inner estimate of the DoA using the sublevel set of

the Lyapunov function can be computed with

c∗ = max
c∈R

c

s.t. −
∂V (x)

∂x
f (x) > 0, ∀x ∈ V (c)\ {0}.

(6)

The estimate V (c∗) is straightforward to compute, but often

conservative compared to invariant set based methods. This

is because the shape of V (c∗) is restricted to the Lyapunov

sublevel set.

Next, we will show that the estimate of DoA can be

further expanded using barrier certificates and the given

Lyapunov function. This is achieved by allowing the barrier

certificates to take an arbitrary shape instead of the sublevel

set of V (x). The most permissive barrier certified region

C = {x ∈ X | h(x)≥ 0} can be computed as,

h∗(x) = argmax
h(x)∈P

µ(C )

s.t.−
∂V (x)

∂x
f (x) > 0, ∀x ∈ C \ {0},

∂h(x)

∂x
f (x) ≥−κ(h(x)), ∀x ∈ C ,

(7)

where µ(C ) is the volume of C . The largest estimate of

the DoA with barrier certificates is achieved with C ∗ = {x ∈
X | h∗(x) ≥ 0}. By maximizing the volume of the barrier

certified region, C ∗ is guaranteed to be larger than V (c∗).
This fact can be shown with the following lemma.

Lemma 3.1: Given an autonomous system (1) that is

locally asymptotically stable at the origin, the estimate of

DoA with barrier certificates is no smaller than the estimate

with the sublevel set of Lyapunov function, i.e., µ(V (c∗))≤
µ(C ∗).

Proof: The largest inner estimate of DoA using the

sublevel set of a given Lyapunov function is V (c∗) = {x ∈
X | V (x) ≤ c∗}. A candidate barrier certificate can be

designed as h̄(x) = c∗−V (x), and the corresponding certified

safe region is C̄ = {x ∈ X | h̄(x)≥ 0}. The time derivative

of h̄(x) is

∂ h̄(x)

∂x
f (x) =−

∂V (x)

∂x
f (x), ∀x ∈ C̄ ,

which is always nonnegative within C̄ . By definition, h̄(x)
is also nonnegative in C̄ , i.e.,

∂ h̄(x)

∂x
f (x)≥ 0 ≥−κ(h̄(x)), ∀x ∈ C̄ ,

which means h̄(x) is a valid barrier certificate and a feasible

solution to (7). But h̄(x) is not necessarily the optimal

solution. So we have µ(V (c∗)) = µ(C̄ )≤ µ(C ∗).

Remark 1: With Lemma 3.1, (6) can be reformulated into

an optimization problem similar to (7), i.e.,

c∗ = max
c∈R

c

s.t. −
∂V (x)

∂x
f (x)> 0, ∀x ∈ V (c)\ {0},

∂ (c−V(x))

∂x
f (x)≥−κ(c−V(x)), ∀x ∈ V (c).

We can see that (6) also searches for a maximum barrier

certificate. The shape of the certified region is constrained

to be a sublevel set of V (x). Since a specific shape of

the certified region is not required, (7) is more permissive

than (6). In addition, h(x) is allowed to decrease within the

estimated DoA instead of monotone increasing.

The fact that C ∗ is an inner estimate of the DoA can be

established with the following theorem.

Theorem 3.2: Given an autonomous dynamical system (1)

that is locally asymptotically stable at the origin, the estimate



of the DoA with barrier certificates, C ∗, is a subset of the

true DoA D . And C ∗ is guaranteed to be non-empty.

Proof: Given an arbitrary initial state x0 ∈ C ∗, the

trajectory of the state ψ(t;x0), t ∈ [0,∞), is guaranteed to be

contained within C ∗, due to the forward invariance property

of barrier certificates.

By the construction of C ∗ in (7),
dV (ψ(t;x0))

dt
is negative

definite for ψ(t;x0) ∈ C ∗. Therefore, V (ψ(t;x0)) is strictly

decreasing along the trajectory ψ(t;x0), t ∈ [0,∞), except at

0n. Since V (x0) is bounded and 0n is the only equilibrium

point in C ∗, we can get limt→∞ ψ(t;x0) = 0n. By the def-

inition of the DoA, x0 ∈ D for any x0 ∈ C ∗,which means

C ∗ ⊆ D .

It is shown in [2] that V (c∗) is non-empty. From Lemma

3.1, µ(V (c∗))≤ µ(C ∗), thus C ∗ is also non-empty.

B. Iterative Search of Permissive Barrier Certificates

The optimization problem (7) is difficult to solve for

general systems, since checking non-negativity is often com-

putationally intractable [11]. However, if non-negativity con-

straints are relaxed to SOS constraints, (7) can be converted

to a numerically efficient convex optimization problem. To

this end, we will restrict (1) to polynomial dynamical sys-

tems.

Let P be the set of polynomials for x ∈ R
n. The poly-

nomial l(x) can be written in Square Matrix Representation

(SMR) [2] as ZT (x)QZ(x), where Z(x) is a vector of mono-

mials, and Q ∈ R
k×k is a symmetrical coefficient matrix. A

polynomial function l(x) is nonnegative if l(x)≥ 0,∀x ∈R
n.

Furthermore, p(x) is a SOS polynomial if p(x) = ∑m
i=1 p2

i (x)
for some pi(x) ∈ P . PSOS is the set of SOS polynomials.

If written in SMR form, p(x) has a positive semidefinite

coefficient matrix Q � 0. The trace and determinant of a

square matrix A∈R
n×n are trace(A) and det(A), respectively.

Since the proposed method is an under-approximation

method, we would like to maximize the volume of C such

that the best estimate of DoA can be achieved. However, this

objective max(vol(C )) is non-convex and usually cannot be

described by an explicit mathematical expression. In order

to solve this issue, a typical way adopted in the literature

is to approximate the volume by using trace(Q), where

h(x)= Z(x)T QZ(x). In this paper, we would like to maximize

trace(Q) to get the largest C similar to [2].

To deal with nonnegativity constraints over semialgebraic

sets, we will introduce the Positivestellensatz (P-satz).

Lemma 3.3: ([15]) For polynomials a1, . . . ,am, b1, . . . ,bl

and p, define a set

B = {x ∈R
n : ai(x) = 0, ∀i = 1, . . . ,m,

bi(x)≥ 0, ∀ j = 1, . . . , l}.

Let B be compact. The condition p(x)> 0,∀x ∈ B holds if

the following condition is satisfied:
{

∃r1, . . . ,rm ∈ P, s1, . . . ,sl ∈ PSOS,

p−∑m
i=1 riai −∑l

i=1 sibi ∈ PSOS.

This lemma provides an important perspective that any

strictly positive polynomial p(x) ∈F is actually in the cone

generated by ai and bi. Using the Real P-satz and the SMR

form of h(x), (7) can be formulated into a SOS program,

max
h(x)∈P, L1(x)∈PSOS

L2(x)∈PSOS

Trace(Q)

s.t. −
∂V (x)

∂x
f (x)−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
f (x)+ γh(x)−L2(x)h(x) ∈ P

SOS
,

(8)

where a linear function κ(x) = γx is adopted. The SOS pro-

gram (8) involves bilinear decision variables. It can be solved

efficiently by splitting into several smaller SOS programs,

which leads to the following iterative search algorithm.

Remark 2: Notice that (8) requires an initial value of h(x)
to start with. From Lemma 3.1, a good initial value can be

picked as h̄(x) = c∗−V (x). This SOS program is guaranteed

to generate a barrier certificate better than h̄(x).

Algorithm 1:

Step 1: Calculate an initial value for h(x)
Specify a Lyapunov function V (x), and find c∗ using the

bilinear search method, i.e.,

c∗ = max
c∈R,L(x)∈PSOS

c

s.t. −
∂V (x)

∂x
f (x)−L(x)(c−V (x)) ∈ P(x)SOS

.

Set the initial value for h(x) as h̄(x) = c∗−V(x).
Step 2: Fix h(x), and search for L1(x) and L2(x)
Using the h(x) from previous step, we can search for

L1(x) and L2(x) that give the largest margin on the barrier

constraint. This is achieved by solving

max
ε≥0, L1(x)∈PSOS

L2(x)∈PSOS

ε

s.t. −
∂V (x)

∂x
f (x)−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
f (x)+ γh(x)−L2(x)h(x)− ε ∈ P

SOS
.

Step 3: Fix L1(x) and L2(x), and search for h(x)
With L1(x) and L2(x) from previous step, a most per-

missive barrier certificate can be searched for. The barrier

certificate is written in the SMR form h(x) = Z(x)T QZ(x).
The most permissive barrier certificate is computed by max-

imizing the trace of Q,

max
h(x)∈P

trace(Q)

s.t. −
∂V (x)

∂x
f (x)−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
f (x)+ γh(x)−L2(x)h(x) ∈ P

SOS
.

This searching process is terminated if trace(Q) stops in-

creasing, otherwise go back to Step 2.



Remark 3: In Step 2, the common approach is to just search

for feasible L1(x) and L2(x). However, there are multiple

L1(x) and L2(x) available. By maximizing the margin ε of

the barrier constraint, better options of L1(x) and L2(x) can

be chosen. This method will expand the feasible space of

h(x) for optimization in Step 3, which can help speed up the

optimization procedure.

C. Simulation Results for Autonomous Dynamical Systems

The iterative search algorithm 1 is implemented on two

examples of autonomous dynamical systems. In the sim-

ulation, the Matlab toolboxes SeDuMi, SMRSOFT [2],

SOSTOOLS[14], and YALMIP [8] are used for solving the

semidefinite and SOS programming problems.

Example 1: Given the two-dimensional autonomous sys-

tem
[

ẋ1

ẋ2

]

=

[

x2

−x1 − x2 − x3
1

]

,

which has a locally stable equilibrium at the origin. A forth

order Lyapunov function for this system can be picked as

V (x) = x2
1 + x1x2 + x2

2 + x4
1 + x4

2. Using the sublevel set of

V (x), we can get the largest estimate of DoA as

A1 = {x ∈R
2 | V (x)≤ 0.9759}.

With the iterative search algorithm for barrier certificates, a

larger estimate of DoA can be obtained as

A2 = {x ∈ R
2 | h(x) = 0.0428+ 0.0033x2

1− 0.1396x1x2

+0.0206x2
2− 0.0976x4

1− 0.0913x4
2− 0.0079x3

1x2

+0.0061x1x3
2 + 0.0779x2

1x2
2 ≥ 0}.

For comparison under the same condition, the order of the

barrier certificate is also restricted to be forth-order. As

illustrated in Fig. 2, the barrier certificate expands the esti-

mate of DoA significantly. Note that the Lyapunov function

in the example is randomly picked, one can also compute

the maximal Lyapunov function [2] and show that barrier

certified DoA is larger as seen in [24].

Example 2: Consider the three-dimensional system




ẋ1

ẋ2

ẋ3



=





−x1 + x2x2
3

−x2

−x3



 ,

which has a locally stable equilibrium at the origin. A

Lyapunov function for this system can be picked as V (x) =
x2

1 + x2
2 + x2

3. The largest estimate of DoA based on the

sublevel set of Lyapunov function is

A1 = {x ∈ R
3 | V (x)≤ 8}.

With barrier certificates, the largest estimate of the DoA is

A2 = {x ∈R
3 | h(x) = 7.9999− 1.2828x2

3− 0.2850x2
1

−0.5652x2
2− 0.6685x1x2 ≥ 0}.

The barrier certificate is restricted to the same order as V (x).
Both estimates of DoA are illustrated in Fig.3. Since both

-3 -2 -1 0 1 2 3
x1

-2

-1

0

1

2

x
2

V (x) = c
∗

h
∗(x) = 0

Fig. 2: Estimates of DoA for a two-dimensional autonomous

dynamical system. The barrier certified DoA estimate (region

enclosed by the dashed blue curve) is significantly larger

than the Lyapunov sublevel set based DoA estimate (region

enclosed by the solid green curve).

regions are ellipsoids, the volume of the estimated DoA can

be analytically calculated. With the barrier certificate, the

volume of the estimated region is increased by
µ(A2)−µ(A1)

µ(A1)
=

297.4%.

-5

-10
-10

-5

-2

-5

0 0

x
3

1

5 5

4

10 10

x2 x1

Fig. 3: Estimates of DoA for a three-dimensional au-

tonomous dynamical system. The black and blue ellipsoids

represent the largest estimate of DoA based on the Lyapunov

function sublevel set and barrier certificates, respectively.

From these two examples, we can see that the barrier

certificate based method provides a more permissive estimate

of the DoA than the Lyapunov sublevel set based method.

IV. SAFE STABILIZATION OF CONTROL DYNAMICAL

SYSTEMS

Permissive barrier certificates are developed in this section

to maximize the estimated region of safe stabilization, where

the system state is both stabilized and contained within

the safe set. Based on the DoA estimation method for



autonomous systems in section III, the safe stabilization of

control dynamical systems is addressed.

We will consider the safe stabilization problem described

by (5) for a locally stabilizable control-affine dynamical

system (4). Note that the locally stabilizable assumption

ensures that an invariant and compact set for initial DoA

estimation exists. Instead of relaxing the stabilization term

with δ to resolve conflicts, we will synthesize a permissive

barrier certificate with the maximum volume possible that

strictly respects both the stabilization and safety constraints.

This permissive barrier certificate can be found using

h∗(x) = argmax
h(x)∈P,u(x)∈P

µ(C )

s.t. −
∂V (x)

∂x
f (x)−

∂V (x)

∂x
g(x)u(x)> 0, ∀x ∈ C \ {0},

∂h(x)

∂x
f (x)+

∂h(x)

∂x
g(x)u(x)+κ(h(x))≥ 0, ∀x ∈ C ,

(9)

where µ(C ) is the volume of the certified safe region (C =
{x∈X | h(x)≥ 0}). Note that (9) is a semi-infinite program

that generates a feedback controller u(x) for every x ∈ C ,

while (5) only products a point-wise optimal controller.

To enforce the safety constraints, it is required that the

barrier certified region is contained within the complement

of the unsafe region, i.e., C ⊆X c
u . For generality, the unsafe

region is encoded with multiple polynomial inequalities,

Xu = {x ∈ X | qi(x)< 0, ∀i ∈ M }, (10)

where qi(x) are polynomials, and M = {1,2, ...,M} is the

index set of all the safety constraints.

Similar to Lemma 3.1, we can show that the region of safe

stabilization estimated with barrier certificates is larger than

the estimated region with Lyapunov sublevel set in [9].

Lemma 4.1: Given a dynamical control system (4) that is

locally stabilizable at the origin, the barrier certified region

of safe stabilization estimate is no smaller than the estimated

region of safe stabilization using sublevel set of the Lyapunov

function, i.e, µ(V (c∗))≤ µ(C ∗).
Proof: Similar to Lemma 3.1.

In order to maximize the volume of the safe operating

region, the barrier certificate is rewritten into SMR form, i.e.,

h(x) = Z(x)T QZ(x). Using the Real P-satz, the optimization

problem (9) is formulated into a SOS program,

max
h(x)∈P, u(x)∈P

L1(x)∈PSOS, L2(x)∈PSOS

Ji(x)∈PSOS,i∈M

Trace(Q)

s.t. −
∂V(x)

∂x
( f (x)+ g(x)u(x))−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
( f (x)+ g(x)u(x))+ γh(x)−L2(x)h(x) ∈ P

SOS
,

−h(x)+ Ji(x)qi(x) ∈ P
SOS

,∀i ∈ M .

(11)

The optimal barrier certificate obtained by solving the SOS

program (11) is denoted by h∗(x). The corresponding con-

troller is u∗(x). The following theorem shows that guaranteed

safe stabilization can be achieved within the barrier certified

region C ∗.

Theorem 4.2: Given a dynamical control system (4) that is

locally stabilizable at the origin, a Lyapunov function V (x),
an unsafe region Xu in (10), and the solution h∗(x) to (11),

for any initial state x0 in C ∗ = {x ∈ X | h∗(x) ≥ 0}, there

always exists a controller that drives the system to the origin

without violating safety constraints.

Proof: Starting from any state x0 ∈ C ∗, the state

trajectory of the system (4) is denoted by ψ(t;x0) when the

controller u∗(x) from (11) is applied.

By Real P-satz, the second constraint in (11) implies

that the barrier constraint in (9) is always satisfied, which

ensures that the state trajectory ψ(t;x0) is always contained

in C ∗. Similarly, the first constraint in (11) implies that
dV (ψ(t;x0))

dt
is always negative in C ∗ except at the origin. Thus

limt→∞ ψ(t;x0) = 0.

The third constraint in (11) ensures that “if −qi(x) > 0,

then −h(x) > 0”. Consider the contrapositive of this state-

ment, we have “if h(x)≥ 0, then qi(x)≥ 0”. This statement

holds for any state x ∈ C ∗ and any safety constraint i ∈ M ,

which means C ∗ ⊆X c
u . Because ψ(t;x0) is contained in C ∗,

ψ(t;x0) is also contained in the safe space X c
u .

Combining these statements above, the controller u∗(x)
from (11) will drive any state in C ∗ to the origin without

violating any safety constraint.

Remark 4: With the generated permissive barrier cer-

tificates, it is guaranteed by construction that the QP-based

controller (5) is always feasible when δ is set to zero. This

is because u∗(x) is always a feasible solution for any x ∈C ∗.

The advantage of using a QP-based controller (5) instead of

u∗(x) is that it minimizes the control effort by leveraging the

part of nonlinear dynamics that contributes to stabilization.

The optimization problem (11) contains bilinear decision

variables and requires a feasible initial barrier certificate. It

can be split into several SOS programs and solved with the

following iterative search algorithm.

Algorithm 2:

Step 1: Calculate an initial guess for h(x)

Specify a Lyapunov function V (x), and find c∗ using

bilinear search

c∗ = max
c∈R+, u(x)∈P, L(x)∈PSOS

Ji(x)∈PSOS, i∈M

c

s.t. −
∂V (x)

∂x
( f (x)+ g(x)u(x))−L(x)(c−V(x)) ∈ P

SOS
,

−(c−V(x))+ Ji(x)qi(x) ∈ P
SOS

, i ∈ M .

With the result of the bilinear search, set the initial guess for

the barrier certificate as h̄(x) = c∗−V(x),

Step 2: Fix h(x), search for u(x), L1(x), and L2(x)

Using the h(x) from previous step, we can search for

feasible u(x), L1(x), and L2(x), while maximizing the barrier



constraint margin ε .

max
ε≥0, u(x)∈P

L1(x)∈PSOS
, L2(x)∈PSOS

ε

s.t. −
∂V (x)

∂x
( f (x)+ g(x)u(x))−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
( f (x)+ g(x)u(x))+ γh(x)−L2(x)h(x)− ε ∈ P

SOS
.

Step 3: Fix u(x), L1(x), and L2(x), search for h(x)
Rewrite the barrier certificate into SMR form h(x) =

Z(x)T QZ(x). With the u(x), L1(x), and L2(x) from the

previous step, we can search for the maximum volume barrier

certificate that respects all the safety constraints,

max
h(x)∈P

Ji(x)∈PSOS, i∈M

trace(Q)

s.t. −
∂V(x)

∂x
( f (x)+ g(x)u(x))−L1(x)h(x) ∈ P

SOS
,

∂h(x)

∂x
( f (x)+ g(x)u(x))+ γh(x)−L2(x)h(x) ∈ P

SOS
,

−h(x)+ Ji(x)qi(x) ∈ P
SOS

, i ∈ M .

Terminate if trace(Q) stops increasing, otherwise go back to

Step 2.

Remark 5: In Step 2, the safety constraints qi(x) ≥ 0, i ∈
M do not need to be included. This is because h(x) from

previous step already satisfies these safety constraints.

Remark 6: To avoid unbounded control inputs, an addi-

tional constraint can be added to limit the magnitude of the

coefficients of the polynomial controller u(x).

This iterative search algorithm is implemented on two

control dynamical systems to achieve safe stabilization.

Example 3: Consider the simple two-dimensional mechan-

ical dynamical system,
[

ẋ1

ẋ2

]

=

[

x2

−x1

]

+

[

0

1

]

u, (12)

where x = [x1,x2]
T ∈R

2 and u ∈R are the state and control

of the system. A Lyapunov function V (x) = x2
1 + x1x2 + x2

2

can be picked for the system.

The unsafe area is encoded with polynomial inequalities,

Xu = {x ∈R
2 | qi(x)< 0, i = 1,2,3}, where

q1(x) = (x1 − 3)2 +(x2 − 1)2 − 1 < 0,

q2(x) = (x1 + 3)2 +(x2 + 4)2 − 1 < 0,

q3(x) = (x1 + 4)2 +(x2 − 5)2 − 1 < 0.

The largest estimate of the region of safe stabilization with

sublevel set of V(x) can be obtained as

A1 = {x ∈R
2 | V (x)≤ 5.8628}.

With the barrier certificate, this estimate can be enlarged to

A2 = {x ∈R
2 | h(x) = 0.5189− 0.0669x1− 0.1196x2

−0.0546x2
1− 0.0630x1x2 − 0.0294x2

2 ≥ 0}.

For comparison purpose, the barrier certificate is restricted to

be second order polynomial. These estimates are illustrated

in Fig. 4. By allowing the barrier certificate to be not centered

around the equilibrium, the estimate of the region of safe

stabilization is expanded significantly.

-5 0 5
x1

-10

-5

0

5

x
2

h
∗(x) = 0

V (x) = c
∗

Fig. 4: Region of safe stabilization estimates for system (12).

The red circles represent unsafe regions. The magenta vector

field represents the system dynamics when u∗(x) is applied.

The barrier certified region of safe stabilization (dashed blue

ellipse) is significantly larger than the estimated region (solid

green ellipse) with Lyapunov sublevel set based methods.

Example 4: Consider the three-dimensional system with

multiple inputs,




ẋ1

ẋ2

ẋ3



=





x2 − x2
3

x3 − x2
1 + u1

−x1 − 2x2 − x3 + x3
2 + u2



 , (13)

where x = [x1,x2,x3]
T ∈ R

3 and u = [u1,u2]
T ∈ R

2 are the

state and control of the system.

A Lyapunov function for the system is picked to be

V (x) = 5x2
1 + 10x1x2 + 2x1x3 + 10x2

2 + 6x2x3 + 4x2
3.

The unsafe region Xu = {x ∈R
3 | qi(x)< 0, i = 1,2,3,4} is

represented with polynomial inequalities

q1(x) = (x1 − 2)2 +(x2 − 1)2 +(x3 − 2)2 − 1 < 0,

q2(x) = (x1 + 1)2 +(x2 + 2)2 +(x3 + 1)2 − 1 < 0,

q3(x) = (x1 + 0)2 +(x2 − 0)2 +(x3 − 6)2 − 9 < 0,

q4(x) = (x1 + 0)2 +(x2 + 0)2 +(x3 + 5)2 − 9 < 0.

The region of safe stabilization estimated with sublevel set

of Lyapunov is

A1 = {x ∈ R
3 | V (x)≤ 13.0124}.

Using the iterative search algorithm, the maximum permis-

sive barrier certificate is

A2 = {x ∈ R
3 | h(x) = 114.3555+ 1.4686x1+ 7.2121x2

+19.8479x3− 24.5412x2
3− 14.7734x2

1− 26.0129x1x2

−15.5440x1x3 − 28.3492x2
2− 27.5651x2x3 ≥ 0}.
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Fig. 5: Region of safe stabilization estimates for system

(13). The red spheres represent unsafe regions. The barrier

certified region of safe stabilization (blue ellipsoid) is signif-

icantly larger than the region (black ellipsoid) obtained with

Lyapunov sublevel sets.

The results for region of safe stabilization estimates are

shown in Fig. 5. In both examples, the Lyapunov sublevel

set search terminates as soon as the boundary of one safety

constraint is reached, while the barrier certificate search

terminates when all safety boundaries are touched. This also

demonstrates the non-conservativeness of barrier certificates.

V. CONCLUSIONS

A theoretical framework to generate permissive barrier

certified region of safe stabilization was developed in this

paper to strictly ensure simultaneous stabilization and safety

enforcement of dynamical systems. Iterative search algo-

rithms using SOS programming techniques were designed to

compute the most permissive barrier certificates. In addition,

the proposed barrier certificates based method significantly

expands the DoA estimate for both autonomous and control

dynamical systems. The effectiveness of the iterative search

algorithm was demonstrated with simulation results.

Iterative algorithms were developed in this paper to cope

with the non-convexity of the barrier certificated region

maximization problems (8) and (11). To get less conservative

results, a promising way is to synthesize convex finite-

dimensional LMIs rather than a bilinear matrix inequality

using the moment theory and the occupation measure [6], to

which our future efforts will be devoted.
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