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Abstract— This paper extends our previous work in [1],
[2], on optimal scheduling of autonomous vehicle arrivals at
intersections, from one to a grid of intersections. A scalable
distributed Mixed Integer Linear Program (MILP) is devised
that solves the scheduling problem for a grid of intersections.
A computational control node is allocated to each intersection
and regularly receives position and velocity information from
subscribed vehicles. Each node assigns an intersection access
time to every subscribed vehicle by solving a local MILP.
Neighboring intersections will coordinate with each other in
real-time by sharing their solutions for vehicles’ access times
with each other. Our proposed approach is applied to a grid
of nine intersections and its positive impact on traffic flow
and vehicles’ fuel economy is demonstrated in comparison to
conventional intersection control scenarios.

I. INTRODUCTION

Enhancing traffic flow at signalized intersections has been
an important topic in transportation research. New intersec-
tion control algorithms and technologies are always needed
to respond to ever growing traffic demand in our cities.
Proliferation of Vehicle-to-Everything (V2X) connectivity in
recent years could be a significant game changer in inter-
section control. By acknowledging capabilities of wireless
communication, several research studies have been focused
on adaptive traffic signal control based on Vehicle-to-Vehicle
(V2V) communication [3], [4] and Vehicle-to-Infrastructure
(V2I) communication [5]. Recent studies have shown that
establishing one-way communication from traffic signals
to vehicles or from vehicles to signals can harmonize the
motion of vehicles so they arrive at the intersection when the
signal is green, reducing the number of stops, idling inter-
vals, and energy use [6–8]. With reciprocal communication
between vehicle and traffic signal, the benefits are expected
to be even greater.

Connected and Autonomous Vehicles (CAV) can play
another game changing role and revolutionize intersection
management. CAVs can subscribe to an upcoming inter-
section controller and exchange information with it rather
effortlessly and frequently. Autonomous cars can also adjust
their arrival times more precisely than a human driver to meet
arrival times assigned to them by an intersection controller.
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In this case and with full market penetration of CAVs,
the physical traffic signals can be removed as discussed in
several papers [9–15].

The current paper is an extension of the previously pre-
sented method by Fayazi and Vahidi in [1], [2], [16] on
optimal scheduling of autonomous vehicle arrivals at inter-
sections from one to an urban grid of intersections. The main
contribution of [1], [2], [16] is simplifying the complexities
in vehicle-intersection coordination by formulating it as a
mixed integer linear programming problem. An intersection
controller were designed to assign arrival times to vehicles
and help them form fast moving platoons. The benefit of
using such a MILP-based controller is supervising a large
number of subscribing vehicles in real-time. Results in [1],
[16] showed a significant reduction in intersection delay and
number of stops while ensuring safe uninterrupted passage
of vehicles without compromising the average travel time.

In this paper, we observe that effective passage of a
queue of cars requires real-time coordination of neighboring
intersection controllers. Therefore, we propose intersections
that solve their own optimizations but communicate their
decisions with each other in a distributed manner. Placement
of controllers on the same backend computational node
could make communication of decisions very efficient. In
this approach, each intersection processes information from
its neighboring vehicles, optimizes their access times using
Mixed Integer Linear Programming (MILP) as in [1] and
communicates the decisions to subscribed vehicles. Then,
each intersection passes on a list of its subscribed vehicles
and their allotted access times to its neighboring intersec-
tions.

The paper is organized as follows: The notations used in
this paper as well as the proposed intersection are explained
in Section II and our formulations are presented in Section
III. These two sections are summaries of intersection design
and formulation presented in [1]. Extension to multiple inter-
sections is discussed in Section IV. In Section V, the nature
of the MILP solution is shown in a simplified case study with
only two intersections. Microsimulation benchmarks and test
results are presented for a 3×3 intersection grid in Section
VI and VII, followed by conclusions.
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Fig. 1: A schematic of phases and regions of the proposed intersection.

II. PROPOSED INTERSECTION

Ignoring all turns to simplify the presentation of ideas,
we assume a square two-phase/four-movement intersection
with width W=10 m. As shown in Figure 1, we consider
a two-phase intersection consisting of Phase X and Phase
O as φ = {φX,φO}. Each phase is allocated to one or more
non-conflicting movements. The set of all vehicular traffic
movements used in this paper is denoted by M (see Figure
1). For each intersection, we will assume a subscription
process by which the approaching connected vehicles send
subscription requests to the intersection control server and
announce their presence as well as their intended time of
arrival. We represent the list of all subscribed connected
vehicles by CV = {cvi}n

i=1 where n is the size of CV . The list
of connected vehicles is sorted by distance to the intersection
where cv1 is the closest vehicle to the intersection.

For each vehicle approaching an intersection, we are
interested in the following time instances: (1) time when
the front of the vehicle enters the intersection area at the
stop-bar; (2) time when the rear of the vehicle exits the
intersection area; (3) time when the front of the vehicle
reaches an access distance from the intersection. As shown
in Figure 1, these time instances are denoted by tenter, texit ,
and taccess, respectively. In this figure, the intersection and
access areas are shown by a shaded area and a solid box,
respectively. The access area border is defined by daccess that
is the estimated stopping distance of a vehicle in case of a
safety concern and is calculated as a function of the road
average speed vavg.

The attributes of each vehicle cvi ∈ CV (1 ≤ i ≤ n)
subscribed to an intersection controller are described by:

cvi = 〈Ii, mi, φi, di, vi, taccess,i, taccess,des,i, texit,i〉 (1)

where Ii is the intersection ID, mi ∈M is the vehicle move-
ment, φi ∈ φ is the phase that cvi’s movement is associated
with, di is the distance of cvi to the intersection access point,
vi is the velocity of cvi, taccess,i is the assigned time-stamp
for cvi to access the intersection, and taccess,des,i is the cvi’s
desired access time. Please note that in this paper, we assume

that all vehicles prefer to travel at the average velocity vavg
and as a result, their distance divided by vavg yields their
desired access times with respect to current time (t0=0 sec).

When a vehicle is approaches an intersection, it first sends
a subscription request and announces its intended time of
arrival. An unsubscribe message is later sent from the vehicle
to the intersection controller server at the time the vehicle
clears the intersection.

III. MILP-BASED INTERSECTION CONTROLLER

A. Objective

The objective of increasing intersection throughput will be
formalized here as an optimization problem. The main goal
is to find the optimal sequence and time of arrival (taccess) for
each vehicle such that the difference between the current time
(t0) and the expected arrival time of the last vehicle (furthest
subscribed vehicle) passing the intersection in a given time
window is minimized. This objective is expected to increase
the number of vehicles that clear the intersection in a given
time:

J1 = taccess,n− t0
s.t. n = #CV

taccess,n ≥ ({taccess,1, ..., taccess,n−1})
(2)

Minimizing the aforementioned objective could force the
vehicles to travel near the speed limit against their prefer-
ence. To avoid such a scenario, we incorporate the desired
arrival time of the vehicles into the optimization problem in
such a way that vehicles would not face extreme delay or
expedition compared to their desired arrival times. In other
words, we define a cost on the difference between assigned
and desired access times for all vehicles:

J2 =
n

∑
i=1
|taccess,i− taccess,des,i| (3)

The total cost function to be minimized is then:

J = w1J1 + w2J2 (4)

where w1 and w2 are penalty weights.

B. Constraints

In this section, a brief description of imposed constraints
is presented. For a more in depth explanation regarding
paraphrasing the constraints to fit our MILP formulation one
can refer to [1].

1) Speed limit and maximum acceleration: For each ve-
hicle cvi, we should consider the speed and acceleration
limit requirement. Since we want to write our constraints
dependent on taccess, we can rephrase speed and acceleration
constraints as:

taccess,i ≥ taccess,min,i (5)

where taccess,min,i is the earliest time that cvi can reach the
access area.



2) Safety gap on the same movement: Two consecutive
vehicles that are traveling on the same movement (e.g.
eastbound) should be separated by a safety gap (headway)
that is independent of the vehicles’ speed to avoid a rear
end collision. Headway is defined as time gap between the
two vehicles. Therefore, vehicles would be more distant from
each other in high velocities. It is suggested in [12] that a
1 sec headway provides a reasonable upper bound for the
response time of an autonomous vehicle. For a standstill
vehicle we set tgap1 to the time it would take the vehicle body,
with length of L, to completely pass over the access point or
to 1 sec whichever is larger. For a very slow moving vehicle,
we set tgap1 to the time it would take a vehicle following
directly behind to decelerate and maintain a minimum safe
distance and time headway. To enforce the headway, we add
the following constraint on any two consecutive vehicles
traveling on the same movement:

taccess, j− taccess,k ≥ tgap1

cv j,cvk ∈CV, d j ≥ dk;
m j,mk ∈M, m j = mk.

(6)

3) Safety gap on different movements: Two vehicles trav-
eling on different phases (conflicting movements) also need
to be separated by a safety gap. This time gap, if selected
properly, guarantees that a vehicle can only enter the access
area after all conflicting vehicles have left the intersection
area. Considering two vehicles cv j and cvk that are on
different phases of φ j ∈ φ and φk ∈ φ (φ j 6= φk), the following
constraints cover all the possible situations with just enough
safety gap between the vehicles; here ∨ is the OR operator:

taccess, j− taccess,k ≥ tgap2

∨
taccess,k− taccess, j ≥ tgap2

cv j,cvk ∈CV ;
φ j,φk ∈ φ, φ j 6= φk.

(7)

where tgap2 is the safety gap we need between access times
which would be the longest it takes for a vehicle to pass
the intersection area from access point to exit point. For an
average acceleration of 2 m/s2, tgap2 is 7.5 sec.

IV. DISTRIBUTED MULTI-INTERSECTION OPTIMIZATION

We apply the scheduling formulation in Section III to a
grid of intersections. In our simulation, we consider a 3 by
3 grid in which there is one intersection with all four phases
joined to neighboring intersections.

We evaluate two methods for implementing the MILP
formulation in a grid intersection topology. In the first
method, each intersection only considers vehicles subscribed
to it and does not pass information about those vehicles to
neighboring intersections.

In the second method, we will also add a scalable co-
ordination scheme between multiple intersection controllers
in the grid. Effective passage of a group of vehicles re-
quires real-time coordination of neighboring intersection

Fig. 2: MATLAB case study schematic. Vehicles numbered from 1 to 9
subscribe to the first intersection (I1) and 10 to 18 subscribe to the second
intersection (I2).

controllers. In the proposed distributed control approach,
each intersection processes information from its subscribed
vehicles, optimizes their access times, and then passes on the
list of subscribed vehicles to the neighboring intersections
along with their anticipated desired access times to those
neighboring intersections. The desired access time of each
vehicle to the second intersection will be calculated as
follows:

taccess,des,i( j) = taccess,i(k)+ ttravel,i(k−> j) (8)

where taccess,des,i( j) is desired access time of cvi to intersec-
tion j, taccess,i(k) is the vehicle’s access time to the previous
intersection k, and ttravel,i(k−> j) is the desired travel time
for the vehicle between the two intersections.

V. MILP CASE STUDY

In this section, in order to illustrate the effect of commu-
nication between intersections, our MILP formulation were
applied to a simplified grid which consists of only two
intersections. Later we show the results for a 3 by 3 grid.

To solve our illustrative case study in this section, we use
the intlinprog function the Optimization Toolbox of Matlab
(version R2016a). We simulate n=9 connected vehicles, cvi
(1 ≤ i ≤ 9) at the first intersection and (10 ≤ i ≤ 18)at the
second intersection. We set the speed limit to vmax=72.4 kph
(45 mph), and average arterial road speed to vavg=56.3 kph
(35 mph). We assume that the current state of all vehicles
is available: they are all traveling at vavg and their initial
distances to the access area are [690 m, 750 m, 780 m, 900
m, 990 m, 1080 m, 1170 m, 1230 m, 1290 m], respectively.
The distance between the two intersections is 500 m. Note
that the vehicles’ initial states in the first intersection are
identical to those in the second intersection.

Figure 2 demonstrates a schematic of the two-intersection
grid used in our case study. For each intersection, nine
vehicles initially subscribe. Vehicles number 1 to 9 subscribe
to I1 and 10 to 18 to I2. Five of the subscribed vehicles
to each intersection are traveling on phase X and four on
phase O. No turn is allowed and some of the vehicles
on phase O of both intersections are traveling to their



TABLE I: Vehicles access times in MATLAB case study obtained by
considering 500 m distance between two intersections. As it can be seen
in Figure 2, vehicles cv3, cv10, cv16, cv18 pass both intersections and their
access times are represented in the table.

First Iteration Second Iteration

Vehicle ID I1 I2 I1 I2

1 44.10 - 44.10 -
2 51.60 - 51.60 -
3 44.10 - 44.10 72.78
4 57.52 - 57.52 -
5 60.31 - 63.27 -
6 61.31 - 67.28 -
7 68.81 - 74.78 -
8 61.31 - 84.27 -
9 69.81 - 75.78 -
10 - 44.10 76.78 44.10
11 - 51.60 - 51.60
12 - 44.10 - 44.10
13 - 57.52 - 57.52
14 - 60.31 - 63.27
15 - 61.31 - 64.27
16 - 68.81 96.80 71.77
17 - 61.31 - 64.27
18 - 68.81 97.80 72.78

neighboring intersection. In the first MILP iteration, each
of the nine vehicles subscribed to their intersection will be
assigned an access time. Then, in the second iteration, all
vehicles on phase O will subscribe to both intersections
according to Equation (8). As represented in Table I, some
of the vehicles’ access times to their first intersection, are
changed due to subscription of vehicles to the neighboring
intersection. In microsimulation we do not need to include an
iterative process. The MILP engine runs every 6 seconds so
intersections start to pass on information about subscribing
vehicles to their neighbors after the the first run.

VI. BENCHMARKING

We compare our proposed distributed MILP intersection
control testbed to two fixed benchmark testbeds and also
to a MILP-based intersection control without coordination.
The first testbed (Testbed A) has all fixed-time intersections.
The second testbed (Testbed B) is also fixed-time; with the
difference that each vehicle adjusts its trajectory individually
for arrival at green based on prior knowledge of traffic
signal state (see [6], [16]). The fixed signal timing of
each intersection was obtained from Trafficware’s Synchro
Studio software which calculates optimal fixed timings for
each intersection in the grid based on the flow of vehicles.
Testbed C is MILP-based but lacks coordination between
intersections. Vehicles are injected to the grid in a same
pattern for all testbeds but the injection rate varies at each
boundary node of the grid.

A. Testbed A: Pre-timed Signalized Intersection Grid

In this testbed, optimized fixed signal timing has been
used for each intersection in the grid. It is assumed that
autonomous vehicles cameras can detect signal status in a
300 m range. Vehicles plan their velocity and acceleration by

Fig. 3: Schematic of a 3 by 3 intersection grid. Intersections are labeled as
Ii where i is the intersection number. All phases of the middle intersection
I5 are labeled according to the notation presented in Figure 1.

“watching” the signal ahead of them, and given constraints
imposed by surrounding traffic. More detailed explanation of
this testbed can be found in [16].

B. Testbed B: Communication-based Trajectory-Planning at
Pre-timed Signalized Intersection Grid

In this testbed, vehicles will be provided with deterministic
future state of traffic signals via unidirectional wireless com-
munication when they are within 400 m of the intersection.
The autonomous vehicles plan their velocity and acceleration
trajectory based on the speed advisory algorithm proposed
by our group in [6]. Besides access to signal timing data,
vehicles receive queue size information of the intersection
they are traveling to, when they are 300 m behind the
intersection stop bar.

C. Testbed C: MILP-based Trajectory-Planning without in-
tersection coordination

In this testbed, each intersection is equipped with a MILP
controller and traffic signals are removed. Also, vehicles
are assumed to have an automatic velocity control. Each
intersection keeps information about the subscribed vehicles
to itself and does not share it with neighboring intersections.
Therefore, each intersection solves its own optimization
problem regardless of what is happening in other intersec-
tions.

VII. MICROSIMULATION

We implemented a software-in-the-loop (SIL) microsim-
ulation using the Java programming language. The 3 by 3
intersection grid architecture is presented in Figure 3.

Vehicles are injected to the grid from 12 links on the
perimeter of the grid at [550, 300, 600, 950, 550, 200, 750,
900, 400, 450, 750] vehicles per hour, which is randomly
generated. The injection rate is held constant for all testbeds.
The length of each intersection phase in the grid is 400
m. Therefore, each vehicle will subscribe to its destination
intersection when it reaches the 400 m range. Speed limit
is set to vmax=72.4 kph (45 mph) and average velocity is
set to vavg=56.3 kph (35 mph). IBM’s CPLEX optimization



TABLE II: SIL simulation results, and the overall performance improvements achieved by MILP-based multi-intersection controller (Testbed Coordinated
MILP)

MOE Testbed Testbed Testbed Testbed
(for all simulated vehicles) A B C Coordinated MILP

Intersection traversals 5802 5804 5803 5801
NO. vehicles made their destination 5526 5518 5574 5566

Total number of stops 6886 5687 2176 2140
Average stop time per each vehicle 23sec 17sec 7sec 8sec

Average travel time per vehicle 2min 40sec 2min 45sec 2min 2sec 1min 54sec
Average miles per gallon per vehicle 26.3 mpg 26.7 mpg 28.6 mpg 30.7 mpg

package is used to solve the grid’s MILP formulation and
the simulation was run for 1 hour in all testbeds. The
controller solves the formulated optimization problem every
6 seconds to provide the vehicles with a real-time feedback.
From our MATLAB case study presented in Section V
two iterations were needed for each intersection to receive
full list of subscribing vehicles. However, it might not be
computationally cost effective to solve the MILP problem
two times per step per intersection in this larger scale
microsimulation. Therefore, we run the MILP engine once
per step per intersection but reduce the step time to reduce
the error. Note that the information from the neighboring
intersections will be one step old in this scenario.

A fuel economy analysis has been done using the data
and model presented in [17]. Stored velocity and acceleration
data of each vehicle from our microsimulation were used for
this analysis. The model in [17] includes drag, gravitational
and friction forces in order to calculate the total traction force
in the wheels. Optimal gear selection contours at vehicle
operation point space is derived as a function of vehicle
acceleration and velocity by minimizing the fuel mass flow
rate at every operating point. Therefore, we can find the
optimal gear selection at every point in time having the
velocity and acceleration of the vehicle. Then, engine torque
and rpm are determined from which the fuel consumption
rate can be calculated.

Grid level measures of effectiveness are presented in Table
II. It can be seen that the MILP approach (Testbed C and
Testbed Coordinated MILP) improves travel time, stop time,
and number of stops significantly compared to fixed time
testbeds. An interesting observation is the small difference
between testbed A (conventional fixed time) and testbed
B (fixed time with speed advisory). Previously in [1], the
difference between the two testbeds’ number of stops and
idling delay were significant enough to conclude that speed
advisory is very efficient. That is because in [1] vehicles
received speed advisory 2 km prior to intersection and could
plan their velocity trajectory well in advance. In this paper,
the length of all links is 400 m so signal detection range
of 400 m in testbed B is not significantly higher than the
assumed 300 m for testbed A. This weakens the performance
of speed advisory.

Fuel economy analysis shows the two MILP based
testbeds are significantly increasing the average miles per
gallon (MPG) per vehicle. Considering average MPG per

Fig. 4: Histograms and lognormal fits of average velocity of vehicles in
all four testbeds a) Testbed A, b) Testbed B, c) Testbed C, d) Coordinated
MILP.

vehicle in testbed A as a reference for comparison, an
improvement of 1.5%, 8.7%, and 16.7% can be seen in
Testbed B, Testbed C, and Testbed Coordinated MILP, re-
spectively. The considerable higher average MPG in Testbed
Coordinated MILP compared to Testbed C is because of
the lower acceleration and deceleration of the vehicles in
coordinated scenario. This can be the most effective role
of coordination between intersections. When each vehicle is
informed of its access time to two consecutive intersections,
it would plan its velocity well in advance to avoid high
acceleration and deceleration.

A statistical analysis on average velocity of vehicles also
shows the effectiveness of MILP intersection control. In Fig-
ure 4 the mean velocity in coordinated MILP is higher than
other testbeds. Moreover, both coordinated and uncoordi-
nated MILP velocity lognormal distribution are slimmer than
others which means there are less fluctuations in vehicles
velocity in these two testbeds. One can infer from this fact
that vehicles do not accelerate and decelerate as much as in
other cases, which improves the fuel efficiency.

We are specifically interested in the middle intersection
denoted by I5 in Figure 3 since it communicates with four
neighboring intersections. The plot of averaged queue size
of 4 phases of this intersection can be seen in Figure 5.
The average queue size is significantly lower in MILP based
control methods (Testbed C and Testbed Coordinated MILP)
compared to testbeds A and B.



Fig. 5: Averaged queue of all phase of I5 from all four testbeds. It can
be seen that average queue in MILP testbeds are significantly lower than
testbeds A and B.

VIII. CONCLUSIONS

In this paper, the mixed integer linear programming in-
tersection control method previously published in [1], [2],
[16] was applied to a grid of 9 intersections. A simple
case study involving only two intersections was studied
first to examine the intersections’ communication. Then, a
microsimulation was performed on a 3 by 3 intersection
grid. We had two multi-intersection testbeds . One with
coordination between intersection controllers and the other
one without such coordination. Our results show that the
distributed MILP control methods significantly reduce stop
time, travel time, fuel consumption rate, and number of
stops compared to other testbeds with fixed-time traffic
signals. In coordinated testbed, vehicles travel with higher
average velocities compared to that of uncoordinated testbed
(Testbed C) which result in a lower average travel time at
the expense of higher average stop delay per each stop.
The most significant contribution of the coordination scheme
is to help vehicles avoid high acceleration/deceleration.
This will result in a substantial improvement in average
miles per gallon (MPG) per vehicle in coordinated testbed
(Testbed Coordinated MILP) compared to uncoordinated
testbed (Testbed C). The better fuel economy is acheived
without incorporating it into our optimal control formulation.
In contrast to our previous results, the speed advisory method
that is based on prior knowledge of traffic signal state is not
significantly better than fixed time signal traffic control. This
can be improved by providing future state of consecutive
traffic signals to vehicles. Potential future works include
considering turning of vehicles, multiple lane roads, using
geographical data to simulate a real intersection grid in a city,
and incorporating fuel economy analysis. Dedicated Short
Range Communication (DSRC) offers wireless connectivity
for traffic elements within the required distances for our
intersection architecture [18]. Other future work could apply
it as part of an experimental vehicle-in-the-loop implemen-
tation.
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