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Abstract— A modeling and control framework is proposed to
describe the behavior of a water-ferrofluid two-phase 2D flow
in the presence of a magnetic field and to devise proper optimal
control actions. The dynamics of such a system descends from
the cascade of magnetic field and Navier-Stokes equations. The
former can be dealt with analytically, but this is not possible for
the latter, which is usually treated numerically. The description
of the motion of the interface between water and ferrofluid
is accomplished by using level set methods. To overcome the
computational difficulties when controlling such a system, a
black-box model based on neural networks is constructed.
Different kinds of neural networks are trained to account for
the system behavior with an adequate precision in such a way to
obtain a model that is well-suited for control. Optimal control
is performed by using such black-box models with successful
simulation results.

I. INTRODUCTION

This paper deals with modeling, identification, and control

of a test rig composed by a water-ferrofluid two-phase flow in

a thin squared tank under the effect of a magnetic field. The

ferrofluid is a colloidal suspension based on light hydrocar-

bon carrier oils made up of single-domain magnetic particles

immersed in a salt-saturated water mixture. The shape of

the interface between liquid and ferrofluid is affected by the

magnetic field generated through a grid of electromagnets

placed under the tank. Owing to the tank thinness, it is

possible to study the system in the two dimensional case.

Level set methods have been adopted to describe the motion

of the interface between water and ferrofluid, while the fluid

dynamics is governed by Navier-Stokes equations. First, we

have identified such a complex system by using a black-box

model based on neural networks. Then, we have attacked

the control of the shape of the ferrofluid by modifying the

magnetic field generated by the electromagnets.

Level set methods are a popular tool to describe the

evolution of interfaces in two-phase flows [1]. The interfaces

are usually given by the zero level sets of the solution of

Hamilton-Jacobi equations, i.e., a particular class of first-

order partial differential equations (PDEs). These methods

can easily account for special kinds of behavior in shape

dynamics that are not easily represented by other methods,

like changes of topology. They find application in many
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fields, such as physics, chemistry, computational fluid dy-

namics, and image processing [1]. Even if level set methods

have been extensively studied to simulate the motion of

interfaces, only few results are available about the possibility

of controlling them by using some paradigm of optimal

control [2]–[4].

The main difficulty when driving an interface between

two fluids consists in the necessity of dealing with both the

physics of the process (described by Navier-Stokes equa-

tions) and a suitable description of the interface (described by

level set methods). Unfortunately, the resulting model based

on the cascade of the physical setup based on Navier-Stokes

equations and level sets turns out to be very computationally

demanding if one wants to use it for the purpose of control.

Thus, in this paper we construct a black-box approximate

model of the cascade of Navier-Stokes and level set equations

by using suitable nonlinear approximators. The goal is the

fast computation of the control inputs in real time, without

requiring the online numerical solution of the two PDEs.

Such inputs are obtained by minimizing a performance index

that depends on the shape of the interface.

Among the various choices for the family of nonlinear

approximators, neural networks appear to be well-suited

to our scope. This class of approximators includes one-

hidden-layer networks, which exhibit the powerful feature

that consists in requiring a small number of parameters

(i.e., the neural weights) to ensure a given approximation

accuracy, especially in high-dimensional settings [5]. As it

is well known, one-hidden-layer sigmoidal neural networks

may guarantee uniform approximations with upper bounds

depending on a number of parameters that grows at most

polynomially with the dimension of the input of the function

to be approximated (see, e.g., [6], [7], and the references

therein). Based on the aforesaid, a number of applications

are reported in the literature where the original problem is

approximated through a learning process that is computa-

tionally demanding but made off line [8]–[10].

As compared with previous works [2], [3], the main

novelty of this paper concerns the fact that here we deal

with a cascade of two equations (i.e., the Navier-Stokes and

the level set ones) instead of only controlling the Hamilton-

Jacobi equation at the basis of the level set paradigm. To face

the computational difficulties when dealing with a cascade

of PDEs, here we propose the offline construction of an

approximate black-box model based on neural networks.

Concerning optimal control, the choice of the control ac-

tion that minimizes a given performance index is essentially

in a finite set of possibilities. In fact, the electromagnetic



Fig. 1. Picture of the considered test rig.

field generated by the magnets derives from three admissible

values for the current intensity, corresponding to the maxi-

mum of the intensity, half of it, and zero. Since the problem

is of combinatorial nature, it cannot be solved by means

of optimization methods that require the computation of the

gradient or higher-order derivatives of the cost function. The

use of nonderivative methods, such as the direct search ones,

is mandatory [11]. Specifically, we will adopt a generalized

pattern search (GPS) algorithm, which consists in performing

a local search on a grid around the current point in such a

way to reduce the cost at each iteration [12]. Simulation re-

sults show that such heuristic approach for control, combined

with the black-box model of the system based on neural

networks, is able to provide satisfying results as a tradeoff

between accuracy and computational effort.

The paper is organized as follows. In Section II, the

complete model of the setup is described. The identification

of the model by using a black-box approach based on

neural networks is presented in Section III. The optimization

approach for the computation of control actions is described

in Section IV. Simulation results are shown in Section V.

Conclusions are drawn in Section VI.

II. DYNAMIC MODEL OF THE SYSTEM

The test rig is composed of a tank of water and ferrofluid

under the effect of a matrix of driving electromagnets. These

electromagnets can change the magnetic field in order to

modify the shape of the ferrofluid. A ferrofluid is a liquid

in which ferromagnetic nanoparticles are suspended in a

carrier liquid. Specifically, we focus on the case of a light

polar mineral oil. The size of the particles prevents their

attraction since the inter-magnetic forces are low with respect

to the Van der Waals ones of the surfactant. The ferrofluid

is mixed with a salt-saturated water solution that provides

total separation between the two fluids. The overall density

is almost equal to the density of the single components to

avoid strong stratification. A wooden frame is used to keep

the setup together with a glass vessel to house the fluid and

the electronic package to drive the magnets. A picture of the

used testbed is reported in Fig. 1.

The model is based on the following assumptions: (i)

both fluids are in the liquid state, (ii) both fluids are in-

compressible, and (iii) both fluids are Newtonian, i.e., their

viscosity is independent from the flow speed, and therefore it

is possible to consider their viscosity constant if we assume

a constant temperature. Under these hypotheses, the fluid

dynamics can be represented by the following dimensionless

incompressible 2D Navier-Stokes equations:
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ut + px =− uux − vuy +
1

Re
(uxx + uyy)

+
1

Fr2
gX

(1a)

vt + py =− uvx − vvy +
1

Re
(vxx + vyy)

+
1

Fr2
gY

(1b)

ux + vy = 0 (1c)

where u and v are the x and y velocity components,

respectively, p is the pressure, Re is the Reynolds number,

Fr is the Froude number, and gX and gY are the x and y
acceleration field components, respectively.

The momentum equations (1a) and (1b) describe the time

evolution of the velocity field (u, v). The incompressibility

condition (1c) is not a time-dependent equation, but an alge-

braic condition. If we consider p as a Lagrange multiplier,

it is possible to obtain a new form of the Navier-Stokes

equations (1) that is easier to solve numerically [13]. Thus,

we focus on the following equations instead of (1):
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ut + px =− (u2)x − (uv)y +
1

Re
(uxx + uyy)

+
1

Fr2
gX

(2a)

vt + py =− (v2)y − (uv)x +
1

Re
(vxx + vyy)

+
1

Fr2
gY .

(2b)

The acceleration field g is the resultant of the acceleration

field gm caused by the magnetic force acting on the ferrofluid

and of the acceleration field gt caused by the interfacial

tension. The acceleration gm depends on the magnetic field

B generated by 36 electromagnets that are arranged in a

6× 6 grid. To compute the magnetic field generated by each

electromagnet, we use the equations proposed in [14] and

[15]. Then, the overall field can be obtained from the field

generated by each magnet using the classical superposition

principle. Let us collect in the vector a the current intensity

of the various electromagnets. Thus, the overall magnetic

field B is a function of the vector a as follows:

B = h(a) (3)

The reader interested in the expression of the function h is

referred to [14], [15].

To compute the force acting on each magnetic particle of

the ferrofluid, we use the following equation [16]:

Fm = ∇B · µ (4)

where µ is the magnetic moment of each particle. From Fm

it is possible to obtain an approximate value of gm. In fact,

consider a small element of ferrofluid with volume Ve. Since

the ferrofluid behaves like a homogeneous fluid [17], the

force F acting on the entire element of ferrofluid is

Fm,e = npFm (5)



where np is the number of magnetic particles in the element.

The acceleration gm is then computed as

gm =
Fm,e

ρfVe

=
npFm

ρfVe

=
npµ

ρfVe

∇B (6)

where ρf is the ferrofluid density.

The interfacial tension, caused by unbalanced attractive

forces [18], acts on the particles of water and ferrofluid near

the interface. Likewise in [1], the acceleration field gt caused

by the interfacial tension can be expressed as

gt =
1

ρ
σκ δ(d)n (7)

where ρ is the fluid density, σ is the interfacial tension

coefficient, κ is the curvature of the interface, δ(d) is the

Dirac δ function of the distance from the interface, and n is

the normal versor to the interface.

The evolution of the interface between liquid and ferrofluid

is taken into account through the paradigm of level set

methods. Thus, the interface is implicitly represented as

the zero level set of a multidimensional function φ(x(t), t),
where x(t) is the position and t is the time. The evolution of

φ is determined by the following Hamilton-Jacobi equation:

φt +∇φ(x(t), t) · x′(t) = 0 (8)

where the velocity field x′(t) depends on the fluid dynamics

of the system. Since the interface is the zero level set of φ,

the normal n can be obtained as

n =
φ

|∇φ|
. (9)

Using the expression of the normal, we can compute the

curvature κ in (7) as

κ = ∇ · n = ∇ ·
φ

|∇φ|
(10)

and the distance d from the interface as

d =

∣

∣

∣

∣

φ

|∇φ|

∣

∣

∣

∣

. (11)

Combining (10), (11), and (9), we get the expression for gt

as follows:

gt =
1

ρ
σκ(φ)δ

(

φ

|∇φ|

)

φ

|∇φ|
. (12)

III. IDENTIFICATION OF THE DYNAMIC MODEL

The dynamic model presented in the previous section

allows one to describe the evolution in space and time of

the interface between the water and the ferrofluid depending

on the current intensity of the different electromagnets.

However, it is very computational demanding, as it requires

the numerical solution of two PDEs, i.e., the Navier-Stokes

one (2) and the level set Hamilton-Jacobi one (8). Such a

computational difficulty may be a severe issue if the model

is used to generate optimal control actions. Indeed, in this

case it has to be executed several times to evaluate the

effectiveness of a given control input over the others. Clearly,

this can undermine the feasibility of the computation of

optimal control actions on line.
Motivated by the desire of reducing the required computa-

tional effort, in this section we propose a black-box approach

based on neural networks to approximate the functional

relationship between the vector a, representing the current

intensity of the electromagnets, and the evolution in time and

space of the water-ferrofluid interface. More specifically, it

is possible to write the following:

φ = f(a, t) (13)

where f is a function resulting from the application of

the model (2)-(12). Unfortunately, the analytic expression

of f is unknown. The idea is to approximate off line

the unknown function f in (13) by using some nonlinear

approximation techniques, in order to be able to generate the

mapping (a, t) 7→ φ almost instantaneously. In particular, the

following procedure can be adopted:

• solve off line equations (2)-(12) for many different

values of t and a and collect the corresponding pairs

given by a, t and the function φ;

• apply some learning method to approximate such pairs.

More specifically, let us denote the different values of t and

a as t(i) and a(i), respectively, for i = 1, . . . , N , where N
is the number of samples. Moreover, let φ(i), i = 1, . . . , N ,

be the corresponding function φ in the l.h.s. of (13).
In order to find an approximation of the function f in (13),

we constrain it to take on a certain fixed structure given by

φ = γ (a, t,w) (14)

where γ is a parametrized function depending on the vector

of parameters w ∈ R
p. By tuning the values of such vector

we can change the shape of the function γ. In our case,

the goal is to search for the optimal parameters that yield a

“good” interpolation of the pairs (ã(i), φ(i)), i = 1, . . . , N ,

where ã(i) := (a(i), t(i)).
Among the various alternatives for the approximating

function γ in (14), we focus on one-hidden-layer feedforward

neural networks with sigmoidal activation functions. This

choice is motivated by the availability of a huge literature on

their approximating capabilities and the presence of efficient,

ad-hoc developed algorithms for the selection of the optimal

parameters [5]. With this choice, in the case of scalar outputs,

the function γ has the following expression:

γ(ã,w) =

ν
∑

i=1

ci σ





n
∑

j=1

aij ãj + bi



+ c0

where ν is the number of neurons, ãj is the j-th component

of ã, σ is a sigmoidal activation function, c0, ci, bi ∈ R,

and ai := col(ai1, . . . , ain) ∈ R
n, i = 1, . . . , ν. The

vector of parameters to be optimized is given by w :=
col(a⊤1 , . . . , a

⊤
ν , b1, . . . , bν , c0, . . . , cν). Their optimal value

is usually found by solving the following optimization prob-

lem corresponding to a mean square error criterion:

min
w∈Rp

N
∑

i=1

(

φ(i) − γ(ã(i),w)
)2

. (15)



Fig. 2. Initial condition of the simulations used to train the neural networks
(green), example of ferrofluid shape (blue), and example of reference
shape (red). The symmetric difference between the ferrofluid shape and
the reference shape is given by the yellow area. The grey circles show the
positions of the electromagnets.

Concerning the theoretical properties of this kind of neural

networks, it is known that they are endowed with the uni-

versal approximation property, i.e., they are able to approx-

imate with arbitrary accuracy any “well-behaved” function.

Moreover, they are particularly well-suited to dealing with

high-dimensional problems, as the number of parameters that

are required to obtain satisfactory approximations grows only

polynomially with the dimension of the inputs. The interested

reader is referred to, e.g., [6], [8] and the references therein

for a deeper discussion.

The procedure to find the optimal values of the parameter

vector w in (15) is called “training” in the neural network

parlance, and a lot of efficient algorithms and corresponding

software implementations exist in the literature, such as the

classical backpropagation or Levenberg-Marquardt methods.

IV. OPTIMAL CONTROL OF THE INTERFACE

Given a reference shape, our purpose is to find a configu-

ration of the electromagnets such that the ferrofluid is shaped

as desired when the system has reached the steady state. In

other words, we want to find the optimal values of the vector

a containing the current intensity of the electromagnets so

as to obtain desired shapes for the ferrofluid.

Toward this end, let us denote by Γd a reference shape

for the ferrofluid, and let Γ(a) be the actual shape obtained

at regime as the zero level set of the function φ that is

the output of the neural network in (14). We adopt the

symmetric difference1 Γ(a)∆Γd as measure of the distance

between Γ(a) and Γd (see Fig. 2). Thus, we have to solve

the following optimization problem:

a◦ = argmin
a∈R36

(

Γ(a) ∆ Γd
)

(16)

At least in principle, problem (16) could be solved with

any optimization routine. However, in this case the cost

function does not change continuously with the input vector

1Given two sets A and B, the symmetric difference is defined as A∆B =
(A ∪ B) \ (A ∩ B).

a. This is due to the spatial discretization used to solve equa-

tions (2)-(12). As a consequence, it is not possible to solve

problem (16) using an optimization method that requires the

computation of the gradient or higher-order derivatives of

the cost function. Thus, the use of nonderivative methods,

such as direct search ones, is mandatory [11]. Specifically,

we will adopt a generalized pattern search (GPS) algorithm.

To explain the principle of the GPS method, we show how

it can be used to minimize a generic cost function F (x)
with x ∈ R

n. Let us consider xk at iteration k of the GPS

algorithm, together with mesh size ∆xk ∈ R
+. We evaluate

F (x) in the points x+
k = xk±∆xk ·ei, i ∈ {1, ..., n}. The set

of points x+
k is called pattern. The set of vectors ei must be a

spanning set of Rn. We look for the x+
k , such that F (x+

k ) <
F (xk), which gives the best result, i.e., the minimum value

of F (x+
k ). We denote such x+

k by xo
k. If we find this xo

k,

we set xk+1 = xo
k and ∆xk+1 = 2∆xk. Otherwise, if no

xo
k is found, we set xk+1 = xk and ∆xk+1 = ∆xk/2. This

iteration continues until ∆k is smaller than a certain tolerance

value [19]. Other stopping criteria may be adopted, such as

the maximum number of performed iterations, the maximum

number of cost function evaluations, and time limits.

V. SIMULATION RESULTS

In this section, first we present the numerical results

related to the construction of the black box model, and then

we use it for the purpose of control.

A. Construction of the Black-Box Model

In order to train the neural networks as described in

Section III, we must first collect the pairs (ã(i), φ(i)) for

i = 1, . . . , N . Toward this end, we solved 200 times the

equations (2)-(12) starting from a certain initial condition

and with different configurations of the electromagnets.

Specifically, we considered the rectangle [−3, 3]× [−3, 3] as

spatial domain. Concerning the initial condition, we assumed

that the ferrofluid is in a circular shape, centered in (-1,-1)

with radius 1.1, as showed in Fig. 2. As regards the current

intensity of the electromagnets, without loss of generality we

assumed that such intensity is restricted to take on only three

values, i.e., maximum one, half of the maximum, and zero.

The numerical solution of the Navier-Stokes equations (2)

was performed in Matlab by suitably adapting the method

proposed in [13] to account for the characteristics of the

model, i.e., the presence of two fluids with different physical

properties and the effect of a magnetic force acting on the

ferrofluid and interfacial tension. The spatial discretization

was done on a staggered grid, where u and v are placed

on the vertical and horizontal cell sides, respectively, and

p is in the cell center. The discretization step was chosen

equal to 0.1. Concerning the time discretization, we selected

a sampling time equal to 0.001. Furthermore, we considered

no-slip boundary condition on each wall of the tank for u and

v, as well as homogeneous Neumann boundary conditions for

the pressure. As regards equation (8) modeling the evolution

both in space and time of the interface between water and



TABLE I

RESULTS OF THE NEURAL NETWORK TRAINING.

mean(∆s) mean(nc)

ν = 5 107.41 9.37
ν = 10 93.78 6.17
ν = 15 88.75 2.68
ν = 20 86.51 2.02
ν = 25 83.31 2.47
ν = 30 82.93 1.38

ferrofluid, we used the Matlab toolbox of level set methods

developed by Mitchell [20].

The results of the 200 simulations described above were

saved at 50 different time steps. Thus, we had at disposal a

set of N = 10000 pairs (ã(i), φ(i)). Such pairs were then

randomly divided into two subsets made up by 8700 and

1300 pairs, corresponding to the training set (i.e., the pairs

used to find the optimal values of the parameter vector w

as in (15)) and the test set (i.e., the pairs used to verify the

effectiveness of the trained networks), respectively. Different

neural networks were trained using the implementation of the

Levenberg-Marquardt algorithm available in Matlab (func-

tion trainlm), corresponding to various numbers of neurons.

Specifically, we varied ν from 5 to 30.

The performances were evaluated by means of the follow-

ing indexes, both computed over the 1300 pairs of the test

set (the average values are reported in Table I):

• the symmetric difference ∆s between the area occupied

by the ferrofluid as obtained by solving (2)-(12) and the

one provided by the neural network;

• the difference nc between the number of cells occupied

by ferrofluid as obtained by solving (2)-(12) and the

one provided by the neural network.

From the results reported in Table I, it turns out that the

approximating capabilities of neural networks increase with

the number ν of neurons, as expected. In fact, lower values

for the average ∆s can be observed is ν increases. Fig. 3

shows two examples of the interfaces between water and fer-

rofluid at certain randomly-extracted time steps as obtained

by solving the system equations (2)-(12) and provided by the

neural networks with ν = 30 neurons. One can notice that

the two interfaces are similar, thus confirming the small value

of the symmetric difference ∆s, i.e., the good approximating

capabilities of the trained neural networks.

B. Computation of Optimal Control Strategies

In order to devise suitable control actions, we solved prob-

lem (16) by using the mesh adaptive GPS algorithm provided

by the Matlab function patternsearch. More specifically, we

adopted the neural network providing the best results in terms

of accuracy, i.e., the network with ν = 30 neurons. The

regime was supposed to be reached after t = 7 (t is the

dimensionless time used in the Navier-Stokes equations).

The results obtained by using the black-box model were

compared with those provided by the numerical solution

of equations (2)-(12) over a set made up of 12 different

reference shapes. The results in terms of the symmetric

difference ∆s and the simulation time required to find a

solution to problem (16) are showcased in Table II. Fig. 4

contains the results of the control for the reference shapes

5 and 8. Similar results have been obtained for the other

shapes, but they are not reported for the sake of compactness.

It turns out that the black-box model allows one to save a

huge amount of time compared to the application of the full

system equations (2)-(12), at the price of only a slight decay

of performance. In fact, an average decay of about 16% of

the values of ∆s is experienced by using neural networks,

but a saving of the 99% of computing time is achieved.

VI. CONCLUSIONS

We have presented results on the black-box modeling

and optimal control of a test rig made up by a square

tank containing a two-phase fluid composed by water and

ferrofluid and many electromagnets that allows one to change

the shape of the ferrofluid through the resulting magnetic

field. The dynamics of such a complex system is governed

by Navier-Stokes equations together with a Hamilton-Jacobi

equation describing the evolution of the interface accord-

ing to the paradigm of level set methods. Both equations

require suitable numerical approximations, which may be

very computationally demanding in the case they are used to

generate optimal control actions on line. Therefore, a black-

box model based on neural networks has been constructed to

overcome such computational difficulties. Simulation results

have confirmed the effectiveness of the proposed approach

as a tradeoff between accuracy and required effort.

As a prospect of future work, we will investigate this ap-

proach on a larger set of test cases, and we will consider the

effectiveness of other optimization methods different from

the GPS algorithm. Moreover, we will collect experimental

measurements directly from the test rig and use them to train

new neural networks to be used for the control of the shape

of the ferrofluid in the test rig.
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