
 

 

Abstract— This paper deals with the problem of �� 
observer design for a class of descriptor nonlinear systems with 
nonlinear output measurements. The established result is broad 
and can be applied to many estimation problems in nonlinear 
systems, such as unknown input estimation, fault diagnosis and 
state estimation.  Based on the introduction of new assumptions 
involving a rank condition that specifies a constraint between 
the numbers of allowed unknown inputs, nonlinear functions, 
states and the number of measurements, a new Linear Matrix 
Inequality condition (LMI) for observer design is proposed. 
The obtained LMI is more general and less conservative, from 
a feasibility point of view, than those existing in the literature.  

Keywords—Descriptor systems; LMIs; �� analysis; nonlinear 
systems. 

I. INTRODUCTION 

State observer design for nonlinear systems has attracted 
the attention of many researchers in the field of automatic 
control. The topic is a subject of constant evolution [1], [2], 
[3], [4], [5], [6], [7], [8] and is motivated by several 
applications such as disturbance input estimation, fault 
diagnosis, control system design with unknown partial 
dynamics or synchronization and encryption in chaotic 
communication systems. One of the well-established 
problems that uses the theory of descriptor systems is the 
simultaneous state and unknown input estimation problem 
[9], [10], [11], [12]. Observer design for the class of 
descriptor systems with nonlinearities in both the dynamics 
of the system and the output measurements is an important 
unsolved problem. 

While the problem of state observer design for nonlinear 
systems has been widely investigated in the recent literature 
and several research results have been established, the study 
becomes complicated when we face systems in 
descriptor/singular structures [13]. Indeed, very few results 
have been investigated or established in the case of 
descriptor systems, especially when the output 
measurements contain nonlinear terms. 

Motivated by the lack of results in the field of observer 
design for descriptor nonlinear systems in the presence of 
nonlinearities in the measured outputs, we propose in this 
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paper a new LMI design technique aimed at meeting a ℋ� 
performance criterion. The presence of nonlinear terms in the 
output measurements renders the design of the observer gain 
parameters to be particularly complicated. To overcome this 
obstacle, we propose a new LMI technique, where the 
method requires a certain assumption on system parameters 
concerning the numbers of outputs, unknown inputs, states 
and numbers of nonlinear functions in the measurement 
equations. Moreover, the proposed LMI technique is less 
conservative compared to the existing results in the 
literature. Indeed, the nonlinearities are handled in a less 
conservative way. The Young’s inequality is used in a 
convenient manner that leads to dilated LMIs [14]. The 
contributions of this paper can be summarized as follows: 

 The technique is able to estimate unknown inputs with 
only a minimum number of measurements. Indeed, the 
rank condition requires a necessary number of outputs. 

 The contribution can be viewed as an extension of the 
work in [14] to a more general class of nonlinear 
systems: descriptor structure of the system and presence 
of nonlinearities in the outputs. 

The rest of this paper is organized as follows. In Section 
II we introduce the problem formulation and the motivations 
of the proposed work. Section III is devoted to the proposed 
LMI design method based on a rank condition based 
assumption. Then the application to unknown input 
estimation is presented in Section IV. Finally, a conclusion 
and some perspectives are presented in Section V. 

 
Notation: The following notation will be used throughout 
this paper. 

 ‖∙‖ is the usual Euclidean norm; 

 (∗) is used for the blocks induced by symmetry; 

 �� represents the transposed matrix of �; 

 �� represents the identity matrix of dimension �; 

 For a square matrix �, � > 0 (� < 0) means that this 
matrix is positive definite (negative definite); 

 The notation ‖�‖ℒ�� = �∫ ‖�(�)‖
��

�

�
���

�

�
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norm of the vector � ∈ ℝ�. The set ℒ�
�  is define by 

ℒ�
� = �� ∈ ℝ� ∶ 	 ‖�‖ℒ�� < +∞� 

and then �ℒ�
�, ‖∙‖ℒ��� is called the Lebesgue space; 

 ��(�) = �0,… , 0, 1⏞
�	��

, 0, … , 0�������������
�	����������

�

�

∈ ℝ�, � ≥ 1 is a 

vector of the canonical basis of ℝ�; 

II. PROBLEM FORMULATION AND MOTIVATIONS 

A. System description 

The class of system to be investigated in this paper is defined 
by the following equations: 

⎩
⎨

⎧���(�)�����̇ = ���(�) + ���(�(�), �(�))

+�����(�), �(�)� + ���(�)

�(�) = ���(�) + ��ℎ��(�), �(�)� + ���(�)

 
(1
) 

where � ∈ ℝ�� ; � ∈ ℝ��, and � ∈ ℝ�� are respectively the 
state vector of the system, the known control input vector, 
and the output measurements vector. The vector � ∈ ℝ�� 
represents the unknown disturbances affecting the system 
dynamics and the measured variables. The matrices �� ∈

ℝ��×��  , �� ∈ ℝ
��×��  , �� ∈ ℝ

��×�� , �� ∈ ℝ
��×�� , �� ∈

ℝ��×��  , �� ∈ ℝ
��×��  , �� ∈ ℝ

��×�� , and �� ∈ ℝ
��×��  

are known and constant. The functions � ∶ ℝ�� × ℝ�� →
ℝ�� and ℎ ∶ 	ℝ�� × ℝ�� → ℝ��	are globally Lipschitz1 with 
respect to the variable � , uniformly on � , with Lipschitz 
constants �� and ��, respectively. Assume also that the pair 

���, ��� satisfies the following condition: 

���� ��
��
��
�� = ��. (2) 

The aim consists in finding an observer to estimate 
asymptotically or exponentially the state � . Contrary to 
regular systems2 for which a simple Luenberger observer 
with one constant gain can be used to investigate the ℋ� 
criterion, the problem of state observer for the descriptor 
system (1) turns out to be difficult in some cases. In this 
paper, we will first consider a well-known two-stage 
structure of the observer. The results we will propose can 
then be extended to more complicated structures [5], [16]. 
Although the structure of the state observer is simple, the 
synthesis of the observer gain parameters has complicated 
obstacles that we need to overcome in order to have tractable 
sufficient LMI conditions. 

B. The two-stage observer structure 

The two-stage state observer we consider in this note is 
described by the following equations: 

 
1 If � and ℎ are only locally Lipschitz, we may consider their saturated 

versions �� and ℎ�, respectively, on an invariant compact set �	 in which 
�� and ℎ� satisfy the global Lipschitz property [15]. 

2 This means that the matrix ��  is invertible, i.e. �������� = ��.  

⎩
⎪
⎨

⎪
⎧
�̇(�) = ���(�) + ����� + ���(��(�), �(�))

+�����(�), �(�)�

��(�) = �(�) + �����(�)

���(�) = �(�) − ��(�), � = 1,2

 (3) 

where ��(�)	is the estimate of �(�). The auxiliary variables 
��(�), ��(�) and the matrices ��, ��, ��, ��, and �� are the 

observer parameters to be determined so that the estimation 

error ��(�) = ��(�) − �(�) converges towards zero in	sense of 
a pre-defined performance criterion, namely ℋ� or ��,� 

criteria.. By using (1) and (3) ��(�) is expressed as: 

��(�) = �(�) + ����� − ���� �(�) +

�����ℎ��(�), �(�)� − ��(�)� + �����(�).  
(4) 

In the case �(�) = ���(�), the problem becomes easy and 

the results are well known in the literature, because with 
��(. ) ≡ 0, equation (4) reduces to 

��(�) = �(�) + ����� − ���� �(�).  (5) 

Hence, from the condition (2), there exist two matrices �� 
and �� such that 

���� + ���� = ���.  (6) 

Therefore, we can write the dynamics of the estimation error 
as: 

��̇(�) = �̇(�) − �� ���(�)
�����̇ 	 (7) 

and then we can exploit the singular equation in (1) and the 
dynamics of �(�) in (3) to lead to an appropriate and standard 
estimation error dynamics after some matrix manipulations 
[5], [10], [13]. 

However, the presence of ℎ((�(�), �(�)) and �(�) in the 
output measurements renders the problem more complicated. 
Indeed, the computation of the parameters ��, ��, ��, ��, ��, 

and the choice of the performance criterion depend on 
additional assumptions on the matrices ��, �� on the 
disturbance �(�), and on the nonlinear function ℎ(�, �). In 
particular, the presence of nonlinearities in the output 
measurements renders the problem difficult and original 
from a LMI point of view. Depending on the distribution of 
the nonlinearity ℎ(. , . ) in �(�) (this is related to the structure 
of the matrix ��) and its time derivative, a different LMI 
technique can be provided in each case. 

C. ℋ� criterion 

This subsection is devoted to some definitions related to the 
ℋ� performance criterion. The aim consists in finding ��(�), 
��(�) and the matrices ��, ��, ��, ��, and �� so that the 

estimation error ��(�) satisfies the criterion: 

���(�)�
ℒ�

�� ≤ ���‖�‖ℒ�
��
� + �������

�
 (8) 

where �� > 0 is the disturbance attenuation level and �� >

0	is to be determined. In fact, √�� is the gain from � to ��. 



 

Usually we use Lyapunov functions to get checkable 
conditions guaranteeing (8). In the LMI framework, we take 

a quadratic Lyapunov function �(��), such that 

�(�) ≜
��

��
(��) + ����

�
− ��‖�‖

� ≤ 0. (9) 

The objective is to develop some LMI conditions under 
which the inequality (9) holds. 

III. OBSERVER DESIGN METHODOLOGY 

In this section we will introduce a new LMI method to deal 
with the problem of state observer design for the described 
descriptor nonlinear systems.  

To avoid the nonlinear term ℎ��(�), �(�)� − ��(�) in (4), 

an obvious solution consists in choosing �� so that ���� 	=
	0. However, this solution requires the following additional 
rank condition: 

���� �
��		 0

�� ��
� = �� + ��. (10) 

which implies implicitly 
�� + �� ≥ �� + ��. 

This means that the nonlinear function ℎ is considered as 
unknown input, which requires additional measurements to 
satisfy (10). However, for practical reasons, it is often 
difficult to measure additional variables because of their 
expensive cost or unavailability at any cost. 

To avoid the above constraint, we will introduce a new 
assumption on the nonlinear function ℎ, which will not affect 
the number of measurements required to achieve the 
procedure. 

Assumption 3.1: There exist two matrices ��, ��		 and a 
nonlinear function �: ℝ�� × ℝ�� → ℝ��	so that the time 
derivative of the nonlinear output function ℎ(�(�), �(�)) 
satisfies the following conditions: 

�ℎ

��
��(�), �(�)� = ���(�) + ��		���(�), �(�)�, (11) 

��(�, �) − ����, ��� ≤ ���� − ���. (12) 

A. A new two-stage observer structure 

Let us consider the two-stages observer (3) by specifying 
the variables ��, � = 1,2. That is, we use the following 
observer structure: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
�̇(�) = ���(�) + �����(�) + ���(��(�), �(�))

+���(�(�), �(�))

��(�) = �(�) + �����(�)

���(�) = �(�) − ��(�),			� = 1,2

��(�) = ��ℎ(��(�), �(�))

��(�) = �� � �����(�) + ��� ���(�), �(�)�� ��
�

�

.

 (13) 

From the rank condition (2), there exist two matrices 
��	and �� so that 

[�� ��] = ��
��
��
�
�

�
��
��
��

��

�
��
��
�
�

 (14) 

which leads to (6). Then, the dynamics equation (4) 
becomes 

�(�) = �(�) + �����(�) (15) 

+�����ℎ��(�), �(�)� − ��(�)�.  

where 

�(�) = ��(�) − �����(�). (16) 

The new variable �(�) is introduced in order to avoid the 
derivative of the disturbance �(�). For some details on this 
issue, we refer the reader to [18]. 

From Assumption 3.1, after developing the calculations, 
we get the following dynamics of �(�): 

�̇(�) = ����(�) + ��� − ���� + �����

+ ��� − ������(�, �)

+ ��� − ������(�, �)

+ (�� − ���)� + �����
− �����ℎ� − ��������� 

(17a) 

��� = ����, �� − �(�, �) (17b) 

�ℎ� = ℎ���, �� − ℎ(�, �) (17c) 

��� = ����, �� − �(�, �) (17d) 

� = ���� − ������,  (17e) 

� = �� − ���� (17f) 

�� = −���� , �� = −��. (17g) 

Since �, ℎ, and � are globally Lipschitz, then from [2] 
there exist functions 

��� ∶ ℝ
��
�

× ℝ��
�

→ ℝ 

��� ∶ ℝ
��
�
× ℝ��

�
→ ℝ 

��� ∶ ℝ
�� × ℝ�� → ℝ 

and constants ���, ��� , ��� , ��� , ���, and ���	such that 

��� = � ���(�)ℋ����

�,����,��
�

�,���

��(�), (18) 

�ℎ� = � ���(�)ℱ����

�,����,��
�

�,���

��(�), (19) 

��� = � ���(�)�����

�,���,��

�,���

��(�), (20) 

with 
��� ≤ ���(�) ≤ ��� , (21) 

��� ≤ ���(�) ≤ ���, (22) 

��� ≤ ���(�) ≤ ���. (23) 

and 

ℋ�� = ���(�)���
�
� (�), ℱ�� = ���(�)���

�
� (�), 

��� = ���(�)����
� (�). 

(24) 

The dynamics of the estimation error is now rewritten 
under the detailed form: 



 

�̇(�) = �	�� − ���� + � ������ℋ�����

�,���,��

�,���

� ��(�)

− � � �������ℱ�����

�,���,��

�,���

� ��(�)

− � � ���������������

�,���,��

�,���

� ��(�)

+ (�� − ���)�. 

(25) 

B. New LMI design conditions 

By calculating the derivative of the Lyapunov function 
�(�) = ��(�)ℙ�(�), (26) 

along the trajectory of (25), we get �(�) ≤ 0  if the following 
inequality holds: 

�
��
�ℙ + ℙ�� + �� −Ω� + ℙ(�� − ���)

−Ω�
� + (�� − ���)

�ℙ −Ω� − ����
�

���������������������������������
������

 

+ � ���

�,����,��
�

�,���

⎝

⎜
⎛
�
ℙ��ℋ��

���ℙ��ℋ��
�

���������

���
�

[�� 0]�����
��

+ ��
����

⎠

⎟
⎞

 

+ � ���

�,����,��
�

�,���

⎝

⎜
⎛
�
ℙ���ℱ��

���ℙ���ℱ��
�

���������

����
�

[−�� 0]�������
���

+ ���
�����

⎠

⎟
⎞

 

+ � ���

�,����,��
�

�,���

⎝

⎜
⎛
�
ℙ������

���ℙ������
�

�������

�����
�

[−�� 0]�������
����

+ ���
�����

⎠

⎟
⎞
≤ 0 

(27) 

where ��� = ������, ��� = ����, �� = � − ��� and  

Ω� = (�� − ���)
�ℙ���� + ������

�
ℙ(�� − ���), 

Ω� = ��
�����. 

Using the Young’s relation [14], we deduce that for all 
symmetric positive definite matrices ���, ��� and ℕ�� we 

have 

���
� �� + ��

���� ≤
�

�
���� + ������

�
���
�� (��� + �����)���������

∆��

	, (28) 

����
� ��� + ���

����� ≤
1

2
����� +�������

�
���

�� ����� +�������
���������

∆���

.	 (29) 

�����
� ���� + ����

������ ≤
1

2
������ + ℕ����

�
��
�
ℕ��
�� ������ + ℕ����

�
��

���������

∆����

. 
(30) 

Finally, by following the methodology in [14], we get the 
following theorem. 

Theorem 1: Assume that there exist symmetric positive 

definite matrices ℙ ∈ ℝ��×��, ��� ∈ ℝ
��
� ×��

�

, ��� ∈ ℝ
��
� ×��

�
, 

ℕ�� ∈ ℝ
��
�×��

�
  and a matrix ℛ ∈ ℝ��×�� such that the 

following convex optimization problem is solvable: 
min(��) �������	��	(32) − (53) (31) 

⎣
⎢
⎢
⎢
⎡
����� ���

�
… ��

� �
���������

��

���
� … ��

�����������
��

(∗) −Λ�� 0

(∗) (∗) −Λ�� ⎦
⎥
⎥
⎥
⎤

≤ 0 (32) 

����� = �
��� (ℙ�� − ℛ��� − Ω�)

(∗) −(Ω� + Ω�
�) − ����

� (33) 

��� = ��ℙ + ℙ� − ��
�ℛ − ℛ��� + ���	 (34) 

��
�
= ���,�

�
(ℙ, ���) … �

�,��
�

�
(ℙ, �

���
� )� (35) 

��
� = ���,�

� (ℛ,���) … �
�,��

�
� (ℛ,�

���
� )� (36) 

��
� = ���,�

� (ℙ, ℕ��) … �
�,��

�
� (ℙ, ℕ���

� )� (37) 

��,�
�
�ℙ, ���� = �

ℙ��ℋ��

���ℙ��ℋ��
� + �

��
����
0

� (38) 

��,�
��ℛ,���� = �

ℛ���ℱ��

���ℛ
���ℱ��

� + �
��
����

0
� (39) 

��,�
� �ℙ, ℕ��� = �

ℙ������

���ℙ������
� + �

��
�ℕ��

0
� (40) 

Λ� = ����� − ����(Λ�
�
, … , Λ��

�
) (41) 

Λ�
�
= ����� − ����(

2

���
�
��
� , … ,

2

�
���
�
�
��
� ) (42) 

� = 	����� − ����(��, … , ���) (43) 

�� = 	����� − ����(���,… , ����
��������

��
� 	�����

) 
(44) 

Λ� = ����� − ����(Λ�
�, … , Λ��

� ) (45) 

Λ�
� = ����� − ����(

2

���
�
��
� , … ,

2

�
���
�
�
��
� ) (46) 

� = 	����� − ����(��,… ,���
) (47) 

�� = 	����� − ����(���, … ,����
����������

��
� 	�����

) 
(48) 

Λ� = ����� − ����(Λ�
�, … , Λ��

� ) (49) 

Λ�
� = ����� − ����(

2

���
���� , … ,

2

�����
���� ) (50) 

ℕ = 	����� − ����(ℕ�, … , ℕ��) (51) 

ℕ� = 	����� − ����(ℕ��, … , ℕ���
����������

��
� 	�����

) 
(52) 

�� = ���� − ��� (53a) 
�� = � + ���� (53b) 
�� = ����  (53c) 
�� = ���� (53d) 

Then, the ℋ� criterion (8) is satisfied with �� = ����(ℙ). 
The observer gain parameter � is then computed by 

� = ℙ��ℛ�.	 (54) 

IV. APPLICATION TO UNKNOWN INPUT ESTIMATION 

This section is devoted to unknown input estimation for 
nonlinear systems with nonlinear outputs. The aim is to use 
the results of the previous section to estimate, in the ℋ� 
sense, unknown inputs occurring in the system. The class of 
systems concerned by this study is described by the 
following nonlinear equations: 

�

�̇ = ��� + ��� + ���(�, �, �)

+���(�, �) + ���

� = ��� + ��� + ���(�, �, �) + ����

 (55) 

where �(�) ∈ ℝ�� is the system state and �(�) ∈ ℝ�� is the 
unknown input vector. The nonlinearities �(. ) and �(. ) 



 

satisfy the global Lipschitz assumption as in the previous 
section. 

We will propose some schemes to estimate simultaneously 
the system state �(�) and the unknown input �(�). In each 
estimation scheme, we rewrite system (55) under the 
descriptor form (1) under specific assumptions on the 
parameters of (55), namely the matrices ��, ��, ��, ��, and 

the nonlinear function �(�, �). There are several ways to 
organize the presentation of all the possible scenarios due to 
different assumptions required in each scenario. In this initial 
conference paper, we will only investigate the specific case 
of: 

�������� = �� (56) 

 
For this specific case, LMI conditions ensuring the 

simultaneous asymptotic estimation of the states and the 
unknown inputs will be provided.  
 

System (55) can be rewritten below 

�� = ���� 0��×���, �� = [�� ��], (57a) 

�� = [�� ��], � = �
�
��, (57b) 

�� = ��, �� = ��, �� = ��, 

�� = ��, �� = ���, 
(57c) 

�(�, �) = �(�, �, �), 
ℎ(�, �) = �(�, �, �), 
�(�, �) = �(�, �). 

(57d) 

Since the matrix �� is full column rank then it follows that 

the condition (2) holds. Indeed, 

���� ��
��
��
�� = ���� ��

��� 0��×��
�� ��

�� 

= �� + �� = ��. 

(58) 

Hence the LMI design techniques given in Section III can 
be applied under additional assumptions. 

Under Assumption 3.1, the observer based filter (13) 
provides a simultaneous estimation of the state �(�) and the 
unknown input �(�) in the ℋ� sense defined in (8) provided 
that the filter parameters are obtained by solving the convex 
optimization problem (31) in Theorem 1 according to the 
definitions (57). 

V. CONCLUSION 

In this note we have proposed a new LMI design technique 
that satisfies a ℋ� performance criterion for a class of 
descriptor nonlinear systems. The presence of nonlinearities 
in the output measurements renders the synthesis problem 
particularly complicated. To overcome this obstacle, we 
have proposed a different LMI method, where the method 
requires a certain assumption on system parameters 
involving the numbers of measurements, unknown inputs 
and nonlinear functions in the output equations. We have 
shown that the introduction of these new assumptions allows 
handling the problem of observer synthesis. New and less 
conservative LMI conditions for observer design are 
proposed.  

As future work, we aim to apply this technique to 
complicated real-word models, such as the tripped rollover 
problem and radar vehicle tracking problems in automotive 
applications. 
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