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Decentralized Robust Control of Coupled Multi-Agent Systems

under Local Signal Temporal Logic Tasks

Lars Lindemann and Dimos V. Dimarogonas

Abstract— Motivated by the recent interest in formal
methods-based control of multi-agent systems, we adopt a
bottom-up approach. Each agent is subject to a local signal
temporal logic task that may depend on other agents’ behavior.
These dependencies pose control challenges since some of the
tasks may be opposed to each other. We first develop a local
continuous feedback control law and identify conditions under
which this control law guarantees satisfaction of the local tasks.
If these conditions do not hold, we propose to use the developed
control law in combination with an online detection & repair
scheme, expressed as a local hybrid system. After detection of a
critical event, a three-stage procedure is initiated to resolve the
problem. The theoretical results are illustrated in simulations.

I. INTRODUCTION

Multi-agent systems under global objectives such as con-

sensus, formation control, and connectivity maintenance have

been well studied by the research community. Comprehen-

sive overviews of these topics can be found in [1] and [2],

where the derived controllers are mainly distributed control

laws. The need for more complex and rich objectives in

robotic applications has led to formal methods-based control

strategies where temporal logics, e.g., linear temporal logic,

are used to formulate high-level temporal tasks. Top-down

approaches have been considered in [3], [4] by decomposing

a global temporal task into local ones that need to be

executed by each agent individually. Top-down approaches

often require agent synchronization and are usually subject

to high computational complexity and hence impractical

when the problem size becomes larger. On the other hand,

the works in [5], [6] favor a bottom-up approach, where

local tasks are independently distributed to each agent. This

leads to partially decentralized solutions that reduce the

computational burden. In a bottom-up approach, feasibility of

each local task does not imply feasibility of the conjunction

of all local tasks [5] since some of the local tasks may

be opposed to each other. The presented works in [3]-[6]

rely on automata-based verification techniques that discretize

the physical environment and agent dynamics. In this paper,

we instead consider continuous-time and nonlinear dynam-

ics without the need for discretizing neither environment

nor agent dynamics in space or time. To the best of our

knowledge, this is the first approach not making use of such
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discretization in the context of formal methods-based multi-

agent control. This paper extends our work on single-agent

systems [7] to multi-agent systems.

We adopt a bottom-up approach by considering local

tasks formulated in signal temporal logic [8]. These tasks

can depend on each other, i.e., also oppose each other.

This makes the control of multi-agent systems under signal

temporal logic tasks a challenge and the main research

question in this paper. Signal temporal logic introduces the

notion of space robustness [9], a robustness metric stating

how robustly a signal satisfies a given task. In a first step,

we identify conditions under which a continuous feedback

control law, which is derived by combining space robustness

and prescribed performance control [10], satisfies basic sig-

nal temporal logic tasks. If these conditions do not hold, an

online detection & repair scheme is introduced by defining a

local hybrid system [11] for each agent. Critical events will

be detected and resolved in a three-stage procedure, gradually

relaxing parameters such as robustness. One advantage of our

decentralized approach is the low computational complexity

due to the continuous feedback control laws. Furthermore,

the team of agents is allowed to be heterogeneous with

additional dynamic couplings among them. Robustness is

considered with respect to disturbances and with respect to

the signal temporal logic task. Multi-agent systems under

signal temporal logic tasks have also been considered in

[12] in a centralized approach, not investigating formula

dependencies, but with a special focus on communication.

The remainder is organized as follows: in Section II,

notation and preliminaries are introduced, while Section III

presents the problem definition. Section IV presents our solu-

tion to the stated problem, which is verified by simulations in

Section V. Conclusions are given in Section VI. This online

version is an extended version of the 2018 American Control

Conference version.

II. PRELIMINARIES

Scalar quantities are denoted by lowercase, non-bold let-

ters x and column vectors are lowercase, bold letters x. True

and false are denoted by ⊤ and ⊥; R are the real numbers,

while Rn is the n-dimensional real vector space. The natural,

non-negative, and positive real numbers are N, R≥0, and

R>0, respectively. For convenience, we define
[

x y
]

:=
[

xT yT
]T

. For two sets X and Y , the set-valued map

F : X ⇒ Y maps each x ∈ X to a set F (x) ⊆ Y . The

inverse image by a function F of a set M ⊆ Y is given by

inv
(

F (M)
)

:= {x ∈ X|F (x) ∩M 6= ∅}.
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Two basic results regarding the existence of solutions for

initial-value problems (IVP) are needed in this paper. Assume

y ∈ Ωy ⊆ Rny and consider the IVP

ẏ = H(y, t) with y0 := y(0) ∈ Ωy, (1)

where H : Ωy × R≥0 → Rny and Ωy is a non-empty and

open set. A solution to this IVP is a signal y : J → Ωy

with J ⊆ R≥0 obeying (1).

Lemma 1: [13, Theorem 54] Consider the IVP in (1).

Assume that H : Ωy × R≥0 → Rny is: 1) locally Lipschitz

continuous on y for each t ∈ R≥0, 2) piecewise continuous

on t for each fixed y ∈ Ωy . Then, there exists a unique and

maximal solution y : J → Ωy with J := [0, τmax) ⊆ R≥0

and τmax ∈ R>0 ∪∞.

Lemma 2: [13, Proposition C.3.6] Assume that the as-

sumptions of Lemma 1 hold. For a maximal solution y on

J = [0, τmax) with τmax < ∞ and for any compact set

Ω′
y ⊂ Ωy , there exists t′ ∈ J such that y(t′) /∈ Ω′

y .

A. Signal Temporal Logic (STL)

Signal temporal logic (STL) is a predicate logic based on

signals [8]. STL consists of predicates µ that are obtained

after the evaluation of a predicate function h : Rn → R as

µ :=

{

⊤ if h(x) ≥ 0

⊥ if h(x) < 0.

For instance, it is possible to express the predicate µ :=
(|xi + xj | ≤ 1) with the predicate function h(x) := 1 −
|xi + xj | to specify that the i-th and j-th state should be

close. The STL syntax is

φ ::= ⊤ | µ | ¬φ | φ ∧ ψ | φU[a,b] ψ ,

where µ is a predicate and φ and ψ are STL formulas.

The temporal until-operator U[a,b] is time bounded with

time interval [a, b] where a, b ∈ R≥0 is such that a ≤ b.
The satisfaction relation (x, t) |= φ indicates if the signal

x : R≥0 → Rn satisfies φ at time t. The STL semantics are

given next.

Definition 1 (STL Semantics): The STL semantics are in-

ductively defined as [8, Definition 1]:

(x, t) |= µ ⇔ h(x(t)) ≥ 0

(x, t) |= ¬φ ⇔ ¬((x, t) |= φ)

(x, t) |= φ ∧ ψ ⇔ (x, t) |= φ ∧ (x, t) |= ψ

(x, t) |= φU[a,b] ψ⇔ ∃t1 ∈ [t+ a, t+ b] s.t. (x, t1) |= ψ

∧ ∀t2 ∈ [t, t1], (x, t2) |= φ

Disjunction-, eventually-, and always-operator are derived

as φ∨ψ := ¬(¬φ∧¬ψ), F[a,b]φ := ⊤U[a,b] φ, andG[a,b]φ :=
¬F[a,b]¬φ, respectively. Robust semantics, called space ro-

bustness and denoted by ρφ(x, t), have been introduced in

[9] and are defined in Definition 2; ρφ(x, t) determines how

robustly the signal x : R≥0 → Rn satisfies φ at time t. It

holds that (x, t) |= φ if ρφ(x, t) > 0.

Definition 2 (Space Robustness): The semantics of space

robustness are inductively defined as [9, Definition 3]:

ρµ(x, t) := h(x(t))

ρ¬φ(x, t) := −ρφ(x, t)

ρφ∧ψ(x, t) := min
(

ρφ(x, t), ρψ(x, t)
)

ρF[a,b]φ(x, t) := max
t1∈[t+a,t+b]

ρφ(x, t1)

ρG[a,b]φ(x, t) := min
t1∈[t+a,t+b]

ρφ(x, t1)

The definitions of ρφ∨ψ(x, t) and ρφU[a,b] ψ are omitted

since they will not be considered in the remainder. We abuse

the notation as ρφ(x(t)) := ρφ(x, t) if t is not explicitly

contained in ρφ(x, t). For instance, ρµ(x(t)) := ρµ(x, t) :=
h(x(t)) since h(x(t)) does not contain t as an explicit

parameter. However, t is explicitly contained in ρφ(x, t) if

and only if temporal operators (eventually, always, or until)

are used.

B. A Bottom-up Approach for Multi-Agent Systems

Consider a multi-agent system that consists of M agents

and where each agent is possibly affecting the behavior of

another agent. Therefore, communication among agents is

crucial. We model the communication by using a static, i.e.,

time-independent, and undirected graph G := (V , E) [2]. The

vertex set is V := {v1, v2, . . . , vM}, while the edge set is E ∈
V × V . Two agents vi, vj ∈ V can communicate if and only

if there exists a path between vi and vj . A path is a sequence

vi, vk1 , . . . , vkP , vj such that (vi, vk1), . . . , (vkP , vj) ∈ E . As

a consequence, all agents can communicate if and only if G
is connected.

Let xi ∈ Rn, ui ∈ Rmi , and wi ∈ Wi be the state, input,

and additive noise of agent vi’s dynamics with Wi ⊂ Rn

being a bounded set. Let x :=
[

x1 x2 . . . xM
]

be the

stacked vector of all agents’ states. Each agent vi obeys the

nonlinear and coupled dynamics

ẋi = fi(xi) + f c
i (x) + gi(xi)ui +wi, (2)

where f c
i (x) is a term describing preassumed dynamic

couplings of the multi-agent system. Also define xext
i :=

[

xj1 . . . xjM−1

]

such that vj1 , . . . , vjM−1 ∈ V \ {vi},

i.e., xext
i is a stacked vector containing the states of all agents

except of xi. Note that xext
i is contained in f c

i (x) and can be

seen as an external input generated by an exo-system, i.e.,

other agents. The functions fi, f
c
i , and gi need to satisfy

Assumption 1.

Assumption 1: The functions fi : Rn → Rn, f c
i : R

nM →
Rn, and gi : Rn → Rn×mi are locally Lipschitz continuous,

and gi(xi)gi(xi
T ) is positive definite for all xi ∈ Rn.

Remark 1: The term f c
i (x) represents preassumed dy-

namic couplings that the multi-agent system is subject to.

These couplings can, for instance, express consensus, forma-

tion control, connectivity maintenance, or obstacle avoidance

objectives.

We now tailor the definitions of STL and its robust se-

mantics to multi-agent systems. In our bottom-up approach,

each agent vi ∈ V is subject to a local STL formula. As



a notational rule, the local formula of agent vi is endowed

with the subscript, i.e., φi. Based on [6, Definition 3], local

satisfaction of φi by the signal xφi : R≥0 → Rpi is defined

in Definition 3. We will be more specific regarding xφi and

pi after Definition 5.

Definition 3 (Local Satisfaction): The signal xφi : R≥0

→ Rpi locally satisfies φi if and only if (xφi , 0) |= φi.
Local feasibility of φi is next defined in Definition 4.

Definition 4 (Local Feasibility): The formula φi is locally

feasible if and only if ∃xφi : R≥0 → Rpi such that xφi
locally satisfies φi.

Each local formula φi depends on agent vi and may also

depend on some other agents vj ∈ V . Consider xj : R≥0 →
Rn to be the solution to (2) associated with agent vj .

Definition 5 (Formula-Agent Dependency): If xj(t) is not

contained in xφi(t) for all t ∈ R≥0 and local satisfaction of

φi, i.e., (xφi , 0) |= φi, can be evaluated, then φi does not

depend on vj . Otherwise, i.e., knowledge of xj(t) is needed

and hence xj(t) is contained in xφi(t), then φi does depend

on vj and we say that agent vj is participating in φi.
The set of participating agents in φi is

Vφi := {vj1 , vj2 , . . . , vjP (φi)
} ⊆ V ,

where P (φi) :=
∑|V|

j=1 χj(φi) is a function evaluating the

total number of participating agents in φi with

χj(φi) :=

{

1 if φi depends on vj

0 otherwise.

It holds that each vj ∈ Vφi is participating in φi and ∄vk ∈
V \ Vφi such that vk is participating in φi. Define

xφi(t) :=
[

xj1(t) . . . xjP (φi)
(t)

]

for all t ∈ R≥0 with vj1 , . . . , vjP (φi)
∈ Vφi , i.e., all agents

participating in φi. Finally, for the signal xφi : R≥0 → Rpi

we conclude that pi := nP (φi) so that xφi is completely

defined.

We call φi a non-collaborative formula if and only if

P (φi) = 1. In other words, the satisfaction of φi does not

depend on other agents vj ∈ V \ {vi}, and hence xφi = xi.

Otherwise, i.e., if P (φi) > 1, we call φi a collaborative

formula. Since φi always depends on vi, it always holds

that P (φi) ≥ 1. Global satisfaction of the set of formulas

{φ1, . . . , φM} by the signal x : R≥0 → RnM is introduced

in Definition 6. Note that xφi is naturally contained in x.

Definition 6 (Global Satisfaction): The signal x : R≥0 →
RnM globally satisfies {φ1, . . . , φM} if and only if xφi
locally satisfies φi for all agents vi ∈ V .

In this respect, we similarly define global feasibility.

Definition 7 (Global Feasibility): The set of formulas

{φ1, . . . , φM} is globally feasible if and only if ∃x : R≥0 →
RnM such that x globally satisfies {φ1, . . . , φM}.

Next, maximal dependency clusters are introduced in a

similar vein as in [5, Definition 4].

Definition 8 (Maximal Dependency Cluster): Consider

the undirected dependency graph Gd := (V , Ed) where there

is an edge (vi, vj) ∈ Ed ⊆ V × V if and only if the formula

φi depends on vj in the sense of Definition 5; Ξ ⊆ V is a

maximal dependency cluster if and only if ∀vi, vj ∈ Ξ there

is a path from vi to vj in Gd and ∄vi ∈ Ξ, vk ∈ V \ Ξ such

that there is a path from vi to vk.

Consequently, a multi-agent system under {φ1, . . . , φM}
induces L ≤ M maximal dependency clusters denoted by

Ξ̄ := {Ξ1, . . . ,ΞL}. These clusters are maximal in the

sense that there are no formula-agent dependencies between

clusters, i.e., ∄vi ∈ Ξl1 , vj ∈ Ξl2 with l1 6= l2 such that φi
depends on vj , which is different to [5, Definition 4]. Even

though maximal dependency clusters have no formula-agent

dependencies, dynamic couplings between clusters induced

by f c
i (x) may be present.

Example 1: Consider three agents v1, v2, and v3 with

φ1 := F[a1,b1](‖x1 − x2‖ ≤ 1), φ2 := F[a2,b2](‖x2‖ ≤ 1),
and φ3 := F[a3,b3](‖x3‖ ≤ 1). Then Ξ̄ := {Ξ1,Ξ2} with

Ξ1 = {v1, v2} and Ξ2 = {v3}.

C. Hybrid Systems

Hybrid systems have recently been modeled and analyzed

in [11] by considering hybrid inclusions, i.e., differential and

difference inclusions to account for continuous and discrete

dynamics. The advantage of this framework is that clocks and

logical variables can be included into the system description.

Hybrid systems with external inputs as in Definition 9 have

explicitly been presented in [14]. Note that the value of

the state zi after a jump is denoted by ẑi. This is not

a standard convention, but will ease the reading in the

upcoming sections.

Definition 9: [14] A hybrid system is a tuple Hi :=
(Ci, Fi, Di, Gi) where Ci, Di, Fi, and Gi are the flow and

jump set and the possibly set-valued flow and jump map,

respectively. The continuous and discrete dynamics are
{

żi ∈ Fi(zi,u
int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ Ci

ẑi ∈ Gi(zi,u
int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ Di,

(3)

where zi ∈ Zi is a hybrid state with domain Zi, while uint
i ∈

U int
i and uext

i ∈ U ext
i are internal and external inputs with

domains U int
i and U ext

i . Furthermore, let Hi := Zi×U int
i ×U ext

i .

Solutions to (3) are parametrized by (t, j), where t in-

dicates continuous flow according to Fi(zi,u
int
i ,u

ext
i ) and

j indicates jumps according to G(zi,u
int
i ,u

ext
i ). Hence, a

solution is a function zi : R≥0 × N → Zi that satisfies (3)

with initial condition zi(0, 0). For a detailed review of the

topic, the reader is referred to [11].

III. PROBLEM STATEMENT

In this paper, the following STL fragment is considered:

ψ ::= ⊤ | µ | ¬µ | ψ(1) ∧ ψ(2) (4a)

φ ::= G[a,b]ψ | F[a,b]ψ (4b)

θs1 ::=
K
∧

k=1

φ(k) with b(k) ≤ a(k+1) (4c)

θs2 ::= F[c(1),d(1)]

(

ψ(1) ∧ F[c(2),d(2)](ψ(2) ∧ . . .)
)

(4d)

θ ::= θs1 | θs2 , (4e)



where µ is a predicate and ψ(1), ψ(2), . . . are formulas of

class ψ given in (4a), whereas φ(k) with k ∈ {1, . . . ,K}
are formulas of class φ given in (4b) with corresponding

time intervals [a(k), b(k)]. Note the use of brackets, e.g. ψ(1),

to distinguish from local formulas, e.g., ψ1. In this paper,

for conjunctions of non-temporal formulas of class ψ given

in (4a), e.g., ψ := ψ(1) ∧ ψ(2), we approximate the robust

semantics, e.g., ρψ(1)∧ψ(2)(x), by a smooth function.

Assumption 2: The robust semantics for a conjunction

of q non-temporal formulas of class ψ given in (4a), i.e.,

ρψ(1)∧...∧ψ(q)(x), are approximated by a smooth function as

ρψ(1)∧...∧ψ(q)(x) ≈ − ln
(

q
∑

i=1

exp
(

− ρψ(i)(x)
)

)

.

From now on, when writing ρψ(x), ρφ(x, t), or ρθ(x, t)
for formulas of class ψ, φ, and θ, respectively, we mean

the robust semantics including the smooth approximation in

Assumption 2 unless stated otherwise. This approximation is

an under-approximation and preserves the property (x, 0) |=
ψ if ρψ(x) > 0 as in [7].

The objective in this paper is to consider local formulas

of class φ given in (4b) that are independently distributed

to each agent vi ∈ V . The proposed solution can then be

extended to local formulas of class θ given (4e) in the same

vein as in [7]. In [7], a continuous feedback control law

for a single agent subject to φ has been derived, however

not considering possible multi-agent couplings as given by

f c
i (x) or formula-agent dependencies. Assume hence that

each agent vi ∈ V is subject to a local formula φi of the

form (4b). Two more assumption are needed.

Assumption 3: Each formula of class ψ given in (4a) that

is contained in (4b) and associated with an agent vi is: 1)

s.t. ρψi(xφi) is concave and 2) well-posed in the sense that

(xφi , 0) |= ψi implies ‖xφi(0)‖ ≤ C <∞ for some C ≥ 0.

Remark 2: Part 2) of Assumption 3 is not restrictive in

practice since ψAss.3
i := (‖xφi‖ ≤ C), where C is a

sufficiently large positive constant, can be combined with

the desired ψi so that ψi ∧ ψAss.3
i is well-posed.

Next, define the global optimum of ρψi(xφi) as

ρopt
i := sup

xφi∈R
nP(φi)

ρψi(xφi),

which is straightforward to compute due to Assumption 2 and

3. Next, Assumption 4 guarantees that φi is locally feasible

since ρopt
i > 0 implies that ρφi(xφi , 0) > 0 is possible.

Assumption 4: The optimum of ρψi(xφi) is s.t. ρopt
i > 0.

The goal is to derive a local control law ui(xφi , t) for each

agent vi such that ri ≤ ρφi(xφi , 0) ≤ ρmax
i , where ri ∈ R

is a robustness measure, while ρmax
i ∈ R with ri < ρmax

i

is a robustness delimiter. For this purpose, we look at each

dependency cluster separately and distinguish between two

cases that are described in the formal problem definition.

Problem 1: Assume that each agent vi is subject to a

local STL formula φi of the form (4b), hence inducing

the maximal dependency clusters Ξ̄ := {Ξ1, . . . ,ΞL} with

L ≤ M . For each cluster Ξl with l ∈ {1, . . . , L}, derive a

control strategy as follows:

• Case A) Under the assumption that each agent vi, vj ∈
Ξl is subject to the same formula, i.e., φi = φj , design

a local feedback control law ui(xφi , t) such that 0 <
ri ≤ ρφi(xφi , 0) ≤ ρmax

i for all vi ∈ Ξl, which means

local satisfaction of φi.
• Case B) Otherwise, i.e., ∃vi, vj ∈ Ξl such that φi 6= φj ,

each agent vi ∈ Ξl nevertheless initially applies the

derived control law ui(xφi , t) for Case A. Design a

local online detection & repair scheme for each agent

vi ∈ Ξl such that ri ≤ ρφi(xφi , 0) ≤ ρmax
i , where ri ∈

R, possibly negative, is maximized up to a precision of

δi > 0 with δi being a design parameter

If each cluster satisfies the assumption in Case A, i.e.,

for each l ∈ {1, . . . , L} it holds that φi = φj for all

agents vi, vj ∈ Ξl, the proposed solution guarantees global

satisfaction of {φ1, . . . , φM}. If one or more cluster fails to

satisfy this assumption, the online detection & repair scheme

in Case B will apply for all agents in these clusters.

IV. PROPOSED PROBLEM SOLUTION

Two types of inter-agent dependencies have been intro-

duced in Section II: dynamic couplings induced by f c
i (x)

and formula-agent dependencies. In the proposed solution

to Case A in Problem 1, presented in Section IV-B, it

turns out that formula-agent dependencies do not pose any

difficulties. Similarly, dynamic couplings only increase the

control effort, i.e., ‖ui(t)‖. For Case B, however, both types

of dependencies may lead to trajectories that do not locally

satisfy the formulas. The proposed solution, introducing an

online detection & repair scheme, is presented in Section

IV-C.

A. A Prescribed Performance Approach

We first present the main idea of our work on single-

agent systems [7], which is based on prescribed performance

control [10] and now extended to multi-agent systems. For a

thorough illustration, the reader is referred to [7]. Define the

performance function γi for agent vi in Definition 10 and

the transformation function S in Definition 11.

Definition 10: The performance function γi : R≥0 →
R>0 is continuously differentiable, bounded, positive, non-

increasing, and given by γi(t) := (γ0i −γ
∞
i ) exp(−lit)+γ∞i

where γ0i , γ
∞
i ∈ R>0 with γ0i ≥ γ∞i and li ∈ R≥0.

Definition 11: A transformation function S : (−1, 0) →
R is a strictly increasing function, hence injective and

admitting an inverse. In particular, let S(ξ) := ln
(

− ξ+1
ξ

)

.

The objective is to synthesize a local feedback control

law ui(xφi , t) for formulas φi of the form (4b) such that

ri ≤ ρφi(xφi , 0) ≤ ρmax
i . Let ψi correspond to φi as in

φi := G[ai,bi]ψi or φi := F[ai,bi]ψi and note that xψi = xφi
holds by definition. We achieve ri ≤ ρφi(xφi , 0) ≤ ρmax

i by

prescribing a temporal behavior to ρψi(xφi(t)) through the

design parameters γi and ρmax
i as

−γi(t) + ρmax
i < ρψi(xφi(t)) < ρmax

i . (5)

Note the use of ρψi(xφi(t)) and not ρφi(xφi , 0) itself. When

xφi is seen as a state, define the one-dimensional error, the



normalized error, and the transformed error as

ei(xφi) := ρψi(xφi)− ρmax
i

ξi(xφi , t) :=
ei(xφi)

γi(t)

ǫi(xφi , t) := S
(

ξi(xφi , t)
)

= ln
(

−
ξi(xφi , t) + 1

ξi(xφi , t)

)

,

respectively. Now, (5) can be written as −γi(t) < ei(t) < 0
where ei(t) := ei(xφi(t)), which can be further written as

−1 < ξi(t) < 0 where ξi(t) := ξi(xφi(t), t). Applying the

transformation function S to −1 < ξi(t) < 0 gives −∞ <
ǫi(t) <∞ with ǫi(t) := ǫi(xφi(t), t). If ǫi(t) is bounded for

all t ≥ 0, then inequality (5) holds. This is a consequence of

the fact that S admits an inverse. The connection between

ρψi(xφi(t)) and ρφi(xφi , 0) is made by the performance

function γi, which needs to be chosen as explained in detail

in [7] to obtain 0 < ri ≤ ρφi(xφi , 0) ≤ ρmax
i . If Assumption

4 holds, then select the parameters

t∗i ∈

{

ai if φi = G[ai,bi]ψi

[ai, bi] if φi = F[ai,bi]ψi,
(6)

ρmax
i ∈

(

max
(

0, ρψi(xφi(0))
)

, ρopt
i

)

(7)

ri ∈ (0, ρmax
i ) (8)

γ0i ∈

{

(ρmax
i − ρψi(xφi(0)),∞) if t∗i > 0

(ρmax
i − ρψi(xφi(0)), ρ

max
i − ri] otherwise

(9)

γ∞i ∈
(

0,min
(

γ0i , ρ
max
i − ri

)

]

(10)

li ∈







R≥0 if − γ0i + ρmax
i ≥ ri

− ln
(

ri+γ
∞
i

−ρmax
i

−(γ0
i
−γ∞
i

)

)

t∗
i

if − γ0i + ρmax
i < ri

(11)

where it has to hold that ρψi(xφi(0)) > ri if t∗i = 0. The

intuition here is that by the choice of γi it is ensured that

ρψi(xφi(t)) ≥ ri for all t ≥ t∗i . By the choice of t∗i it

consequently holds that ρφi(xφi , 0) ≥ ri, i.e., (xφi , 0) |= φi.

B. Global and Local Satisfaction Guarantees

Considering the induced maximal dependency clusters

Ξ̄ := {Ξ1, . . . ,ΞL}, Theorem 1 provides a global satisfaction

guarantee if all clusters satisfy the assumption of Case A in

Problem 1, i.e., for each l ∈ {1, . . . , L} it holds that φi = φj
for all vi, vj ∈ Ξl.

Theorem 1: Let each agent vi ∈ V be subject to φi as in

(4b), hence inducing the maximal dependency clusters Ξ̄ :=
{Ξ1, . . . ,ΞL}. Assume that for each Ξl ∈ Ξ̄ it holds that:

for all vi, vj ∈ Ξl we have 1) vi and vj can communicate,

2) φi = φj , and 3) t∗i = t∗j , ρmax
i = ρmax

j , ri = rj , and

γi = γj are chosen as in (6)-(11). If for each agent vi ∈ V
Assumptions 1-4 hold and each agent vi applies

ui(xφi , t) := −ǫi(xφi , t)gi(xi)
T ∂ρ

ψi(xφi)

∂xi
, (12)

then it holds that 0 < ri ≤ ρφi(xφi , 0) ≤ ρmax
i for all agents

vi ∈ V , i.e., each agent vi locally satisfies φi, which in turn

guarantees global satisfaction of {φ1, . . . , φM}. All closed-

loop signals are well-posed, i.e., continuous and bounded.

Proof: In a first step (Step A), we apply Lemma 1 and

show that there exists a maximal solution ξi(t) such that

ξi(t) := ξi(xφi(t), t) ∈ Ωξ := (−1, 0), which is the same as

requiring that (5) holds for all t ∈ J := [0, τmax) ⊆ R≥0 and

all vi ∈ Ξl with l ∈ {1, . . . , L}. The second step (Step B)

consists of using Lemma 2 to show that τmax = ∞, which

proves the main result.

Prior to Step A and B, we state the dynamics of ǫi as

dǫi
dt

=
∂ǫi
∂ξi

dξi
dt

= −
1

γiξi(1 + ξi)

(∂ρψi(xφi)

∂x

T

ẋ− ξiγ̇i

)

,

(13)

which can be derived since it holds that ∂ǫi
∂ξi

= − 1
ξi(1+ξi)

and

dξi
dt

=
1

γi

(dei
dt

− ξiγ̇i

)

. (14)

Note that by dǫi
dt

, dξi
dt

, and dei
dt

we here mean the total

derivative and that hence dei
dt

=
∂e(xφi )

∂x

T

ẋ with
∂ei(xφi )

∂x
=

∂ρψi (xφi )

∂x
.

Step A: First, define ξ := (ξ1, ξ2, . . . , ξM ) and the stacked

vector y := (x, ξ). Consider the closed-loop system ẋi =:
Hxi(x, ξi) of agent vi with

Hxi(x, ξi) := fi(xi) + f c
i (x)

− ln
(

−
ξi + 1

ξi

)

gi(xi)g
T
i (xi)

∂ρψi(xφi)

∂xi
+wi

that is obtained by inserting (12) into (2). The closed-loop

system of all agents is then ẋ =: Hx(x, ξ) with

Hx(x, ξ) :=
[

Hx1
(x, ξ1) . . . HxM (x, ξM )

]

.

Due to (14), we obtain dξi
dt

=: Hξi(x, ξi, t) where

Hξi(x, ξi, t) :=
1

γi(t)

(∂ρψi(xφi)

∂x
Hx(x, ξ)− ξiγ̇i(t)

)

expresses the ξ-dynamics of agent vi. The ξ-dynamics of all

agents are given by ξ̇ =: Hξ(x, ξ, t) with

Hξ(x, ξ, t) :=
[

Hξ1(x, ξ1, t) . . . HξM (x, ξM , t)
]

.

Using all these definitions, the dynamics of y are finally

given by ẏ =: H(y, t) with

H(y, t) :=
[

Hx(x, ξ) Hξ(x, ξ, t)
]

.

Note that x(0) is such that ξi(xφi(0), 0) ∈ Ωξ := (−1, 0)
holds for all agents vi ∈ Ξl due to the choice of γ0i . Now

define the time-varying and non-empty set

Ωφi(t) :=
{

xφi ∈ RnP (φi)
∣

∣

− 1 < ξi(xφi , t) =
ρψi(xφi)− ρmax

i

γi(t)
< 0

}

,

which has the property that for t1 < t2 we have Ωφi(t2) ⊆
Ωφi(t1) since γi is non-increasing in t. Note that Ωφi(t)
is bounded due to Assumption 3 and since γi is bounded.



We remark that xφi(0) ∈ Ωφi(0). Due to [15, Proposition

1.4.4], the following holds: if a function is continuous,

then the inverse image of an open set under this function

is open. By defining ξ0i (xφi) := ξi(xφi , 0), it holds that

inv
(

ξ0i (Ωξ)
)

= Ωφi(0) is open. Note therefore that ρψi(xφi)
is a continuously differentiable function due to Assumption

2. Next, select vil ∈ Ξl for each l ∈ {1, . . . , L} and define

Ωx := Ωφi1 (0)× . . .× ΩφiL (0) ⊂ RnM ,

Ωξ := Ωξ × . . .× Ωξ ⊂ RM ,

and the open, non-empty, and bounded set

Ωy := Ωx × Ωξ ⊂ R(n+1)M

where it holds that y(0) =
[

x(0) ξ(0)
]

∈ Ωy.

Next, we check the conditions in Lemma 1 for the

initial value problem ẏ = H(y, t) with y(0) ∈ Ωy and

H(y, t) : Ωy × R≥0 → R(n+1)M : 1) H(y, t) is locally

Lipschitz continuous on y since fi(xi), f
c
i (x), gi(xi), and

ǫi = ln
(

− ξi+1
ξi

)

are locally Lipschitz continuous on y

for each t ∈ R≥0. This also holds for
∂ρψi (xφi )

∂xi
due to

Assumption 2. 2) H(y, t) is continuous on t for each fixed

y ∈ Ωy due to continuity of γi and γ̇i. As a result of Lemma

1, there exists a maximal solution with y(t) ∈ Ωy for all

t ∈ J := [0, τmax) ⊆ R≥0 and τmax > 0. Consequently, there

exist ξ(t) ∈ Ωξ and x(t) ∈ Ωx for all t ∈ J .

Step B: From Step A) we have y(t) ∈ Ωy for all t ∈ J :=
[0, τmax). Now, we show that τmax = ∞ by contradiction of

Lemma 2. Therefore, assume τmax <∞.

The key observation to be made is that ξi(xφi , t) =
ξj(xφj , t), ǫi(xφi , t) = ǫj(xφj , t), and ρψi(xφi) = ρψj (xφi)
for all agents vi, vj ∈ Ξl. This follows since xφi = xφj
(recall that φi = φj) and since ρmax

i = ρmax
j and γi = γj

holds by assumption. We now show that ǫi(t) is bounded

for all t ∈ R≥0 and then it consequently follows that ǫj(t)
is bounded for all other agents vj ∈ Ξl \ {vi}. Since the

clusters are maximal, i.e., no formula-agent dependencies

between clusters exist, we can deduce the same result for

the other clusters. Consider the Lyapunov function candidate

V (ǫi) := 1
2ǫiǫi and define V̇ (ǫi) := ∂V

∂ǫi

dǫi
dt

. We will now

show that V̇ (ǫi) ≤ 0 if |ǫi| is bigger than some positive

constant, which ensures that ǫi(t) will remain in a compact

set. By using (13), it follows

V̇ (ǫi) = ǫi
dǫi
dt

= ǫi

(

−
1

γiξi(1 + ξi)

(∂ρψi(xφi)

∂x

T

ẋ− ξiγ̇i
)

)

Define αi(t) := − 1
γiξi(1+ξi)

which satisfies αi(t) ∈ [ 4
γ0
i

,∞)

for all t ∈ J . This follows since 4
γ0
i

≤ − 1
γ0
i
ξi(1+ξi)

≤

− 1
γiξi(1+ξi)

≤ − 1
γ∞
i
ξi(1+ξi)

<∞ for ξi ∈ Ωξ. It can further

be derived that

V̇ (ǫi) ≤ ǫiαi
∂ρψi(xφi)

∂x

T

Hx(x, ξ) + |ǫi|αiki (15)

where ẋ := Hx(x, ξ) as defined previously and 0 ≤ |ξiγ̇i| ≤
ki < ∞ for a positive constant ki. This follows since

ξi(t) ∈ Ωξ for all t ∈ J and γ̇i is bounded by definition. The

term
∂ρψi (xφi )

∂x

T

Hx(x, ξ) represents the couplings among

the agents and can be written as

∂ρψi(xφi)

∂x

T

Hx(x, ξ) =
∑

vj∈Ξl

∂ρψj(xφj )

∂xj

T

Hxj (x, ξj).

(16)

Plugging (16) into (15) results in

V̇ (ǫi) ≤ ǫiαi
∑

vj∈Ξl

∂ρψj (xφj )

∂xj

T

Hxj (x, ξj) + |ǫi|αiki.

(17)

Inserting (2) and (12) into ǫi
∂ρ
ψj (xφj )

∂xj

T

Hxj (x, ξj) first, this

term can in a second step be upper bounded as follows

ǫi
∂ρψj (xφj )

∂xj

T

Hxj (x, ξj) = ǫi
∂ρψj (xφj )

∂xj

T
(

fj(xj) + f c
j (x)

− ǫjgj(xj)g
T
j (xj)

∂ρψj (xφj )

∂xj
+wj

)

≤ |ǫi|Mj − |ǫi|
2λjJj

where ǫi = ǫj as remarked previously since vi, vj ∈
Ξl. Furthermore, λj > 0 is the positive minimum eigen-

value of gj(xj)g
T
j (xj) according to Assumption 1, and

‖
∂ρ
ψj (xφj )

∂xj

T
(

fj(xj) + f c
j (x) + wj

)

‖ ≤ Mj < ∞ due

to continuity of
∂ρ
ψj (xφj )

∂xj
, fj(xj), and f c

j (x), the extreme

value theorem and the fact that Ωx and Wi are bounded.

Note therefore that the extreme value theorem guarantees

that a continuous function on a compact set is bounded

and that the above functions are continuous on cl(Ωx),
where cl denotes the closure of a set. The lower bound

Jj ∈ R≥0 arises naturally due to the norm operator as

0 ≤ Jj ≤ ‖
∂ρ
ψj (xφj )

∂xj
)‖2 < ∞. Equation (17) can now be

upper bounded as follows

V̇ (ǫi) ≤ αi|ǫi|
(

M̂i − |ǫi|Ĵi
)

(18)

where M̂i :=
∑

vj∈Ξl
Mj+ki and Ĵi :=

∑

vj∈Ξl
λjJj . Note

that Ĵi > 0 since
∂ρψi (xφi )

∂xφi
= 0 if and only if ρψi(xφi) =

ρopt
i , which is excluded since (5) holds for all t ∈ J and we

selected ρmax
i < ρopt

i . Recall that ρψj (xφj ) in ‖
∂ρ
ψj (xφj )

∂xj
‖2

is concave due to Assumptions 2 and 3. In other words, at

least one Jj in vj ∈ Ξl is greater than zero.

It holds that V̇ (ǫi) ≤ 0 if M̂i

Ĵi
≤ |ǫi|. We can conclude

that |ǫi| will be upper bounded due to the level sets of V as

|ǫi(t)| ≤ max
(

|ǫi(0)|,
M̂i

Ĵi

)

,

which leads to the conclusion that ǫi(t) is upper and lower

bounded by some constants ǫui and ǫli, respectively. In other

words, it holds that ǫli ≤ ǫi(t) ≤ ǫui for all t ∈ J . By using

the inverse of S and defining ξli := − 1
exp(ǫl

i
+1)

and ξui :=

− 1
exp(ǫu

i
+1) , ξi(t) is bounded by −1 < ξli ≤ ξi(t) ≤ ξui < 0,



which translates to

ξi(t) ∈ Ω′
ξi

:= [ξli, ξ
u
i ] ⊂ Ωξ

for all t ∈ J . Recall that ξi
(

xφi , t
)

=
ρψi (xφi )−ρ

max
i

γi(t)
and

note the following: if ξi(t) evolves in a compact set, then
ρψi

(

xφi(t)
)

will evolve in a compact set Ω′
ρψi

:= [ρli, ρ
u
i ]

for some constants ρli and ρui . Again, due to [15, Proposition
1.4.4] it holds that the inverse image

Ω′

φi
:= inv

(

ρ
ψi(Ω′

ρψi
)
)

= {xφi ∈ Ωφi(0)|ρ
l
i ≤ ρ

ψi(xφi) ≤ ρ
u
i }

is closed and also bounded since it is a subset of Ωφi . Select

vil ∈ Ξl for each l ∈ {1, . . . , L}. It can be concluded that

xφil (t) evolves in a compact set, i.e., xφil (t) ∈ Ω′
φil

⊂

Ωφil (0) for all t ∈ J and all vil . Next, define

Ω′
x := Ω′

φi1
× . . .× Ω′

φiL
⊂ RnM

Ωξ := Ω′
ξ1

× . . .× Ω′
ξM

⊂ RM ,

and the compact set

Ω′
y := Ω′

x × Ω′
ξ ⊂ R(n+1)M

for which it holds that y(t) ∈ Ω′
y for all t ∈ J . It is also

true that Ω′
y ⊂ Ωy by which it follows that there is no

t ∈ J := [0, τmax) such that y(t) /∈ Ω′
y . By contradiction

of Lemma 2 it holds that τmax = ∞, i.e., J = R≥0. This

in turn says that (5) holds for all agents vi ∈ V and for all

t ∈ R≥0. By the choice of ρmax
i , ri, and γi as in (7)-(11) and

[7, Theorem 2], it then holds that φi is locally satisfied for

each agent vi ∈ V .

The control law ui(xi, t) is well-posed, i.e., continuous

and bounded, because ρψi(xi) is approximated by a smooth

function, while ǫi(xi, t) and gi(xi) are continuous. Further-

more, γi is continuous with 0 < γ(t) < ∞. Due to the

extreme value theorem, these functions are also bounded. It

follows that all closed-loop signals are well-posed.

If L = M , i.e., each agent vi ∈ V is subject to a non-

collaborative formula φi, Theorem 1 trivially applies since

no formula dependencies among agents exist. Recall that

dynamic couplings induced by f c
i (x) may still be present.

For the next result, a stronger assumption on the dynamic

couplings f c
i (x) is needed.

Assumption 5: The function f c
i : R

nM → Rn is bounded.

Now consider a formula φ of the form (4b) and assume

that each vi ∈ Vφ is subject to φi := φ. Then, Theorem 2

guarantees satisfaction of φ if all agents vi ∈ Vφ collaborate.

Theorem 2: Let each agent vi ∈ V satisfy Assumption 1

and 5. Consider a formula φ as in (4b) and let each agent vi ∈
Vφ be subject to φi := φ. Assume that for all vi, vj ∈ Vφ
it holds that: 1) vi and vj can communicate and 2) t∗i = t∗j ,

ρmax
i = ρmax

j , ri = rj , and γi = γj are chosen as in (6)-(11).

Assume further that all agents vk ∈ V \ Vφ apply a control

law u′
k such that xk remains in a compact set Ω′

k. If for

each agent vi ∈ Vφ Assumptions 2-4 hold and each vi ∈ Vφ
applies (12), then it holds that 0 < r := ri ≤ ρφ(xφ, 0) ≤
ρmax
i =: ρmax, i.e., (xφ, 0) |= φ. All closed-loop signals are

well-posed.

Proof: The proof is similar to the proof in Theorem 1

and is provided in the appendix.

The assumption of u′
k is not restrictive and excludes

finite escape time. For instance, if Assumption 5 holds and

ẋk := fk(xk) is asymptotically stable, then the feedback

control law u′
k(xk) := −gk(xk)

T
xk keeps the state xk

in a compact set. If all agents vi ∈ Vφ apply the control

law (12) under the conditions in Theorem 2 to satisfy φ,

we refer to this as collaborative control in the remainder.

Theorem 2 has further implications with respect to Case A in

Problem 1. Consider again the induced maximal dependency

clusters Ξ̄ := {Ξ1, . . . ,ΞL}. Assume that the cluster Ξl with

l ∈ {1, . . . , L} satisfies the assumption of Case A, while

there exists another cluster Ξm with m 6= l such that Ξm does

not satisfy this assumption. In other words, for all vi, vj ∈ Ξl
it holds that φi = φj , while ∃vi, vj ∈ Ξm with m 6= l such

that φi 6= φj . Consequently, Theorem 2 guarantees local

satisfaction of φi for all vi ∈ Ξl without considering task

satisfaction of agents in V \ Ξl.
Note that Assumption 4 in Theorem 2 restricts the formula

φ to be locally feasible. However, this assumption can be

relaxed at the expense of not locally satisfying φi := φ
and instead finding a, possibly least violating, solution by

relaxing ri and ρmax
i . Recall that ρφi(xφi , 0) ≥ ri with ri < 0

does not imply local satisfaction of φi.
Corollary 1: Assume that all assumptions of Theorem 1

hold for each agent vi ∈ V except for Assumption 4 and the

choice of ρmax
i and ri. If instead ρmax

i ∈ (ρψi(xφi(0)), ρ
opt
i )

and ri ∈ (−∞, ρmax
i ), then it holds that ri ≤ ρφi(xφi , 0) ≤

ρmax
i for all agents vi ∈ V .

Proof: Follows the same line of proof as in Theorem

1 and 2. Note that it has already been stated in [7] that

ri ≤ ρφi(xφi , 0) ≤ ρmax
i follows from (5) by the choice of

γi. Therefore, it consequently holds that ri can be chosen

negative as long as ri < ρmax
i < ρopt

i .

C. An Online Detection & Repair Scheme

Assume now that the cluster Ξl with l ∈ {1, . . . , L}
may not satisfy the assumption of Case A in Problem 1.

We propose that each agent vi ∈ Ξl initially applies the

control law (12) with parameters as in (6)-(11). The control

law (12) consists of two components, one determining the

control strength and one the control direction; ǫi(xφi , t)
determines the control strength. The closer ξi(xφi , t) gets

to Ωξ := {−1, 0}, i.e., the funnel boundary, the bigger

gets ǫi(xφi , t) and consequently also ‖u(xφi , t)‖. Note that

‖u(xφi , t)‖ → ∞ as ξi(xφi , t) → Ωξ. The control direction

is determined by
∂ρψi (xφi )

∂xi
, i.e., in which direction control

action should mainly happen. In summary, the control law

always steers in the direction away from the funnel boundary,

and the control effort increases close to the funnel boundary.

We reason that applying the control law (12) is hence a

good initial choice such that φi will be locally satisfied

if the participating agents Vφi \ {vi} behave reasonably.

The resulting trajectory xφi may, however, hit the funnel

boundary, i.e., ξi(xφi , t) = {−1, 0}, and lead to critical

events.



Example 2: Consider three agents v1, v2, and v3. Agent

v2 is subject to the formula φ2 := F[5,15](‖x2−
[

90 90
]

‖ ≤
5), while agent v3 is subject to φ3 := F[5,15](‖x3 −
[

90 10
]

‖ ≤ 5), i.e., both agents are subject to non-

collaborative formulas. Agent v1 is subject to the collab-

orative formula φ1 := G[0,15](‖x1 − x2‖ ≤ 10 ∧ ‖x1 −
x3‖ ≤ 10). Note that the set of formulas {φ1, φ2, φ3} is

not globally feasible, although each formula itself is locally

feasible. Under (12), agents v2 and v3 move to
[

90 90
]

and
[

90 10
]

, respectively. Agent v1 can consequently not

satisfy φ1 and only decrease the robustness such that ri < 0
to achieve ri ≤ ρφi(xφi , 0) ≤ 0 similar to Corollary 1.

In Example 2, the set of local formulas is globally in-

feasible. However, even if the set {φ1, . . . , φM} is globally

feasible, there are reasons why the resulting trajectory may

not globally satisfy {φ1, . . . , φM} as illustrated next.

Example 3: Consider two agents v4 and v5 with φ4 :=
F[5,10](‖x4 − x5‖ ≤ 10 ∧ ‖x4 −

[

50 70
]

‖ ≤ 10) (collab-

orative formula) and φ5 := F[5,15](‖x5 −
[

10 10
]

‖ ≤ 5)
(non-collaborative formula). Under (12), agent v5 moves to
[

10 10
]

by at latest 15 time units. However, agent v4 is

forced to move to
[

50 70
]

and be close to agent v5 by at

latest 10 time units. This may lead to critical events where

(5) is violated for agent v4. If agent v5 cooperates, it can

first help to locally satisfy φ4, e.g., by using collaborative

control as in Theorem 2, and locally satisfy φ5 afterwards.

To overcome these potential problems, we propose an

online detection & repair scheme by using a local hybrid

system Hi := (Ci, Fi, Di, Gi) for each agent vi ∈ Ξl. We

detect critical events that may lead to trajectories that do not

locally satisfy φi. Then, agent vi tries to locally repair the

funnel, i.e., the design parameters t∗i , ρmax
i , ri, and γi, in a

first stage. If this is not successful, collaborative control as in

Theorem 2 will be considered in a second stage (Example 3).

If collaborative control is not applicable, ri is successively

decreased by δi > 0 in the third stage (Example 2), where

δi is a design parameter. The jump set Di will detect critical

events, while the jump map Gi will take repair actions.

Let p
γ
i :=

[

γ0i γ∞i li
]

and pf
i :=

[

t∗i ρmax
i ri p

γ
i

]

contain the parameters that define (5), and let pr
i :=

[

ni ci
]

;

ni indicates the number of repair attempts in the first repair

stage, while ci is used in the second repair stage (c for

collaborative). If ci ∈ {1, . . . ,M}, collaborative control as

in Theorem 2 is used to collaboratively satisfy φci . If ci = 0,

then agent vi tries to locally satisfy φi by itself and if

ci = −1, then agent vi is free, i.e., not subject to a task.

We define the hybrid state as zi :=
[

xi ti pf
i pr

i

]

∈ Zi,
where ti is a clock, Zi := Rn × R≥0 × R6

≥0 × Z2 and

zi(0, 0) :=
[

xi(0) 0 pf
i(0) 02

]

with Z being the set of

integers. The elements in pf
i(0) are as chosen according to

(6)-(11). Additionally, we choose pf
i(0) = pf

j(0) if Case A

holds for all agents vi, vj ∈ Ξl. Next, define

uint
i =















0mi if ci = −1

−ǫi(xφi , ti)gi(xi)
T ∂ρ

ψi (xφi )

∂xi
if ci = 0

−ǫci(xφci
, ti)gi(xi)

T ∂ρ
ψci (xφci

)

∂xi
if ci > 0

ti

ρmax
i

ri

ρ̂max
i

ρ
opt
i

−γi(ti) + ρmax
i

−γ̂i + (ti) + ρ̂max
i

ρψi (xφi (ti))
0 2 3 4 5 6 7

1

−1

•

Fig. 1: Funnel repair in the first stage for φi := F[4,6]ψi.

so that the flow map can be written as

Fi(xi,u
int
i ,u

ext
i ) :=

[

fi(xi) + f c
i (x) + gi(xi)u

int
i +wi 1 06 02

]

.

External inputs are wi and xext
i . By assuming vi ∈

Ξl, we define c
ext
i :=

[

cj1 . . . cj|Ξl|−1

]

and pf,ext
i :=

[

pf
j1

. . . pf
j|Ξl|−1

]

such that vj1 , . . . , vj|Ξl|−1
∈ Ξl \ {vi}.

Note that c
ext
i and pf,ext

i contain states of all agents in the

same dependency cluster Ξl. Ultimately, define the external

input as uext
i :=

[

wi xext
i c

ext
i p

f,ext
i

]

.

The set D′
i is used to detect a critical event when the

funnel in (5) is violated, i.e., when ξi(ti) /∈ Ωξ := (−1, 0).

D′
i := {(zi,u

int
i ,u

ext
i ) ∈ Hi|ξi(ti) ∈ {−1, 0}, ci = 0}.

Remark 3: Note that ξi(ti) ∈ {−1, 0} implies ǫi(ti) → ∞
and therefore ui(ti) → ∞. In practice, the input will be

saturated at some point.

Throughout the paper, we assume that agent vi detects

the critical event, while the agents with subscript j as

vj ∈ Vφi \ {vi} are asked to help agent vi. Detection of

a critical event by D′
i does not necessarily mean that it is

not possible to locally satisfy φi anymore. It rather means

that the user-defined funnel boundary is touched and that

repairs can help satisfying φi. We introduce the notation

{ẑi ∈ Zi|ẑi = zi ; exception} denoting the set of ẑi ∈ Zi
such that ẑi = zi after the jump except for the elements in

ẑi explicitly mentioned after the semicolon, here denoted by

the placeholder exception.

1) Repair of Critical Events - Stage 1: The first repair

stage is indicated by

D′
i,1 :=D′

i ∩ {(zi,u
int
i ,u

ext
i ) ∈ Hi|ni < Ni}

where Ni ∈ N is a design parameter representing the

maximum number of repair attempts in the first stage. If

(zi,u
int
i ,u

ext
i ) ∈ D′

i,1, we first relax the parameters t∗i , ρmax
i ,

ri, and γi in a way that still guarantees local satisfaction of

φi. Pictorially speaking, we make the funnel in (5) bigger.

Example 4: Consider the formula φi := F[4,6]ψi with

ri := 0.25 as the desired initial robustness, which is

supposed to be achieved at t∗i ≈ 4.8. The original funnel

is shown in Fig. 1 and given by ρmax
i and −γi + ρmax

i

as in (5). Without detection of a critical event, it would



hence hold that ρφi(xφi , 0) ≥ ri since ρψi
(

xφi(t
∗
i )
)

≥ ri
would be achieved. However, at tr := 2, where tr indicates

the time where a critical event is detected, the trajectory

ρψi
(

xφi(t)
)

touches the lower funnel boundary and repair

action is needed. This is done by setting t̂∗i := 6 (time

relaxation), r̂i := 0.0001 (robustness relaxation), ρ̂max
i :=

1.1 (upper funnel relaxation), and also adjusting γ̂i (lower

funnel relaxation). The funnel is hence relaxed to ρ̂max
i and

−γ̂i+ ρ̂max
i as depicted in Fig. 1. At the time of critical event

detection tr, the lower funnel is relaxed to −γ̂i(tr) + ρ̂max
i

where we especially denote γr
i := γ̂i(tr). Due to repair

action, xφi locally satisfies φi as shown in Fig. 1.

With Example 4 in mind, set

G′
i,1 :=

{

ẑi ∈ Zi|ẑi = zi ; t̂
∗
i :=

{

bi if φi = F[ai,bi]ψi

t∗i if φi = G[ai,bi]ψi,

ρ̂max
i = ρmax

i + ζu
i , r̂i ∈ (0, ri), p̂

γ
i = p

γ,new
i , n̂i = ni + 1

}

where the variables ζu
i and p

γ,new
i are defined in the sequel.

In words, we set t̂∗i := bi if φi = F[ai,bi]ψi (time relaxation)

and keep t̂∗i := t∗i = ai otherwise. The parameter ri is

decreased to r̂i ∈ (0, ri) (robustness relaxation) to ensure

local satisfaction of φi. The variable ζu
i relaxes the upper

funnel and needs to be such that ρ̂max
i := ρmax

i + ζu
i < ρopt

i

(upper funnel relaxation) according to (7), i.e., let ζu
i ∈

(0, ρopt
i − ρmax

i ). At tr, the detection time of a critical event,

we set γr
i := γ̂i(tr) := ρ̂max

i − ρψi(xφi) + ζ l
i with

ζ l
i ∈

{

R>0 if t̂∗i > ti

(0, ρψi(xφi)− r̂i] otherwise,

which resembles (9) (lower funnel relaxation); ζu
i and ζ l

i

determine the margin by how much the funnel is relaxed.

Let p
γ,new
i :=

[

γ0,new
i γ∞,new

i lnew
i

]

and select, similar to

(10) and (11), γ∞,new
i ∈ (0,min(γr

i, ρ̂
max
i − r̂i)] and

lnew
i :=











0 if − γr
i + ρ̂max

i ≥ r̂i

− ln
(

r̂i+γ
∞,new
i

−ρ̂max
i

−(γr
i
−γ

∞,new
i

)

)

t̂∗
i
−ti

if − γr
i + ρ̂max

i < r̂i.

Finally, set γ0,new
i := (γr

i − γ∞,new
i ) exp(lnew

i ti) + γ∞,new
i to

account for the clock ti that is not reset (t̂i := ti).

2) Repair of Critical Events - Stage 2: Repairs of the

second and third stage are detected by

D′
i,{2,3} :=D′

i ∩ {(zi,u
int
i ,u

ext
i ) ∈ Hi|ni ≥ Ni}.

The second stage will only be initiated if some timing

constraints hold. Then, collaborative control as in Theorem

2 is used to satisfy φi. The second stage is detected by

D′
i,2 := D′

i,{2,3} ∩
{

(zi,u
int
i ,u

ext
i ) ∈ Hi|∀vj ∈ Vφi \ {vi},

(cj = −1) or
(

cj = 0, bi <

{

bj if φj = F[aj ,bj ]ψj

aj if φj = G[aj ,bj ]φj

)}

.

i.e., each agent vj ∈ Vφi \ {vi} is either free or postpones

satisfaction of φj to collaboratively deal with φi first, while

ensuring that there is enough time to deal with φj after-

wards. If (zi,u
int
i ,u

ext
i ) ∈ D′

i,2, all agents in Vφi will use

collaborative control to deal with φi. Therefore, let

G′
i,2 :=

{

ẑi ∈ Zi|ẑi = zi ; ρ̂
max
i = ρmax

i + ζu
i ,

r̂i ∈ (0, ri), p̂
γ
i = p

γ,new
i , ĉi = i

}

where ĉi := i initiates collaborative control, while again

relaxing the funnel parameters as in the first repair stage. The

jump set D′
i,2 applies if agent vi detects a critical event. Now

changing the perspective to the participating agents vj ∈
Vφi \ {vi}, all agents vj need to participate in collaborative

control. Assume that vj ∈ Ξl, then

D′′
j,2 :={(zj ,u

int
j ,u

ext
j ) ∈ Hj |cj ∈ {−1, 0},

∃vi ∈ Ξl \ {vj}, vj ∈ Vφi , ci = i},

is the jump set, which is activated when agent vi asks agent

vj for collaborative control. If (zi,u
int
i ,u

ext
i ) ∈ D′′

j,2, set

G′′
j,2 :=

{

ẑj ∈ Zj |ẑj = zj ; p̂
f
j = pf

i, ĉj = ci

}

where ĉj = ci and p̂
f
j = pf

i enforce that all conditions in

Theorem 2 hold such that φi will be locally satisfied.

3) Repair of Critical Events - Stage 3: If the timing

constraints in D′
i,2 do not apply, repairs of the third stage

are initiated by

D′
i,3 :=D′

i,{2,3} \ D
′
i,2.

Agent vi reacts in this case by reducing the robustness ri
by δi > 0 as illustrated in Example 2 and according to

G′
i,3 :=

{

ẑi ∈ Zi|ẑi = zi ; ρ̂
max
i = ρmax

i + ζu
i ,

r̂i = ri − δi, ρ̂
max
i = ρopt

i + σi, p̂
γ
i = p

γ,new
i

}

.

where now γr
i := ρ̂max

i − ρψi(xφi) + δi is used to calculate

p
γ,new
i , while σi > 0 will avoid Zeno behavior.
4) The Overall System: It now needs to be determined

what happens when a task φi is locally satisfied. Define νi :=
{

ci if ci > 0

i if ci = 0
and detect such events by

Di,sat :=
{

(zi,u
int
i ,u

ext
i ) ∈ Hi|rνi ≤ ρ

ψνi
(

xφνi

)

≤ ρ
max
νi
, ci ≥ 0,

ti ∈

{

[aνi , bνi ] if φνi = F[aνi ,bνi ]
ψνi

bνi if φνi = G[aνi ,bνi ]
ψνi

}

\ (D′

i ∪ D′′

i,2),

where the set substraction of D′
i∪D

′′
i,2 exludes the case where

D′
i or D′′

i,2 apply simultaneously with Di,sat. This hence

prevents cases when two jump options are available, which

would induce an undesirable non-determism endangering the

logic behind the hybrid system. If (zi,u
int
i ,u

ext
i ) ∈ Di,sat, let

Gi,sat :=
{

ẑi ∈ Zi|ẑi = zi ; t̂
∗
i =

{

bi if φi = F[ai,bi]ψi

ai if φi = G[ai,bi]ψi,

ρ̂max
i = ρ̃max

i , r̂i = r̃i,

p̂
γ
i = p

γ,new
i , ĉi =

{

0 if ci > 0 and ci 6= i

−1 if ci = 0 or ci = i

}



where ρ̃max
i and r̃i are chosen according to (7) and (8), but

evaluated with xφi(ti) instead of xφi(0). If ĉi = 0 in Gi,sat,

the task φi will be pursued next, while φi has already been

satisfied if ĉi = −1 so that the agent becomes free.

Note that D′
i = D′

i,1∪D
′
i,2∪D

′
i,3 with D′

i,1∩D
′
i,2∩D

′
i,3 =

∅. The hybrid system Hi is given by Di := D′
i∪D′′

i,2∪Di,sat

and Ci := Zi \Di. The flow map has already been defined

and the jump map is

Gi(zi,u
int
i ,u

ext
i ) :=































G′
i,1(zi,u

int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ D′

i,1

G′
i,2(zi,u

int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ D′

i,2

G′′
i,2(zi,u

int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ D′′

i,2

G′
i,3(zi,u

int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ D′

i,3

Gi,sat(zi,u
int
i ,u

ext
i ) for (zi,u

int
i ,u

ext
i ) ∈ Di,sat.

Note now that the sets D′
i and Di,sat as well as D′′

i,2

and Di,sat are non-intersecting. However, D′
i and D′′

i,2 are

intersecting. Therefore, if (zi,u
int
i ,u

ext
i ) ∈ D′

i ∩D′′
i,2, which

will rarely happen in practice, we only execute the jump

induced by D′′
i,2 to not endager the logic behind the hybrid

system. Thereby, we can say that the sets D′
i, D

′′
i,2, and Di,sat

are technically non-intersecting.

Theorem 3: Assume that each agent vi ∈ V is subject to

φi of the form (4b) and controlled by Hi := (Ci, Fi, Di, Gi),
while Assumptions 1-5 are satisfied. The induced depen-

dency clusters Ξ̄ = {Ξ1, . . . ,ΞL} are such that for each

Ξl ∈ Ξ̄ it holds that vi and vj can communicate for all

vi, vj ∈ Ξl. For vi ∈ Ξl it then holds that ρφi(xφi , 0) ≥ ri,
where either ri := ri(0, 0) (initial robustness) if φi = φj for

all vi, vj ∈ Ξl or ri is lower bounded and maximized up to

a precision of δi otherwise. Zeno behavior is excluded.

Proof: Note first that there will never be the option

of two jumps at the same time since the jump sets D′
i,1,

D′
i,2, D′′

i,2, D′
i,3, and Di,sat are technically non-intersecting.

In the first repair stage, the parameters t∗i , ρmax
i , ri, γ

0
i ,

γ∞i , and li are repaired in a way that still guarantees local

satisfaction of φi. Zeno behavior is excluded for this stage

since detection of a critical event is directly followed by a

jump into the interior of the funnel, i.e., into the flow set Ci
and since only a finite number of jumps, i.e., Ni jumps, are

permitted. For the second repair stage, collaborative control

guarantees finishing the task φi by the guarantees given in

Theorem 2. Afterwards, participating agents vj ∈ Vφi \ {vi}
have enough time to deal with their own local task φj ,
which is initiated by Dj,sat. If the timing constraints for

collaborative control do not hold, the third repair stage

is initiated and ri is successively decreased by δi so that

eventually ρφi(xφi , 0) ≥ ri has to hold, i.e. maximizing

ρφi(xφi , 0) to a precision of δi. Note that ri has to be lower

bounded due to Assumption 3. This assumption states the

well-posedness of ψi and means that for local satisfaction of

φi the state xφi is bounded. Hence, all agents aim to stay

within a bounded set. Consequently, successively reducing ri
will eventually lead to ρφi(xφi , 0) ≥ ri. This again means

that only a finite number of jumps is possible when the lower

funnel is touched. Touching the upper funnel will also only

lead to a finite number of jumps since ρ̂max
i = ρ

opt
i + σi in

G′
i,3, hence exluding Zeno behavior of Hi.

D. Extension to θ-formulas

If each agent vi ∈ V is subject to θi of the form (4c), the

same result can be obtained by extending the hybrid system

Hi = (Ci, Fi, Di, Gi) as instructed in [7]. The detection &

repair mechanism introduced in the previous section can be

applied in exactly the same way. Due to space limitations,

the illustration is omitted.

V. SIMULATIONS

We consider omni-directional robots as in [16] with two

states x1 and x2 indicating the robot position and one state

x3 indicating the robot orientation with respect to the x1-

axis. Let xi,j with j ∈ {1, 2, 3} denote the j-th element of

agent vi’s state and let pi :=
[

xi,1 xi,2
]

. We hence have

xi :=
[

pi xi,3
]

=
[

xi,1 xi,2 xi,3
]

with the dynamics

ẋi =





cos(xi,3) − sin(xi,3) 0
sin(xi,3) cos(xi,3) 0

0 0 1





(

BTi

)−1

Riui,

where Ri := 0.02 is the wheel radius and Bi :=




0 cos(π/6) − cos(π/6)
−1 sin(π/6) sin(π/6)
Li Li Li



 describes geometrical con-

straints with Li := 0.2 as the radius of the robot body. Each

element of ui corresponds to the angular velocity of exactly

one wheel. All simulations have been performed in real-time

on a two-core 1,8 GHz CPU with 4 GB of RAM. Computa-

tional complexity is not an issue due to the computationally-

efficient and easy-to-implement feedback control laws.

Scenario 1: This scenario employs eight agents in three

clusters with v1, v2, v3 ∈ Ξ1, v4, v5, v6 ∈ Ξ2, and v7, v8 ∈
Ξ3, where the agents in each cluster are subject to the same

formula, consequently satisfying the conditions in Theorem

1. The first cluster Ξ1 should eventually gather, while at the

same time v1 should approach the point xA :=
[

50 50
]

.

The second cluster Ξ2 should eventually form a triangular

formation, while the robot’s orientation point to each other

and agent v5 approaches xB :=
[

110 40
]

. The third

cluster should eventually move to some predefined points

xC :=
[

40 70
]

and xD :=
[

55 70
]

, while staying as

close as possible to each other and having an orientation

that is pointing into the −x2-direction. In formulas, we have

φ1 := φ2 := φ3 := F[10,15]ψl1 with ψl1 := (‖p1 − p2‖ <
2)∧ (‖p1−p3‖ < 2)∧ (‖p2−p3‖ < 2)∧ (‖p1−pA‖ < 2).
For the second cluster, φ4 := φ5 := φ6 := F[10,15]ψl2 is

used with ψl2 := (‖p5 − pB‖ < 5) ∧ (27 < x5,1 − x4,1 <
33) ∧ (27 < x5,1 − x6,1 < 33) ∧ (27 < x4,2 − x5,2 <
33) ∧ (27 < x5,2 − x6,2 < 33) ∧ (| deg(x4,3) + 45| <
5) ∧ (| deg(x5,3) − 180| < 5) ∧ (| deg(x6,3) − 45| < 5),
where deg(·) transforms radians into degrees. Finally, the

third cluster employs φ7 := φ8 := F[10,15]ψl3 with ψl3 :=
(‖p7 − p8‖ < 10) ∧ (‖p7 − pC‖ < 10) ∧ (‖p8 − pD‖ <
10)∧ (| deg(x7,3) + 90| < 5)∧ (| deg(x5,3) + 90| < 5). The
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(a) Agent trajectories for Scenario 1.
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(b) Agent trajectories for Scenario 2.
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Fig. 2: Simulation results for Scenario 1 and 2.

simulation result is shown in Fig. 2a, where each robot’s

initial orientation is 0, indicated by the direction of the

triangle. Note that the tasks are satisfied within the time

interval [10, 15].

Scenario 2: This scenario employs five agents in two

clusters with v1, v2, v3 ∈ Ξ1 and v4, v5 ∈ Ξ2 simulating

Example 2 and 3, respectively. Recall that in these examples

we had φ1 := G[0,15](‖p1 − p2‖ ≤ 10 ∧ ‖p1 − p3‖ ≤
10), φ2 := F[5,15](‖p2 −

[

90 90
]

‖ ≤ 5), and φ3 :=
F[5,15](‖p3−

[

90 10
]

‖ ≤ 5) as well as φ4 := F[5,10](‖p4−
p5‖ ≤ 10∧‖p4−

[

50 70
]

‖ ≤ 10) and φ5 := F[5,15](‖p5−
[

10 10
]

‖ ≤ 5) so that φ1 and φ4 are collaborative tasks.

We set δi := 1.5 and Ni := 1 for all agents vi ∈ V . Agent

trajectories are shown in Fig. 2b, while Fig. 2c shows the

funnel (5) for agent v1. It is visible that agent v1 first tries

to repair its parameter in Stage 1, and then initiates Stage 3

to successively reduces the robustness r1 and consequently

also the lower funnel as visible in Fig. 2c. Agent v1 hence

finds a trade-off between staying close to agent v2 and v3,

i.e., staying in the middle of them as visible in Fig. 2b. In

other words, agent v1 can not satisfy φ1, but a least violating

solution is found. Agent v4 first tries to repair its parameters

in Stage 1, but then requests agent v5 to use collaborative

control to satisfy φ4 as indicated in Fig. 2d and 2e. Agent

v5 collaborates with agent v4 to satisfy φ4 and satisfies φ5
afterwards. We can conclude that φ2, φ3, φ4, and φ5 are

locally satisfied with robustness r2 = r3 = r4 = r5 = 0.5,

while φ1 is not locally satisfied, but is forced to achieve

ρφi(xφi , 0) > r1 = −30.

VI. CONCLUSION

We presented a framework for the control of multi-agent

systems under signal temporal logic tasks. We adopted

a bottom-up approach where each agent is subject to a

local signal temporal logic task. By leveraging ideas from

prescribed performance control, we developed a continuous

feedback control law that achieves satisfaction of all local

tasks under some given conditions. If these conditions do

not hold, we proposed to combine the developed feedback

control law with an online detection & repair scheme,

expressed as a hybrid system. This scheme detects critical

events and repairs them. Advantages of our framework are

low computation times and robustness that is taken care of

by the robust semantics of signal temporal logic and by the

prescribed performance approach.

Possible future extensions are the improvement of the

repair stages in the online detection & repair scheme. We

proposed a three-stage procedure, but several other steps are

possible. A next step is also to perform physical experi-

ments.
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APPENDIX

Proof of Corollary 2: We proceed similar to the proof of

Theorem 1.

Step A: First, define ξ :=
[

ξi1 ξi2 . . . ξi|Vφ|

]

where

|Vφ| is the cardinality of Vφ and vi1 , . . . , vi|Vφ|
∈ Vφ are all

agents participating in φ. Define again the stacked vector

y :=
[

x ξ
]

. Consider the closed-loop system ẋi =:
Hxi(x, ξi) with Hxi(x, ξi) := fi(xi) + f c

i (x) + gi(xi)ui+
wi where

ui :=

{

− ln(− ξi+1
ξi

)gi(xi)
T ∂ρ

ψi (xφi )

∂xi
if vi ∈ Vφ

u′
i if vi ∈ V \ Vφ.

Recall that u′
i is the control law given in the assumptions.

Next, define ẋ =: Hx(x, ξ) and dξi
dt

=: Hξi(x, ξi, t) with

Hx(x, ξ) and Hξi(x, ξi, t) as in the proof of Theorem 1. Let

Hξ(x, ξ, t) :=
[

Hξi1
(x, ξi1 , t) . . . Hξi|Vφ|

(x, ξi|Vφ|
, t)

]

so that the dynamics of y can be written as ẏ =: H(y, t)
with

H(y, t) :=
[

Hx(x, ξ) Hξ(x, ξ, t)
]

.

It again holds that x(0) is such that ξi(xφi(0), 0) ∈ Ωξ :=
(−1, 0) holds for all agents vi ∈ Vφ by the choice of γ0i .

As in the proof of Theorem 1, define the open, bounded,

and non-empty set Ωφi(t). Next, assume that for each agent

vk ∈ V \Vφ the corresponding state xk is initially contained

in the open set Ωk, i.e., xk(0) ∈ Ωk, where Ωk exists due

the assumptions, i.e., each state xk remains in the compact

set Ω′
k. Let vi ∈ Vφ and define

Ωξ := Ωξ × . . .× Ωξ ⊂ R|Vφ|

Ωx := Ωφi(0)× Ωk1 × . . .ΩkM−|Vφ|
⊂ RnM ,

where vk1 , . . . , vkM−|Vφ|
∈ V \Vφ are all agents not belong-

ing to Vφ. Finally, define the open, non-empty, and bounded

set

Ωy := Ωx × Ωξ ⊂ RnM+|Vφ|.

It consequently holds that y(0) =
[

x(0) ξ(0)
]

∈ Ωy. Next,

note that the conditions in Lemma 1 for the initial value

problem ẏ = H(y, t) with y(0) ∈ Ωy and H(y, t) : Ωy ×
R≥0 → RnM+|Vφ| are satisfied as in the proof of Theorem

1 since the control law u′
k guarantees existence of nontrivial

solutions. As a result, there again exists a maximal solution

with y(t) ∈ Ωy for all t ∈ J := [0, τmax) ⊆ R≥0 and

τmax > 0.

Step B: The Lyapunov analysis to show that τmax = ∞
follows similar steps as in the proof of Theorem 1 that are

not shown here. It can again be shown that ξi(t) ∈ Ω′
ξi

and

xφi(t) ∈ Ω′
φi

for all agents vi ∈ Vφ, where Ω′
ξi

and Ω′
φi

are

compact subsets of Ωξi and Ωφi , respectively. It consequently

follows that 0 < r ≤ ρφ(xφ, 0) ≤ ρmax, i.e., (xφ, 0) |= φ.
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