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Abstract— This paper presents novel controllers that yield
finite-time stability for linear systems. We first present a
sufficient condition for the origin of a scalar system to be finite-
time stable. Then we present novel finite-time controllers based
on vector fields and barrier functions to demonstrate the utility
of this geometric condition. We also consider the general class of
linear controllable systems, and present a continuous feedback
control law to stabilize the system in finite time. Finally, we
present simulation results for each of these cases, showing the
efficacy of the designed control laws.

I. INTRODUCTION

Finite Time Stability (FTS) has been a well-studied con-
cept, motivated in part from a practical viewpoint due to
properties such as achieving convergence in finite time,
as well as exhibiting robustness with respect to (w.r.t.)
disturbances [1]. Classical optimal control theory provides
several examples of systems that exhibit convergence to the
equilibrium in finite time [2]. A well-known example is
the double integrator with bang-bang time-optimal feedback
control [3]; these approaches typically involve solutions
that render discontinuous system dynamics. The approach
in [4] considers finite-time stabilization using time-varying
feedback controllers. The authors in [5] focus on continuous
autonomous systems and present Lyapunov-like necessary
and sufficient conditions for a system to exhibit FTS, while
in [6] they provide geometric conditions for homogeneous
systems to exhibit FTS. [7] extended the notion of finite-time
stability from autonomous to time-varying dynamical sys-
tems, see also [8]. The authors in [9] provided necessary and
sufficient geometric conditions for the finite-time stability of
a scalar system, and used the structure of phase portraits
for second order systems to develop a class of finite-time
systems. In [10], the authors presented a method to construct
a finite-time consensus protocol. [11] presents necessary and
sufficient conditions for FTS of linear, time-varying systems,
as well as an output feedback controller that yields finite-time
stability. [12] addresses the problem of FTS for small-time
controllable systems. FTS has regained much attention in
the recent few years as well; [13]–[15] present FTS results
for neural-network systems, output feedback tracking and
control of multi-agent systems, respectively. In [16], the
authors consider the problem of finite-time consensus and
provide a method to bound the position and velocity errors to
a small residual set in finite-time. In [17], the authors analyze
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the finite-time consensus problem for strongly connected
graphs of heterogeneous systems. Other recent work includes
[18], [19], in which finite-time stability is studied in hybrid
systems framework.

In [9], the authors presented a sufficient geometric con-
dition in terms of the integral of the multiplicative inverse
of the system dynamics, evaluated between any initial point
p and the origin. In this paper, we present a necessary
condition in terms of the derivative of the system dynamics
evaluated at the origin, which is much easier to check than
the former one. We also present a sufficient condition in
terms of bounds on the system dynamics and utilize it to
design finite-time controllers for different classes of systems.
In addition, we consider a general class of linear controllable
systems, whereas the aforementioned work considered a very
special class of linear or nonlinear systems.

In [20], the authors considered the problem of finite-time
stabilization of double integrator systems. In this paper, we
prove that under the effect of our controller, the closed-loop
trajectories of any linear controllable system would converge
to the equilibrium point in finite-time. As case studies,
we consider a nonholonomic system guided by a vector
field, a single integrator system guided by a barrier-function
based controller, and controllable LTI system stabilized at an
arbitrary equilibrium point, and design finite-time controllers
for each one of them.

The paper is organized as follows: Section II presents an
overview of the theory of FTS. In Section III we present new
geometric conditions to establish FTS for scalar systems.
Section IV presents a finite-time Barrier function based
controller for obstacle avoidance and convergence to the goal
location. In Section V, we present novel control laws for
a class of linear controllable systems for FTS. Section VI
evaluates the performance of the proposed finite-time con-
trollers via simulation results. Our conclusions and thoughts
on future work are summarized in Section VII.

II. OVERVIEW OF FINITE TIME STABILITY

Let us consider the system:

ẏ = f(y(t)), (1)

where y ∈ R, f : R → R and f(0) = 0. In [5], the authors
define finite-time stability as follows: The origin is said to
be a finite-time-stable equilibrium of (1) if there exists an
open neighborhood N ⊂ D of the origin and a function
T : N \ {0} → (0,∞), called the settling-time function,
such that the following statements hold:

ar
X

iv
:1

80
2.

08
15

1v
5 

 [
m

at
h.

D
S]

  4
 J

ul
 2

01
8



1) Finite-time convergence: For every x ∈ N \ {0},
ψx is defined on [0, T (x)), ψx(t) ∈ N \ {0} for all
t ∈ [0, T (x)), and limt→T (x) ψ

x(t) = 0. Here, ψx :
[0, T (x))→ D is the unique right maximal solution of
system (1).

2) Lyapunov stability: For every open neighborhood Uε of
0, there exists an open subset Uδ of N containing 0
such that, for every x ∈ Uδ \ {0}, ψx(t) ∈ Uε, for all
t ∈ [0, T (x)).

The origin is said to be a globally finite-time-stable equilib-
rium if it is a finite-time-stable equilibrium with D = N =
Rn. The authors also presented Lyapunov like conditions for
finite-time stability of system (1):

Theorem 1: [5] Suppose there exists a continuous func-
tion V : D → R such that the following hold:
(i) V is positive definite
(ii) There exist real numbers c > 0 and α ∈ (0, 1) and an
open neighborhood V ⊆ D of the origin such that

V̇ (y) + c(V (y))α ≤ 0, y ∈ V \ {0}. (2)

Then origin is finite-time stable equilibrium of (1).

A. Notations

We denote ‖x‖ the Euclidean norm ‖x‖2 of vector x, and
|x| the absolute value of the scalar x. The sign(x) function
is defined as:

sign(x) =

 −1, x < 0;
0, x = 0;
1, x > 0.

(3)

III. NEW CONDITION FOR FINITE-TIME STABILITY

A. Geometric Conditions for FTS

The authors in [9] stated a geometric condition on the
system dynamics for the equilibrium to be finite-time stable:

1) yf(y) < 0 for y ∈ N \{0}, and yf(y) = 0 when y = 0,
and

2)
∫ 0

p
dy
f(y) <∞ for all p ∈ R.

These conditions are not useful in practice as, in general, it
is difficult to evaluate the integral

∫ 0

p
dy
f(y) for an arbitrary

vector field f(y). Hence, we present conditions which are
easier to check. Note that these results follow immediately
from [9]. Before presenting our condition, we state the
following well-known result

Theorem 2: If system (5) is finite time stable, then

∂h(x)

∂x

∣∣∣∣
x=0

= −∞ (4)

This has been pointed out by several authors, see for e.g.
[9]. Note that this is not a sufficient condition: take x(t) =
x0e
−t2 as a counter example. This system goes to origin

only as t → ∞. Taking its first and second time derivative,
we get ẋ(t) = −2tx0e

−t2 and ẍ(t) = (−2 + 4t2)x0e
−t2 .

Now, condition (4) can be re-written in the following form:

dh(x)

dx

∣∣∣∣
x=0

=
d2x(t)

dt2
dt

dx(t)

∣∣∣∣
x=0

For the above example, x = 0 at t = ∞. Using this and
substituting the expressions of ẋ(t) and ẍ(t), we get

dh(x)

dx

∣∣∣∣
x=0

=
(−2 + 4t2)x0e

−t2

−2tx0e−t
2

∣∣∣∣∣
t=∞

= lim
t→∞

−2t = −∞.

Hence, even though the system x(t) = x0e
−t2 is not finite-

time stable, it satisfies (4). This means that the vector field
h(x) cannot be Lipschitz continuous at the origin for system
to be FTS. Now we present a sufficient condition for the
origin of a scalar system to be finite-time stable:

Theorem 3: Consider the system:

ẋ = h(x), x ∈ D ⊂ R, (5)

such that h(0) = 0, and x h(x) < 0 ∀x 6= 0, i.e., the origin
is a stable equilibrium. Then the origin is finite time stable
equilibrium for system (5) if : ∃ D ⊂ R containing the origin
such that ∀x ∈ D,

sign(x)h(x) ≤ −k|x|α, where k > 0, 0 < α < 1. (6)
Proof: Choose the candidate Lyapunov function

V (x) = 1
2x

2. Taking its time derivative along the trajectories
of (5), we obtain:

V̇ = x h(x) = |x| sign(x)h(x).

Since sign(x)h(x) ≤ −k|x|α, k > 0, 0 < α < 1, we have:
V̇ ≤ |x|(−k|x|α). Choosing β = 1+α

2 and c = k2β , we get

V̇ ≤ −cV (x)β

where 0 < β < 1 and c > 0. Hence, from Theorem 1, we
get that the origin is finite-time stable.

Note that this condition is not necessary but just sufficient.
Example 2.3 in [5] is a system with Finite-time stable origin
but there exists no k > 0 and 0 < α < 1 in any open
neighborhood or origin D ⊂ R such that the inequality
(6) holds. These conditions can be used to verify finite-time
stability of scalar systems. Now we present some examples
to demonstrate how these conditions can be utilized to design
finite-time controllers.

B. Example: Trajectory Tracking

Consider a vehicle modeled under unicycle kinematics
given by: ẋẏ

θ̇

 =

u cos θ
u sin θ
ω

 , (7)

where q =
[
rT θ

]T ∈ X ⊂ R3 is the state vector of
the vehicle, comprising the position vector r =

[
x y

]T
and the orientation θ of the agent w.r.t. the global frame
G, u =

[
u ω

]T ∈ U ⊂ R2 is the control input vector
comprising the linear velocity u and the angular velocity ω
of the vehicle. The control objective is to track a trajectory
given by rg(t) which is continuously differentiable in its
argument. We seek vector field based controller which can
converge the trajectories of closed-loop system to the desired



trajectory in finite-time. First we design a vector field to
achieve this:

Fp = −kre(t)‖re(t)‖α−1 + ṙg(t), (8)

where k > 0, 0 < α < 1 and re(t) = r(t) − rg(t). The
control law is given by:

u = ‖Fp‖, (9)
ω = −kω sign (θ − ϕp) |θ − ϕp|α + ϕ̇p, (10)

where ϕp , arctan
(

Fpy
Fpx

)
is the orientation of the vector

field Fp.
Theorem 4: Under control law (9)-(10), system (7) tracks

the trajectory rg(t) in finite time.
Before stating the main theorem, we present an intermediate
result that is used also later in the paper:

Lemma 1: Origin of the following system is a finite-time
stable equilibrium:

ẋ = −kx‖x‖α−1 k > 0 0 < α < 1. (11)
Proof: Consider the candidate Lyapunov function

V (x) =
1

2
‖x‖2.

The time derivative of this function along the system trajec-
tories of (11) read:

V̇ (x) = xT (−kx‖x‖α−1) = −k‖x‖1+α = −cV (x)β ,

where c = 2
1+α
2 k > 0 and β = 1+α

2 < 1. Hence, from
Theorem 1, we get that the equilibrium point 0 is finite-time
stable. Note that for scalar case, right hand side simply reads
−kx|x|α−1 = −k sign(x)|x|α.
Now we prove Theorem 4:

Proof: Consider error term re(t) = r(t) − rg(t). Its

time derivative reads ṙe(t) = ṙ(t) − ṙg(t) =

[
u cos θ
u sin θ

]
−

ṙg(t). From Lemma 1, re(t) goes to origin in finite-time if
ṙe(t) = −kre‖re‖α−1 with k > 0 and 0 < α < 1. Hence,
we need that[

ud cos θd
ud sin θd

]
= −kre‖re‖α−1 + ṙg(t) (12)

where ud and θd denote the desired linear speed and orien-
tation, respectively. Let ∠(·) denote signed angle. From (8)
and (12), we have that ϕp = ∠Fp = θd and u = ud = ‖Fp‖.
Hence, if the system tracks vector field Fp in finite-time, it
will track the desired trajectory rg(t) in finite-time. Define
θe = θ − θd. Choose candidate Lyapunov function V (θe) =
1
2θ

2
e . Taking its time derivative along (10), we get:

V̇ (θe) = θeθ̇e = θe(θ̇ − θ̇d) = θe(ω − θ̇d)
(10)
= θe(−kω sign (θ − ϕp) |θ − ϕp|α + ϕ̇p − θ̇d).

Since θd = ϕp, we get:

V̇ (θe) = θe(−kω sign (θ − ϕp) |θ − ϕp|α)

= −kωθe sign(θe)|θe|α = −kω|θe|1+α

= −kω(2V (θe))
1+α
2 ≤ −cV (θe)

β ,

where c = kω2
1+α
2 and β = 1+α

2 < 1. Hence, θe(t)
converges to zero in finite time. This along with the fact
that the magnitude of linear speed given out of (9) is
equal to the desired linear speed ud implies that ṙ(t) =
−kre(t)‖re(t)‖α−1. Hence, re(t) → 0 in finite time and
which implies that the system trajectory r(t) converges to
rg(t) in finite-time.
Note that for the error dynamics of orientation θe, from (10),
one can get

θ̇e = −kω sign(θe)|θe|α = h(θe)

=⇒ θeh(θe) = −kω|θe|1+α

=⇒ sign(θe)h(θe) = −kω|θe|α

Also, dh(θe
dθe

= −kω sign(θe)|θe|α−1 which implies
dh(θe)
dθe

∣∣∣
θe=0

= −∞ since α < 1. Hence, both the conditions
presented in Theorem 3 and 2 are getting satisfied.

IV. OBSTACLE AVOIDANCE USING BARRIER FUNCTION
BASED CONTROLLER

Consider a vehicle modeled under single integrator dy-
namics as

ẋ = u, (13)

where x,u ∈ Rn. The problem of reaching to a specified
goal location in finite time can be formulated mathematically
as follows:

∃t∗ <∞ s.t ∀t ≥ t∗ ‖x(t)− τ‖ = 0

where τ is the desired goal location, while that of obstacle
avoidance can be written as:

‖x(t)− o‖ ≥ dc ∀t ≥ t0,

where o represents the location of the obstacle and t0 is the
starting time. Here, we model the obstacle as circular discs of
radius ρo. The vehicle is required to maintain a safe distance
dm from the obstacle. Hence choosing dc = dm+ρo implies
that vehicle maintains the required minimum distance from
the boundary of the obstacle if ‖x−o‖ ≥ dc. We assume that
the obstacle is located in such a manner that ‖o− τ‖ > 2dc
so that at the desired location is sufficiently far away from
the obstacle. We also assume that agent starts sufficiently
far away from the obstacle so that ‖x(t0) − o‖ > dc. We
seek a continuous feedback-law ui such that the system (13)
reaches its goal location while maintaining safe distance from
the obstacle. More specifically, we seek a Barrier-function
based controller for this problem. First we define the Barrier
function as follows:

B(x) =
‖x− τ‖2

‖x− o‖ − dc + 1
ε

, (14)

where ε� 1 is a very large number. We choose the controller
of the form:

u = −k1∇B‖∇B(x)‖α−1, (15)

where k1 > 0 and 0 < α < 1. With this controller, we have
the following result:



Theorem 5: Under the control law (15), the point x =
τ is FTS equilibrium for the closed-loop system (13), and
the closed-loop system trajectories will remain safe w.r.t. the
obstacle.

Before presenting the proof, we present some useful
Lemmas:

Lemma 2: In the domain Do = {x | ‖x− o‖ > dc}, the
Barrier function B(x) is bounded as B(x) ≤ ε‖x− τ‖2.

Proof: In the chosen domain:

‖x− o‖ ≥ dc =⇒ ‖x− o‖ − dc ≥ 0

=⇒ ‖x− o‖ − dc +
1

ε
≥ 1

ε

=⇒ 1

‖x− o‖ − dc + 1
ε

≤ ε

=⇒ B(x) =
‖x− τ‖2

‖x− o‖ − dc + 1
ε

≤ ε‖x− τ‖2.

Lemma 3: Gradient of the Barrier function, ∇B(x) is
non-zero everywhere except the equilibrium point τ and at

x = τ + 2
‖o− τ‖+ dc − 1

ε

‖o− τ‖
(o− τ ) (16)

Proof: Define xo , (‖x − o‖ − dc + 1
ε ). Gradient of

the Barrier function (14) reads:

∇B(x) =2
x− τ
xo

− ‖x− τ‖
2

x2o

x− o
‖x− o‖

Hence, ∇B(x) = 0 implies:

x− τ
‖x− τ‖

=
‖x− τ‖

2xo

x− o
‖x− o‖

,

which holds only if x−τ is along x−o and ‖x−τ‖ = 2xo
since left hand side of the equation is a unit vector. Denote
‖x−τ‖ = a, ‖x−o‖ = b and ‖o−τ‖ = c. Since x−o and
x−τ are co-linear and due to the assumption ‖o−τ‖ > dc,
we get that a = b+ c. From that, we get

a = b+ c = 2x0 = 2b− 2dc +
2

ε

=⇒ b = c+ 2dc −
2

ε
⇒ a = 2(c+ dc −

1

ε
)

From this, we get that

x− τ = 2(c+ dc −
1

ε
)
o− τ
‖o− τ‖

.

As c = ‖o− τ‖ = ‖oτ‖ we get

x = τ + 2
‖oτ‖+ dc − 1

ε

‖oτ‖
oτ .

Lemma 4: In any closed, compact domain D ⊂ Rn
containing point τ and excluding the region D̄ = {x | ‖x−
p‖ < r p = τ+θ(o−τ ) , θ ≥ 1}, where r is an arbitrary
small positive number, the gradient of Barrier function B(x)
can be bounded as

‖∇B‖ ≥ c‖x− τ‖, (17)

where c > 0.
Proof: From (14), it can be easily verified that

∇B(τ ) = 0. Choose D1 = {x | ‖x−τ‖ < ∆}, where ∆ is
a very small positive number. Choose domain D̃ = D \D1.
Recall that D doesn’t include the ray D̄, so D̃ does not
include the point as in Lemma 3. Hence, from Lemma 3,
at any point x ∈ D̃, ∇B(x) 6= 0 and since D̃ is a closed
domain, we can find c1 = minx∈D̃

‖∇B(x)‖
‖x−τ‖ > 0. Therefore,

we have that ∀ x ∈ D̃, ‖∇B‖ ≥ c1‖x− τ‖.
Now, consider D2 = {x | ‖x − τ‖ ≤ ∆}. In a very

small neighborhood of τ , the Hessian matrix ∇2B(x) � 0
(i.e. ∇2B is a positive definite matrix). Therefore, using the
gradient inequality (First-order condition for convexity), we
have that ∀x ∈ D2,

B(τ ) ≥ B(x) +∇B(x)T (τ − x)

=⇒ 0 ≥ B(x)−∇B(x)T (x− τ )

=⇒ ∇B(x)T (x− τ ) ≥ B(x).

From (14), one can easily see that B(x) can be bounded as
B(x) ≥ c2‖x− τ‖2. Also, using Cauchy-Schwartz inequal-
ity, we have that ∇B(x)T (x − τ ) ≤ ‖∇B(x)‖‖x − τ‖.
Therefore, we have that

‖∇B(x)‖‖x− τ‖ ≥ ∇B(x)T (x− τ )

≥ B(x) ≥ c2‖x− τ‖2

=⇒ ‖∇B(x)‖ ≥ c2‖x− τ‖

Since D = D̃
⋃
D2, choosing c = min{c1, c2} gives us the

required result.
Now we are ready to prove Theorem 5:

Proof: From Lemma 3, we have that ∇B(x) = 0 at the
equilibrium point τ and at the point x = τ+µ(o−τ ) where
µ takes the value as per Lemma 3. Lets assume that the initial
condition is such that x(t0) doesn’t lie on the ray D̄ defined
as per Lemma 4. Consider the open domain around the goal
location Do as defined in Lemma 2. Define D = Do \ D̄
(see figure 1. Since D̄ is a closed domain and Do is open,
domain D is an open domain around the equilibrium τ .

Fig. 1. The working domain D and the excluded region D̄.

Choose the candidate Lyapunov function

V (x) = B(x).

For simplifying the notation, define xe = x−τ and drop the
argument x for the functions B and ∇B. Taking the time



derivative of V (x) along the trajectories of (13), we have:

V̇ (x) =(∇B)T (−k1∇B‖∇B‖α−1)

=− k1‖∇B‖1+α

From Lemma 4, we have that ‖∇B‖ ≥ c‖xe‖. Using this,
we get:

V̇ ≤− k1c1+α‖x‖1+α

Using the result from Lemma 2, we have that B ≤ ε‖xe‖2.
Hence, we get:

V (x) = B(x) ≤ ε‖xe‖2 ⇒

− ‖xe‖2 ≤ −
1

ε
V (x)⇒

− ‖xe‖1+α ≤ −
1

ε
1+α
2

V (x)
1+α
2

Hence, we have that:

V̇ (x) ≤ −k1c1+α|xe‖1+α ≤ −KV (x)β ,

for any x ∈ D, where K = ( 1
ε )βk1c

1+α and β = 1+α
2 < 1.

Thus, we have that the equilibrium x = τ is finite-time
stable. Safety is trivial from the construction of Barrier
function: since V̇ (x) is negative, V (x) = B(x) would
remain bounded and hence, the denominator of B(x) would
have non-zero positive value. Choose ε greater than 1 over
this minimum non-zero value would ensure ‖x−o‖−dc > 0.

V. FINITE TIME STABILITY OF LTI SYSTEMS

Consider the system

ẋ = Ax+Bu, (18)

where x ∈ Rn u ∈ U ⊂ Rn, A,B ∈ Rn×n. Objective is
to stabilize the origin of (18) in finite time. Mathematically,
we seek a continuous feedback law so that conditions of
Theorem 1 are satisfied.

A. Multi-Input Case

Theorem 6: Assume B is full rank in (18). Then, the
feedback control law

u(x) = K1x+K2xα (19)

where K1 is such that A+BK1 is Hurwitz, K2 = −B−1
and

xα = x‖x‖α−1, (20)

with 0 < α < 1 stabilizes the origin of closed-loop system
(18) in finite-time.

Proof: Since B is full rank, (A,B) is controllable.
Therefore, there exists a gain K1 s.t. Re(eig(A+BK1)) <
0 i.e., there exists a positive definite matrix Q s.t. (A +
BK1)TP + P (A + BK1) = −Q where P is a pos-
itive definite matrix. Choose candidate Lyapunov function

V (x) = xTPx. Taking time derivative of V (x) along the
closed-loop trajectories of system (18), we get:

V̇ (x) = xTP (Ax+Bu) + (Ax+Bu)TPx

= xTP (Ax+BK1x+BK2xα)

+ (Ax+BK1x+BK2xα)TPx

= xT (PÃ+ ÃTP )x+ xTPBK2xα

+ xTαK
T
2 B

TPx

where Ã = A + BK1. Choose K2 = −B−1. Hence we
have that (PBK2 +KT

2 B
TP ) = −2P . Therefore

V̇ (x) = −xTQx− 2xTPxα ≤ −2xTPxα

Now, for any symmetric matrix P , xTPy can be bounded as
λmin(P )xTy ≤ xTPy ≤ λmax(P )xTy if xTy > 0. From
(20), we have that xTxα > 0 for all x 6= 0. Hence, we have
that xTPxα ≥ λmin(P )xTxα. Also, we can bound V (x)
by

λmin(P )‖x‖2 ≤ xTPx ≤ λmax(P )‖x‖2

=⇒ V (x) ≤ λmax(P )‖x‖2

=⇒ V (x)β ≤ k‖x‖2β = k‖x‖1+α

where k = (λmax(P ))β > 0 and β = 1+α
2 < 1. Hence

V̇ (x) ≤ −2xTPxα ≤ −2λmin(P )xTxα

= −2λmin(P )xTx‖x‖α−1 = −2λmin(P )‖x‖1+α

≤ −2λmin(P )
V (x)β

k
≤ −cV (x)β

=⇒ V̇ (x) + cV (x)β ≤ 0

where c = 2λmin(P )
k > 0 and 0 < β < 1 since 0 < α < 1.

Therefore, from Theorem 1, we have that the origin is finite-
time stable for closed-loop system.

This was a restrictive case since we assumed matrix B to
be full rank. Before we present the most general case, we
state a result that we would require:

Lemma 5: Consider the scalar system

ẋ = ax+ bu b 6= 0. (21)

x converges to any C1 trajectory given by xd(t) ∈ R in finite
time with control law

u =
1

b
(−ax− k sign(x− xd)|x− xd|α + ẋd(t)), (22)

where k > 0 and 0 < α < 1.
Proof: Choose candidate Lyapunov function V (x) =

1
2 (x − xd)2. The time derivative of this function along the
closed loop trajectory reads

V̇ (x) = (x− xd)(ẋ− ẋd)
= (x− xd)(ax+ bu− ẋd)
(22)
= (x− xd)(−k sign(x− xd)|x− xd|α)

= −k|x− xd|1+α = −cV (x)β ,

where c = k2
1+α
2 and β = 1+α

2 < 1. Hence, from Theorem
1, we get that x(t)− xd(t)→ 0 in finite time.



Now we present the most general case of linear controllable
systems and show that any controllable system can be
controlled in finite time.

B. Linear Controllable System

Since the system is assumed to be controllable, we start
with controllable canonical form:

ẋ = Ax+Bu, (23)

where x ∈ Rn and u ∈ R and system matrices have form

A =



0 1 0 . . . 0 0
0 0 1 0 · · · 0
...

...
. . .

...
0 0 · · · 0 1 0
0 0 0 · · · 0 1
a1 a2 a3 · · · · · · an


B =



0
0
...
0
0
1


.

Let xd =
[
xd1 0 · · · 0

]T
be the desired state. We

propose a continuous, state-feedback control law u so that
∃ T <∞ such that ∀t ≥ T , x(t) = xd:

Theorem 7: System (23) reaches the desired state xd in
finite with the control law

u = ẋdn −
n∑
i=1

aixi − kn sign(xn − xdn)|xn − xdn|α, (24)

where ki > 0, xdi is given out of (26) and n−1
n < α < 1.

Furthermore, the controller u remains bounded.
Proof:

System (23) can be re-written in the following form:
ẋ1
...

ẋn−1
ẋn

 =


x2
...
xn∑n

i=1 aixi + u

 . (25)

For x1 → xd1 in finite-time, the desired time-rate of x1, i.e.
desired x2 (denoted as xd2) should be

xd2 = −k1 sign(x1 − xd1)|x1 − xd1|α + ẋd1,

where k1 > 0 and 0 < α < 1 (see Lemma 5). As we
assume xd1 to be constant, we have ẋd1 = 0. Similarly, in
general form, one car write:

xdi+1 = −ki sign(xi − xdi )|xi − xdi |α + ẋdi , (26)

where 1 ≤ i ≤ n−1 and ki > 0. Choose candidate Lyapunov
function

V (x) =

n∑
i=1

1

2
(xi − xdi )2

Taking the time derivative of the candidate Lyapunov func-
tion along the closed loop system trajectory with controller

(24), we get

V̇ (x) =

n−1∑
i=1

(xi − xdi )(xi+1 − ẋdi )

+ (xn − xdn)(u+

n∑
j=1

ajxj − ẋdn)

=

n−1∑
i=1

(xi − xdi )(xi+1 − xdi+1 + xdi+1 − ẋdi )

+ (xn − xdn)(u+

n∑
j=1

ajxj − ẋdn)

=

n−1∑
i=1

(xi − xdi )(xi+1 − xdi+1)

+

n−1∑
i=1

(xi − xdi )(−ki sign(xi − xdi )|xi − xdi |α)

+ (xn − xdn)(−kn sign(xn − xdn)|xn − xdn|α)

=

n−1∑
i=1

(xi − xdi )(xi+1 − xdi+1) +

n∑
i=1

−ki|xi − xdi |α+1

≤ V (x)−
n∑
i=1

ki|xi − xdi |α+1,

as
n−1∑
i=1

(xi−xdi )(xi+1 ≤ 1
2‖xe‖

2 = V (x). Define k̄ = min
i
ki

so that we get

V̇ (x) ≤ V (x)− k̄
n∑
i=1

|xi − xdi |α+1 = V (x)− k̄‖xe‖1+α1+α,

where xe ,
[
x1 − xd1 x2 − xd2 . . . xn − xdn

]T
and

‖xe‖1+α1+α is (1 + α)−norm of vector xe raised to power
(1+α). Using the norm inequality for equivalent norms, we
have that ‖xe‖2 ≤ ‖xe‖1+α since 1 + α < 2. From this,we
get

V̇ (x) ≤V (x)− k̄‖xe‖1+α2 = V (x)− k̄(‖xe‖22)
1+α
2

=⇒ V̇ (x) ≤ V (x)− cV (x)β ,

where β = 1+α
2 < 1 and c = k̄2β . From [21], we get that

in domain Ω = {x | V (x)1−α < c}, the equilibrium point
xd is finite-time stable. Now, in order to be able to stabilize
the system in finite-time from any given initial condition, we
choose the control gains such that ki >

V (x(0))1−α

2β
for all i

so that k̄ > V (x(0))1−α

2β
and V (x(0))1−α < c. Since V̇ (x) ≤

0, we get that V (x)1−α ≤ V (x(0))1−α ≤ c and hence the
closed-loop system would be finite time stable. Furthermore,
with α > n−1

n , it can be verified that the controller (24)
remain bounded: from (26), ẋdn = −kn−1|xi − xd|2α−1 +
ẍdn−1. Define (v)(k) as the k − th time derivative of v, so
that we get

(xdi+1)n−i = −ki|xi − xdi |(n−i+1)α−(n−i) + (xdi )
n−i+1.

Each (xdi+1)n−i is bounded if α > n−i
n−i+1 and (xdi )

n−i+2 is
bounded. (xd2)n−1 = −k1|x1 − xd1|nα−(n−1) is bounded if



α > n−1
n . Hence, with this choice of α, all the derivatives

(xdi )
(n−i+2) and the controller remain bounded.

This shows that any controllable LTI system can be con-
trolled (and trivially, stabilized to origin) in finite-time from
any initial condition.

VI. SIMULATIONS

A. Simulation results for Section III-B

We consider a sinusoidal trajectory as the desired trajec-
tory, i.e. rg(t) =

[
t cos(t)

]T
. Figure 2 shows the errors

or deviations of coordinates x(t) and y(t) from the desired
coordinates xg(t) and yg(t). Figure 3 shows the actual and
desired trajectory for the closed-loop system. It can be seen
from the figures that trajectory r(t) = (x(t), y(t)) converges
to the desired trajectory rg(t) in finite time.
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Fig. 2. Deviation from Desired Trajectory with time.
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Fig. 3. Actual and Desired Trajectories

B. Simulation results for Section IV

We consider the desired goal location for the system (13)
as τ =

[
10 20

]T
and the obstacle at o =

[
4 6

]T
of radius

1. We use the safe distance dc = 2. Figure 5 shows the path
of the vehicle. Figure 4 shows the distance of the vehicle
from its goal location, which becomes 0 in finite time.

C. Simulation results for Section V-B

We consider 4 states for the system (23). The desired
location is chosen as xd = [5, 0, 0, 0]T . Figure 6 shows the
trajectory of the system. Again, it can be seen from the figure
that the system converges to its desired state in finite time.
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Fig. 4. Distance of the vehicle from desired goal location.

Fig. 5. Vehicle Path in presence of Obstacle.

VII. CONCLUSIONS AND FUTURE WORK

We presented new geometric conditions for scalar systems
in terms the system dynamics evaluated to establish finite-
time stability. We demonstrated the utility of the condition
through 2 examples where a vector-field based controller is
designed for finite-time convergence. We also presented a
novel method of designing finite-time Barrier function based
control law for obstacle avoidance. Finally, we presented
a novel continuous finite-time feedback controller for a
general class of linear controllable systems. Our current
research focuses on Hybrid and Switched systems. Therefore,
in future, we would like to devise condition equivalent to
Branicky’s condition for Switching systems to be finite-time
stable under arbitrary switching. Also, we would also like to
expand our collection of finite-time controllers for a general
class of non-linear systems.
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