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A Koopman Operator Approach for Computing and Balancing Gramians for
Discrete Time Nonlinear Systems

Enoch Yeung, Zhiyuan Liu, and Nathan O. Hodas

Abstract— In this paper, we consider the problem of quan-
tifying controllability and observability of a nonlinear discrete
time dynamical system. We introduce the Koopman operator
as a canonical representation of the system and apply a
lifting technique to compute gramians in the space of full-
state observables. We illustrate the properties of these gramians
and identify several relationships with canonical results on
local controllability and observability. Once defined, we show
that these gramians can be balanced through a change of
coordinates on the observables space, which in turn allows
for direct application of balanced truncation. Throughout the
paper, we highlight the aspects of our approach with an example
nonlinear system.

I. INTRODUCTION

The ability to quantify how controllable and how observ-
able a system is a hallmark of successful engineering. It is
not just enough to know whether a system is controllable [1],
[2]. The extent to which it can be controlled , the amount
of energy required to achieve a control setpoint [3], and the
fundamental modes [6], [13] required to achieve a certain
input-output profile all motivate the development of measures
for controllability and observability [14].

There are two approaches to quantifying controllability
and observability of a dynamical system. First, by checking
rank conditions, one can make a binary decision as to
whether the system is controllable or observable [14]. This
works in theory, but is difficult to implement in practice
since checking rank of matrices, let alone distributions, is
a numerically challenging problem.

The second approach is to quantify controllability and
observability by examining the gramians of a system. For
linear time invariant systems, there is a rich theory for the
construction, efficient computation, and analysis of grami-
ans [14],[3], [1]. In particular, the balancing of gramians
enables model reduction [28], by which lower-order yet high
fidelity input-output models of the system are constructed.
For nonlinear systems, there is no canonical definition of
controllability and observability gramians, nor generalized
methods for balanced truncation [21]. Scherpen, Kawano,
and Fujimoto et al. have pioneered the development of non-
linear model reduction methods using differential balancing
[29], [27], [28]. Lall et al demonstrated the use and success
of empirical gramians [22], where the underlying system
was represented empirically via data. Condon and Ivanov
proposed a novel construction of empirical controllability
and observability gramians, based on a generalization for
solving linear time-varying systems [23]. Indeed, the core
feature of a grammian is that they are constructed assuming

linearity of a system state or output with respect to their
initial condition or input.

Recently, researchers working in Koopman operator theory
have shown it is possible to identify and learn the funda-
mental modes for a nonlinear dynamical system from data.
The key insight here is that a nonlinear dynamical system
has a canonical representation as a infinite-dimensional linear
system [4]. Rowley, Mezic, et al. showed it was possible to
identify the fundamental modes of complex turbulent flow
[6], while Kutz et al. showed it was possible to extend
Koopman representations for input-control applications [24].
Identifying a Koopman operators from data has become
computationally tractable, largely due to advances in ex-
tended dynamic mode decomposition theory [7], [8], [4] and
increased computing power.

Koopman operators can be used to characterize observ-
ability of a system. Surana and Banaszuk used Koopman
operators to synthesize observers for state estimation in
discrete-time nonlinear systems [5]. In a similar vein, Ko-
rda and Mezic use Kooman operators to synthesize linear
predictors in the context of model predictive control [9]. In
a complementary paper, Vaidya used the Perron-Frobenius
operator, the adjoint of the Koopman operator, to define and
quantify the degree of observability of sets in the phase space
of a discrete-time nonlinear system [10].

In this work we use Koopman operators to construct
controllability and observability gramians for a class of
discrete time nonlinear systems with exogenous inputs. Sec-
tion III introduces the notion of a Koopman observability
gramian and Section IV) introduces the notion of a Koopman
controllability gramian. Throughout, we identify several key
relationships between traditional definitions of local control-
lability and observability and non-singularity of Koopman
gramians. We then show how gramians can be balanced
through a change of coordinates on the nonlinear observable
space, enabling extension of classical balanced truncation
methods (Section V). We illustrate each of these concepts
with an example system.

II. KOOPMAN OPERATORS: FORMULATION AND
LEARNING APPROACHES

A. Formulation of Koopman Operators

Consider a discrete time open-loop nonlinear system of
the form

xt+1 = f(xt)

yt = h(xt)
(1)
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where f ∈ Rn is CNd [0,∞) differentiable and h ∈ Rp is
continuously differentiable. The Koopman operator of system
(1), if it exists, is a linear operator that acts on observable
functions ψ(xk) and forward propagates them in time. We
denote the Koopman operator as K : F → F where F is
the space of observable functions that is invariant under the
action of K.

Lemma 1: If f ∈ Rn is CNd [0,∞), where Nd = ∞, or
if f has a finite Taylor series expansion, then a Koopman
operator K exists for system (1) and can be represented with
a matrix of countable dimension.

Proof: The proof follows immediately from Taylor’s
theorem. Suppose f(x) is infinitely differentiable, then it
can be expressed as an linear combination of powers of x,
which define the dictionary of observable functions ϕ(x).
The Taylor coefficients become entries in the Koopman
operator, to obtain

f(x) = f(0) +
∂f

∂x
x+ xT

∂2f

∂x2
x+ .... = Kxψ(x)

where ψ(x) = (x, ϕ(x)) and ϕ(x) = (1, x1x2, x1x3, ...).
Since the expansion is infinite, the Taylor series expansion
exactly equals f(x) for any x. This implies that

ψ(xt+1) =

[
xt+1

ϕ(xt+1)

]
=

[
Kxψ(xt)
ϕ(xt+1)

]
(2)

Notice that any element ϕ(xt+1) can be expressed as
n∏
j=1

x
pj
j,k+1 = f

pj
j (xk) = (eTj Kxϕ(xk))pj =

∑
i

ci
∏
l

xpll

(3)
That is, the product of polynomial powers of entries of
ϕ(x) can be expressed in terms of powers of entries of
xk, which ultimately are the entries that comprise ψ(x).
This means that ϕ(xk+1) = Kϕψ(xk) for some matrix
Kϕ ∈ R(nL−n)×nL , nL ≤ ∞. Since each series expansion is
a countable expansion, this means that the matrices Kx and
Kϕ have countable dimension and that the countable matrix

K =

[
Kx

Kϕ

]
is a Koopman operator for system (1), i.e.

ψ(xt+1) = Kψ(xt) (4)

When f has a finite Taylor series expansion, the argument is
identical, except that the expansions are countably finite and
the corresponding Koopman operator is countably finite.
This lemma thus outlines conditions that guarantees exis-
tence of a non-trival Koopman operator. In general, the
observable ψ(x) ≡ 0 always yields a Koopman operator, but
it is the trival Koopman operator K ≡ 0. Another condition
that guarantees existence is that the system f is Hamiltonian
[11]. We will be considering C∞ [0,∞) nonlinear systems
for which countable Koopman operators are guaranteed to
exist.

Assumption 1: We suppose that f ∈ Rn is CNd [0,∞),
where Nd =∞.

Assumption 2: Given system (1), we suppose that yk =
h(xk) ∈ F and that h ∈ span{ψ1, ψ2, ...}.

This means that the output yk can be expressed as

yk = h(xt) = Whψ(xt) (5)

where Wh ∈ Rp×nL and nL ≤ ∞.
Assumption 3: We suppose that the Koopman observable

function is state inclusive, i.e.

ψ(x) = (x, ϕ(x))

where ϕ(x) ∈ RnL−n are continuous functions in F .

B. Koopman Learning: Dynamic and Extended Dynamic
Mode Decomposition

The functions in the Koopman observable ψ(x) are not
unique. For example, if ψ(x) = (sin(x), cos(x)) was the
observable function for a nonlinear system with dynamics

xt+1 = sin(xt) + cos(xt) (6)

then an infinite Taylor series expansion of sin(x) and cos(x)
shows that ψ(x) = (1, x, x2/2!, x3/3!, ...) can also serve as
a suitable observable function. In one case, the observable
function is countably finite while in another, the observable
function is countably infinite. Thus, for a single nonlinear
system, there are concise and less concise ways of parame-
terizing a given observable function space.

The challenge is that the observable functions and the
Koopman operator are often unknown, especially in the
absence of complete model information or due to known
but inherent model complexity. The state-of-the-art method
is extended dynamic mode decomposition [4], where generic
but expressive basis functions are used to populate a dictio-
nary of observable functions. The data from the dynamical
system is then presented in pairs

Xp =
[
x(tn+1) . . . x(t0)

]
, Xf =

[
x(tn) . . . x(t1)

]
to obtain

Ψ(Xf ) =


ψ(x

(0)
n+1) . . . ψ(x

(0)
1 )

...
. . .

...
ψ(x

(p)
n+1) . . . ψ(x

(p)
1 )


Ψ(Xp) =


ψ(x

(0)
n ) . . . ψ(x

(0)
0 )

...
. . .

...
ψ(x

(ND)
n ) . . . ψ(x

(ND)
0 )

 .
(7)

and solving for the Koopman operator by minimizing the
(regularized) objective function

||Ψ(Xf )−KΨ(Xp)||2 + ζ||K||2,1 (8)

where K is the finite approximation to the countable (po-
tentially infinite) Koopman operator K. In the analysis that
follows, all definitions, lemmas and theorems are derived
considering the exact Koopman operator K of a nonlinear
system. Numerical examples show the use of approximate
Koopman operators to estimate Koopman gramians, estimate
controllability, estimate observability, and perform model
reduction. The theorems are self-contained as a treatment
of the true system Koopman operator K, while the examples
serve to illustrate their application in a data-driven setting.
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III. KOOPMAN OBSERVABILITY GRAMIANS

The next contribution of this paper is to show how
Koopman operators can be used to quantify observability. To
do this requires deriving an expression for how the Koopman
operator maps an initial condition x0 to y. Specifically,
Assumption 3 gives us

yt = Whψ(xt) = WhK(ψ(xt−1))

= K(K(ψ(xt−2)

=
...

= WhKtψ(x0)

(9)

We define

Φyψ ≡WhKt (10)

where Φyψ : RnL → Rp is the transformation that maps
ψ(x0) to yn. The output energy ||yt|| can be related to x0
as follows

||yt||2 =
∑
n

< yt, yt >=
∑
n

ψ(x0)T (Φyψ)TΦyψψ(x0)

(11)
leading to a natural definition for the Koopman observability
gramian.

Definition 1: Given a system (1) satisfying Assumptions
1, 2, and 3, and corresponding Koopman operator K ∈
RnL×nL , nL ∈ N, nL ≤ ∞, the infinite time Koopman
observability gramian is defined as

Xψ
o =

∑
n

(Φyψ)TΦyψ =

∞∑
t=0

(Kt)TWT
h WhKt. (12)

Moreover, let P : Mψ → Rv be a non-square linear
projection (v ≤ nL) of the observable function ψ(x) =
(x, ϕ(x)). We define the projected Koopman observability
gramian as

Xo(P ) ≡ PXψ
o P

T (13)

Lemma 2: Given a system (1) satisfying Assumptions
1 and 2 and its corresponding Koopman operator K, the
Koopman observability gramian and the projected Koopman
observability gramian are positive semi-definite.

Proof: Let Xψ
o ∈ RnL×nL , nL ≤ ∞ denote the

Koopman observability grammian and Xx
o ∈ Rn×n denote

the Koopman projected observability grammian. Let zψ ∈
RnL and zx ∈ Rn. Then

zTψX
ψ
o zψ = zTψ

∑
t

(Kt)TWT
h WhKtzψ. (14)

and

zTxX
x
o zx = zTx Px

∑
t

(Kt)TWT
h WhKtPTx zx. (15)

and defining
νψ(n) = WhKtzψ
νx(n) = WhKtPxzψ

(16)

we have that

zTψX
ψ
o zψ = zTψ

∞∑
t=0

(Kt)TWT
h WhKtzψ

=
∑
t

zTψ (Kt)TWT
h WhKtzψ

=
∑
t

νψ(t)T νψ(t) =
∑
t

||νψ(t)||2

≥ 0

(17)

zTxX
x
o zx = zTx P

T
x

∑
n

(Kt)TWT
h WhKtPxzx

=
∑
t

zTx P
T
x (Kt)TWT

h WhKtPxzx

=
∑
t

νx(t)T νx(t) =
∑
t

||νx(t)||2

≥ 0

(18)

The Koopman observability gramian quantifies the observ-
ability of the function ψ(x). More importantly, when ψ(x)
includes observable functions related to the local observabil-
ity of the underlying nonlinear system (1), the Koopman
observability gramian retains that information. The following
lemma makes this relationship precise.

Lemma 3: Suppose that system (1), satisfies Assumptions
1-3, and is locally observable and generates the involutive
distribution

∆(x) = {Ld1f h(x), ..., Ldnf h(x)}. (19)

of rank n. Let ψx(x) denote the Koopman observable, then if
there exists n projections Pi : RnL → Rv , v = p, i = 1, ..., n
such that

Ldif h(x) = Piψx(x) (20)

for all x, then there exists projected Koopman observability
grammian Xo(P̄ ) with P̄ : RnL → Rn that is positive
definite.

Proof: Since the system (1) is locally observable, the
matrix

L(x) ≡
[
Ld1f h(x) . . . Ldnf h(x)

]
(21)

has full column rank n for all x. In particular, define

P̄ =
[
L(x)T 0n×(nL−p)

]
(V T )−1 (22)

where V is the matrix of left eigenvectors of the Koopman
operator, i.e.

Kt = V −1ΛtV. (23)

Note that P̄ is well defined. To see this, note that V spans
the observable function space [4] and therefore since L(x) is
in the range of ψx(x), L(x) is also in the range space of V .
Let x be an arbitrary point in Rn. The projected Koopman
observability gramian

P̄Xψ
o P̄

T = (P̄ (Φyψ)T )(ΦyψP̄
T ) (24)
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is positive definite if and only if ΦyψP
T has no right null-

space. By definition, we now have

ΦyψP̄
T = Wh

∑
t

V −1ΛtV P̄T

= Wh

∑
t

V −1Λt
[

L(x)
0(nL−p)×n

] (25)

but since L(x) has full column rank, this implies that ΦyψP̄
T

has full column rank and therefore Xo(P̄ ) is positive definite.

Example 1 (Two State System): An advantage of Koop-
man observability gramians is their ability to quantify ob-
servability even for systems that are nonlinear, unstable,
or that have eigenvalues close to zero. We consider such
a simple 2-dimensional nonlinear system as an example,
namely a nonlinear system that exhibits linear behavior for
some initial conditions, but with a slight perturbation to the
initial condition x[0], becomes unstable

x1[t] = δ1x1[t− 1] + αx1[t− 1]2 − x2[t− 1]2

x2[t] = δ2x2[t− 1] + βx1[t− 1] + γx2[t− 1]2

y1[t] = x1[t]2

y2[t] = x2[t]2

(26)

For our simulations, we have taken δ1 = 0.75, δ2 = 0.9, α =
0.02, β = 0.12, and γ = 0.1 The state trajectories of
both systems are plotted in Figure 1. The true Koopman
observability grammian is a function of the true Koopman
operator. Following the approach described in Section II,
we construct an approximate Koopman operator using the
extended dynamic mode decomposition method and approx-
imate the Koopman observability grammian. We define a
vector observable function
ψ(x) =

(
p(x), x1x

2
2, x

2
1x2, x

2
1x

2
2,Lfh(x),L2

fh(x)
)

p(x) =
(
x1, x2, x

2
1, x

2
2

)
.

(27)

The vector ψ(x) is an observables vector that contains the
full-state of the system (for calculating the Grammian) as
well as higher order polynomial terms. We compute a finite
approximation K ∈ R12×12 of K. For brevity, we refrain
from displaying it here. We construct

Wh =

[
eT3
eT4

]
(28)

where ej ∈ R12. The matrix Px ∈ R12×2 is defined as[
e1 e2

]
(29)

Our approximation to the Koopman observability grammian
is calculated as in equation (12) and its (normalized) projec-
tion is given as

Xo(Px) = PTx (Φyψ)T (Φyψ)Px

=

(
0.69 −0.31
−0.31 0.14

)
,

(30)

where Xo(Px) is computed as the 1-step Koopman observ-
ability grammian. Recall that the canonical observability
grammian quantifies the output energy associated with a
particular initial condition x0.

0 10 20 30 40
Timestep

-15

-10

-5

0

5

St
at
e

One step prediction

Fig. 1. A plot of the predicted state trajectories from a trained Koopman
operator versus actual state trajectories for the damped oscillator system.
There are two states in this system, x1, plotted in blue, and x2 plotted
in green. The simulation results for the ground-truth data are plotted as
dots while the one-step prediction from the Koopman operator is plotted as
dashed lines. The 2-norm error summed across both output channels was
ε = 2.7 × 10−5. For stable simulations (data not shown), ε was much
smaller.

In our simulations of this system, we found that x1[n]
(blue) exhibited a much larger output energy y1[n] = x1[n]2

across a range of initial conditions, including the one plotted
in Figure 1. We see that the approximate projected Koop-
man observability grammian reflects this increase in output
energy, while computing the linearized system

(xt − x0) =
∂F

∂x
|x=x0 (xt − x0)

yt =
∂h

∂x
|x=x0 (xt − x0)

(31)

results in the canonical linear grammian

Xo =

(
1.2 −2.1
−2.1 10.0

)
(32)

Notice that it mischaracterizes the output energy for x1 and
x2. In particular, it predicts that x2[n] is ten times more sen-
sitive to perturbation in initial conditions. Examining the first
few points of the trajectory, it seems this is the case, which
may explain why the linearization (a local approximation
around x0) erroneously suggests that the initial condition of
x2 is more observable than x1. However, we see that x1
is inherently unstable over time, a feature which is poorly
captured by this linearization.

Example 2 (Linear Systems): The discrepancy between
the Koopman observability grammian and the linear observ-
ability grammian raises the question, “What is the form of
the Koopman observability grammian for a linear system?”
Consider the autonomous linear system

xt = Axt−1

yt = Cxt.
(33)

We suppose that x is an element of the full-state observable.
It is straightforward to see that ψ(x) = x alone is a sufficient
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observable to predict the future state of the system, with the
t-step Koopman operator given as

Kt = At (34)

and the matrices Px = I and Wh = C. The infinite-time
Koopman grammian is thus written as∑

t

PTx (Kt)TWT
h WhKtPx =

∑
t

(At)TCTCAt (35)

which is identical to the linear observability grammian. Even
when we extend the observable dictionary to include higher
order terms, the Koopman operator weights towards the
linear terms. Thus, the Koopman observability grammian is
able to recapitulate the linear concept of observability, but
it also has the ability to quantify observability in nonlinear
systems.

IV. GENERALIZED KOOPMAN CONTROLLABILITY
GRAMIANS

The next contribution of this paper is the definition and con-
struction of Koopman controllability gramians. Specifically,
we consider discrete time nonlinear systems with control of
the form

xt+1 = F (xt, wt)

yt = h(xt)
(36)

where wn ∈ Rm and F ∈ C∞[0,∞). Recently, Proctor and
Kutz showed that it is possible to compute input Koopman
operators [24] using extended dynamic mode decomposition
with control (DMDc). With control variables, the input
Koopman operator are computed on an input-state (or input-
output) observable ψ(xn, wn) ∈ RNL to satisfy the dynami-
cal equation

ψ(xt+1, wt+1) = Kψ(xt, wt) (37)

Assumption 4: We suppose the inputs wt of system (37)
can be modeled as an exogenous disturbance without state-
space dynamics [24]. Specifically, we suppose that

ψ(xt+1, wt+1) = ψ(xt+1, 0) = Kψ(xt, wt) (38)
Lemma 4: Consider a nonlinear system of the form

xt+1 = f(xt, wt) (39)

with exogenous disturbances wt and corresponding Koopman
model satisfying Assumption 4,

ψ(xt+1, 0) = Kψ(xt, wt). (40)

The same Koopman equation can be written as

ψx(xt+1) = Kxψx(xt) +Kuψu(ut) (41)

where ut = u(xt, wt) is a vector function consisting of
univariate terms of wt and multivariate polynomial terms
consisting of xt and wt.

Proof: Consider the nonlinear system (39). We remark
the form of equation (40) is a special instance of the form

derived in [24]. To be precise, the existence of a closed-loop
system Koopman operator that satisfies the relation

ψ(xt+1, wt+1) = Kψ(xt, wt) (42)

follows from the original Koopman papers [11], [12]. The
entire state-space dynamics of a closed-loop nonlinear sys-
tem, including both state and input, can be viewed as the
state-space dynamics of an autonomous dynamical system
which has a Koopman operator. Moreover, Assumption 4
guarantees that the system can be written in the form

ψx(xt+1) = Kψ(xt, wt) (43)

where ψx(·) is a vector consisting of the elements of
ψ(xt, wt) that only depend on xt. Due to Assumption 1 we
know that K is a linear operator that can be represented by
a matrix of countable dimension. Therefore, the right hand
side can be partitioned in terms of dependence of Koopman
basis functions on xt, wt or both xt and wt:

ψx(xt+1) = Kxψx(xt) +Kxwψxw(xt, wt) +Kwψw(wt)
(44)

where ψx(xt) represents the elements of ψ(xt, wt) that
directly depend on xt, ψxw(xt, wt) represents the elements
of ψ(xt, wt) that depend on a mixture of xt and wt terms,
and ψw(wt) represents the elements of ψ(xt, wt) that only
depends on wt. Now consider the last two terms on the
right hand side; we can write an exact expression according
to Taylor’s theorem (involving infinite expansions) for each
term

ψxw(xt, wt) = Wxwν(xt, wt) (45)

where ν(xt, wt) is a vector containing the polynomial basis
with elements of the form

xliw
k
j , (46)

l, k ∈ N, xi is an element of the state vector x, i = 1, 2, ...
and wj is an element of the disturbance vector w, j = 1, 2, ...
Similarly, ν(wt) is a vector containing the polynomial basis
with elements of the form

wliw
k
j (47)

where i, j = 1, 2, ... and l, k ∈ N. Define

ut =
[
wTt ν(xt, wt)

T
]T

It immediately follows that

Ku =

[
Kw

KxwWxw

]
and therefore

ψx(xt+1) = Kxψx(xt) +Kuψu(ut) (48)

As with the observability gramian, we now define the input
to state operator as Φψc : RmL → RnL as

Φψc ≡ KjxKu. (49)
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0 5 10 15 20 25 30 35
Timestep
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x1 est. with u
x1 est no u
x1 act
x2 est. with u
x2 est no. u
x2 act

Fig. 2. A plot of the predicted state trajectories from a trained Koopman
operator versus actual state trajectories for a forced oscillating nonlinear
system. The system is parametrically identical to the system represented
in Figure 1, with the exception of an additional control term in F1(x).
There are two states in this system, x1, plotted in blue, and x2 plotted in
green. The simulation results for the ground-truth data are plotted as dots
while the one-step prediction with control from the Koopman operator is
plotted as dashed lines. The prediction that uses no control input (prediction
in the presence of an unknown disturbance) is plotted with a dashed line
and triangles. The 2-norm error summed across both output channels was
ε < 10−8 for the control prediction and ε = 3.54 for the open-loop
prediction.

Definition 2: The lifted Koopman controllability gram-
mian is defined as

Xψ
c =

∞∑
j=0

Φψc (Φψc )T =

∞∑
j=0

KjxKuKTu (Kjx)T (50)

while the projected Koopman controllability grammian is
defined for a given projection mapping P : RnL → Rv, v ∈
N, v ≤ ∞ as

Xc(P ) = PXψ
c P

T = PΦψc (Φψc )TPT . (51)
Lemma 5: The Koopman controllability gramian and the

projected Koopman controllability gramian are positive
semidefinite.

Proof: The proof is analogous to the proof for pos-
itive semidefiniteness of Koopman observability gramians
and projected Koopman observability gramians, noting the
symmetric (X)(X)T structure of the gramian.

A. Koopman Gramians for Control-Affine Systems

Next, we consider the relationship between classical con-
ditions for local controllability and the Koopman controlla-
bility gramian. Local controllability is not well characterized
for arbitrary systems of the form (39). Instead, we consider
the class of control-affine nonlinear systems where

F (x, u) = f(x) + g(x)u.

There are well characterized conditions for controllability,
see [26] for details. Specifically, define D0 = span{f, g},

Di =
[
f, D̄i−1

]
, and i ≥ 1. where D̄i is the involutive

closure of the distribution Di. It is well known that there
exists an involutive distribution D∗ with integer k∗ such that
D̄k∗ = D̄k∗+r = D∗ for all r ≥ 0. Moreover, D̄∗ satisfies
two properties:

P1) span{f, g} ⊂ D∗

P2) [f0, D
∗] ⊂ D∗.

(52)

Whenever the system is locally controllable, we know that
the rank of D∗(x) = n for every x ∈ U where U is an
arbitrary neighborhood of the origin.

Lemma 6: Suppose the discrete time nonlinear system

xt+1 = F (xt, ut) = f(xt) + g(ut) (53)

satisfies Assumptions 1-4 and is locally controllable, i.e. it
generates an involutive distribution of rank n, expressed as
D∗ = {d1(x), d2(x), ..., dn(x)}. If there exists n projections
Pi : RnL → Rv , v = n such that

di(x) = Piψx(x) (54)

Then there exists a projection P̄ : RnL → Rv such that
Xc(P̄ ) > 0.

Proof: Since the system (53) is locally controllable, the
matrix

D∗(x) =
[
d1(x) . . . dn(x)

]
(55)

has full column rank n. Define

P̄ =
[
D∗(x)T 0n×(nL−n)

]
V −1 (56)

where V is the matrix of right eigenvectors of the Koopman
operator, i.e.

Kt = V ΛtV −1 (57)

Note that P̄ is well defined since V spans the observable
function space [4] and therefore since D∗(x) is in the range
of ψx(x), D∗(x) is in the range space of V. Let x ∈ Rn,
then the projected controllability gramian

Xc(P̄ ) = P̄Xψ
c P̄

T = P̄
∞∑
j=0

KjxKuKTu (Kjx)T P̄T (58)

and the transformation

P̄Φψc =

∞∑
j=0

P̄KjxKu

=

∞∑
j=0

[
D∗(x)T 0n×(nL−n)

]
ΛjV −1Ku

(59)

has full row rank and therefore Xc(P̄ ) is positive definite.

This lemma elucidates the relationship between the notions
of local controllability and observability in nonlinear systems
and positive definiteness of Koopman gramians.

To conclude this section, we compute an approximate
Koopman controllability grammian for our small example
system.

Example 3: Approximating Koopman Controllability
Gramians
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Consider the controlled dynamical system

x1[t] = δ1x1[t− 1] + αx1[t− 1]2 − x2[t− 1]2 + u1[t]

x2[t] = δ2x2[t− 1] + βx1[t− 1] + γx2[t− 1]2

y1[t] = x1[t]2

y2[t] = x2[t]2

(60)
where u1[t] = sin(n) + µn, µ = 0.01 and u2[t] = 0. The
response for the system with the input channel is plotted in
Figure IV.

We construct the state observable vector ψx(xn), the
matrix Wh, and the matrix Px as before. The only differ-
ence is that we need to estimate Ku using dynamic mode
decomposition and construct ψu(xn, u). We write

ψu(xt, ut) = (ut, sin(ut)) (61)

and the lifted version of Ku is estimated accordingly using
extended dynamic mode decomposition [24], [4], [25]. The
lifted controllability grammian for the system is a 12 by
12 matrix, again we omit it for brevity. The approximate
projected controllability grammian is given as(

1.0 2.5 · 10−10

2.5 · 10−10 2.0 · 10−19

)
(62)

Notice that only one state is controllable with respect to the
input u1. This can also be seen from the transformation Φψc
were

Φψc =



1.0 6.0 · 10−11

2.5 · 10−10 −3.7 · 10−10

4.0 −3.7
2.6 · 10−10 −3.8 · 10−10

0.8 −0.72
−0.044 0.25
−0.26 0.54
0.21 −0.12
6.2 −6.0
0.19 −0.17
9.7 −11.0
0.8 −0.69



. (63)

Note that the second row is essentially 0, indicating that the
input gain from ψ1(ut) = ut or ψ2(ut) = sin(ut) to x2[t] is
negligible.

V. BALANCED TRUNCATION OF INPUT-OUTPUT
KOOPMAN OPERATORS

If both the generalized controllability and observability
Gramians are positive definite, then we can apply the clas-
sical transformation to achieve a balanced realization [3].
For brevity, we use Xc and Xo to denote the Koopman
grammians Xψ

c and Xψ
o . Following the classical approach

we perform a singular value decomposition on X1/2
c XoX

1/2
c

to get
X1/2
c XoX

1/2
c = UΣ2U∗ (64)

and from this we can define

T−1 = X1/2
c UΣ−1/2. (65)
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Fig. 3. The Koopman-Hankel singular values (plotted on log-scale) for
the input-output Koopman system from Example 3. Notice the separation
in scale after the 9th singular value.

Define the transform η = Tψ to obtain a balanced realiza-
tion, where

Xη
o = Xη

c = Σ (66)

With balanced realizations, we can perform balanced trun-
cation on the Koopman operator. The input-output map we
consider here is the input-observable to system output map
G : RmL → Rp, where ηu(x, u) ∈ RmL is a vector of input-
observables under the transformation T . We seek a lower
order approximation to G, given as Gr. It is straightforward
to see that the lifted Koopman system is a linear dynamical
system. Namely, define

η(xn−1) = Aηηx(xn−1) +Bηηu(xn−1, un−1)

yn = Cηηx(xn−1)
(67)

where
Aη = TAψT

−1 = TKx,ψT
−1

Bη = TBψ = TKu,ψ

Cη = CψT
−1 = WhT

−1
(68)

With the system in linear form, we apply the approach of
balanced truncation, first by identifying the Hankel singular
values of the Hankel operator ΓG = ΦηoΦηc which is equal
to Σ2 in the balanced realization. The Hankel singular
values are given by the diagonal entries of Σ and for the
r dimensional projection of the balanced n dimensional
system, we have the famous error bound

2(σt1 + . . .+ σtk) ≥ ||Ĝ− Ĝr||∞ ≥ σr+1. (69)

This bound is proved in [3], [14].
The key insight is that we now have a principled way

to perform input-output model reduction on Koopman oper-
ators, where the class of systems satisfy the affine-control
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Fig. 4. Reduced order input-output Koopman models derived from balanced
truncation. Trajectories for the second, sixth, and 12th order (the original
order) models are plotted as dashed lines against the actual (dots). x1[n] is
plotted on the left and x2[n] is plotted on the right.

property. Up to this point in time, model reduction of input-
output Koopman operators was performed using low-rank
approximations, with no guarantee on the input-output prop-
erties of the system. Applying balanced truncation theory
allows us to apply classical error bounds to achieve higher
fidelity input-output Koopman models.

Example 4: We conclude with an example of input-output
model reduction on our example system. First, we consider
the transformation to balance the system as defined above

T = Σ1/2U∗X−1/2c . (70)

This yields a balanced realization with Φηc = Φηo = Σ where
the Hankel singular values are plotted in Figure 3. We see
a clear separation of scale in the singular values, which we
exploit to obtain a reduced order approximation. We discover
we can reduce the system down to 2 modes and preserve
all qualitative aspects of the dynamics, with relatively small
error (see Figure 4).

This approach provides a new method for nonlinear
input-output model reduction. The precise transformation to
achieve this high fidelity input-output model was not known
until we derived a representation using Koopman gramians
and balanced realizations. This allows us to identify the
canonical basis under which to approximate system (37).

This method complements existing and recently developed
approaches for nonlinear balancing. In particular, Scherpen et
al. have pioneered the use of differential balancing to obtain
balanced realizations for nonlinear systems, with respect to
the Frechet derivative of the Hankel operator [27], [28],
[29]. Our work takes a complementary angle, examining
balancing methods using the Koopman operator, to define
a lifted Hankel operator of the underlying nonlinear system.
In particular, our approach provides an alternative framework
for data-driven model reduction, in scenarios where system
models are only partially known or completely unknown.

VI. CONCLUSION

In this paper we have developed conceptual and mathemat-
ical definitions for Koopman gramians. We have shown that
they can be used to quantify controllability and observability,
beyond binary status (e.g. controllable or not controllable)

and lend insight for certain dynamical systems where lin-
ear techniques do not avail. We showed how to construct
balanced realizations on the lifted state-space model, cast
it as a linear system and showed high fidelity of reduced
order nonlinear Koopman models, even using approximate
Koopman gramians.

Future work will investigate how to translate these model
reduction results for the Koopman operator back to the orig-
inal underlying nonlinear dynamical system. In addition, we
will investigate extending these methods to study stochastic
discrete time systems, as well as metrics for controllability
and observability in the presence of uncertainty.
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