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Abstract— Loop Closure Detection (LCD) is the essential 

module in the simultaneous localization and mapping (SLAM) 

task. In the current appearance-based SLAM methods, the 

visual inputs are usually affected by illumination, appearance 

and viewpoints changes. Comparing to the visual inputs, with 

the active property, light detection and ranging (LiDAR) based 

point-cloud inputs are invariant to the illumination and 

appearance changes. In this paper, we extract 3D voxel maps 

and 2D top view maps from LiDAR inputs, and the former 

could capture the local geometry into a simplified 3D voxel 

format, the later could capture the local road structure into a 2D 

image format. However, the most challenge problem is to obtain 

efficient features from 3D and 2D maps to against the 

viewpoints difference. In this paper, we proposed a synchronous 

adversarial feature learning method for the LCD task, which 

could learn the higher level abstract features from different 

domains without any label data. To the best of our knowledge, 

this work is the first to extract multi-domain adversarial 

features for the LCD task in real time. To investigate the 

performance, we test the proposed method on the KITTI 

odometry dataset. The extensive experiments results show that, 

the proposed method could largely improve LCD accuracy even 

under huge viewpoints differences. 

I. INTRODUCTION 

Loop Closure Detection (LCD) is the key module in the 

SLAM scheme of mobile robot  [1–3]. LCD could enhance 

the robustness of SLAM algorithms in detecting when a 

robot has returned to a previous visited location after having 

discovered new terrains. Such detection makes it possible to 

increase the precision of the actual localization estimate and 

helps to resolve the global localization problem. 

Traditionally there exists two categories of SLAM 

approaches, metric based SLAM [4] [5] and appearance 

based SLAM [6] [7]. The metric-based SLAM methods 

usually rely on dense or semi-dense map reconstruction to 

achieve high accurate localization. While this method is 

impractical for the long-term navigation task, such as for the 

Autonomous Car traveling for thousands of miles or lifelong 

tended outdoor service robots. Instead, appearance based 
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SLAM (or Topological SLAM [1]) only needs to extract the 

low dimension semantic features to describe the local map. 

The computation complexity and storage requirement of 

appearance-based SLAM methods are relative low than the 

metric-based ones, thus the former could be easily applied 

on normal robot systems.  

However, visual based appearance inputs are usually 

effected by the illumination changes, season-to-season based 

appearance changes  [6–9] and viewpoints differences. To 

extract stable LCD features from visual inputs under all 

conditions is intractable. SeqSLAM [7] [10] uses the most 

similar coherent sequence as the best match instead of 

calculating the most likely single pair match [6] [11]. 

Though this method could improve the LCD accuracy under 

variant conditions, it may still fail under extreme visual 

appearance difference. Most recently, deep neural networks 

(DNN) have been used for visual feature extraction in the 

SeqSLAM. Chen et.al  [12] extracted the multi-layer DNN 

features for LCD task. The network model is pre-trained 

under the ImageNet 2012 dataset  [13]. Sunderhauf et.al 

investigated the ability of different layers for LCD 

detection [14]. Lowry [15] proposed a Change Removal 

approach, and use the non-common geometry for the DNN 

feature extraction. Most recently, Chen et.al  [16] enable the 

feature learning by transforming the DNNs into a scene 

classification task. The above DNN based feature extraction 

could only be applied for the visual inputs, and must be 

supported by additional data labels, such as the 

ImageNet [17], KITTI [18] or self-defined datasets [16]. 

An alternative to the visual images is the active 3D 

point-cloud from LiDAR inputs, which is inherently 

invariant to the illumination and appearance changes. The 

only thing that matters the LCD accuracy with LiDAR 

inputs, is the viewpoints differences. In this paper, we extract 

3D voxel map and 2D top-view map from the raw 

point-cloud, and each kind of map has its own advantage in 

local map representation. As we can see in Figure 1, for the 

3D voxel maps, it could capture the local geometry detail 

into a simplified 3D voxel format; for the 2D top-view maps, 

it could easily capture the local road structure into a 2D 

image format. Despite their property, extracting efficient 

features from 3D and 2D maps is intractable. Traditional 

handcraft features couldn’t capture the global connections of 

local geometry details; thus, the LCD accuracy will reduce 

greatly under huge viewpoints difference. On the other hand, 

the 3D feature [19–21] extraction is time consuming, and 

could not be easily applied in the real time LCD task. 

In this paper, we propose a novel synchronous 

adversarial feature learning (Sync-AFL), a kind of 

unsupervised learning method for LiDAR based LCD task. 
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The proposed method requires no label data and could extract 

the mixture semantic features from both 2D and 3D maps at 

real time. The contribution of this paper could be summarized 

as below: 
 With the invariant property of LiDAR inputs for 

illumination and appearance changes, we extract 3D 
voxel maps and 2D top-view maps from the raw 
point-cloud for LCD detection. Each type of map has its 
own advantage in local map description. 

 We proposed a novel Sync-AFL method, and this method 
enable the multi-type feature extraction at the real time. 
And the feature learning is proceed under a synchronous 
manner, which enforce the mixture feature extraction 
from the potential data distribution. 

 We investigate the performance of the proposed method on 
the KITTI odometry datasets. And the results show that 
the LCD accuracy is significantly improved, even under 
huge viewpoints differences. 

The paper is organized as follows: in Section II, we first 
provide the primary works which our work is based on; in 
Section III, we will mainly introduce the Sync-AFL based 
LCD method; Section IV demonstrates the experiment results 
on the KITTI odometry datasets; finally, Section V gives the 
conclusion and consideration for our future works. 

 

Figure 1 The 3D voxel maps (first row) and 2D top-view maps (second row). 

I. PRIMARY 

Our Sync-AFL method is based on the bidirectional 

generative adversarial networks (BiGAN), so in this section, 

we will firstly review the BiGAN [22] based adversarial 

feature learning (AFL) method.  

A. Adversarial Feature Learning 

Recently, GANs [23] has gained much attention in 

represent learning [24], image generation [25] and 

unsupervised learning [22] [26]. As shown in Figure 2(a), the 

networks of GANs is combined with a decoder module and a 

discriminator module. The decoder module De intend to 

generate the synthesis data G-X from the random latent code 

Z as real as possible, and the discriminator module D is used 

to distinguish the synthesis data from the real ones as accurate 

as possible. With this two-player game, the synthesis data 

distribution could be pull to the real data distribution. 

Goodfellow [23] use the min-max value function 

 min max ,
De D

V D De  to achieve the above requirements, 

where the value function is obtained by, 
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where PX and PZ is the data domain and latent code domain 

relatively.  

 

Figure 2 The structure of DCGAN and BiGAN.  

 

However, GANs itself could not directly obtain the latent 

codes from the real data domain, Donahue et.al [22] enable 

the latent code inference by proposing the BiGAN method as 

shown in Figure 2(b). This method adds extra encoder 

module En to inference latent codes E-Z from the real data 

R-X, and update the discriminator module to distinguish the 

mixture distribution of (data, latent code), instead of the 

single data domain. Then the min-max value function is 

updated into  
,

min max , ,
De En D

V D De En  , where the value 

function in Equation 1 is updated into, 
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 (2) 
where PEn is the encoder mapping distribution from data 
domain to latent code domain, PDe is the decoder mapping 
distribution from latent code domain to data domain. As 
proved by the Donahue  [22], with fixed En and De modules, 
the value function V(D, De, En) could reach its optimal with 
the optimal discriminator DJ*. And under the optimal 
discriminator DJ*, the value function V(DJ, De, En) could be 
rewritten as [22], 

      , 2 log 2 2 ||
EX GZ

C De En JSD P P     (3) 

where PEX is the mixture distribution of (R-X, E-Z) and PGZ is 
the mixture distribution of (G-X, Z). The optimal discriminator 
could capture the Jensen-Shannon divergence (JSD) between 
the mixture distribution PEX and PGZ. Since JSD is always 
non-negative, so the value function could only reach its global 
optimal when PEX=PGZ. With the optimal encode En, we could 
easily extract the latent code from the real data by forward 
steps. 

II. SYNC-AFL BASED LCD 

As shown in the Figure 3, the proposed Sync-AFL based 

LCD framework is combined with four steps: 

 Step1:  3D/2D map extraction 

 Step2:  Synchronous adversarial feature learning 

 Step3:  Real Time feature Inference 

 Step4:  Sequence Matching 

In Step1, the 3D voxel maps and 2D top-view maps are 

generated with a dynamic octree mapping method. In Step2, 



  

the adversarial networks is trained with the local 3D and 2D 

maps under a synchronous manner. In Step3, the mixture 

feature is extracted from both the 2D top-view maps and 3D 

voxel maps. Finally, in Step4, the best matches are obtained 

by using the sequence matching method. In this section, we 

will explain each step in detail.  

 
Figure 3 The framework of Sync-AFL based LCD. 

A. 3D/2D Map Extraction 

 
Figure 4 Octree Structure 

 

Since single LiDAR scan is too sparse, directly using 

single raw point-clouds could not capture the detail geometry. 

So in this paper, we use the Octomap  [27] method to 

accumulate the sequence raw point-clouds. The Octomap is 

based on the octree structure, and the Octree is a tree-based 

3D data structure as shown in Figure 4. From the root node, 

each node divides its space into eight sub nodes with eight 

equal sub spaces. The sub nodes continue to divide the space 

until the depth of node reach the given threshold. The 

occupancy of the leaf nodes are updated with a log-odds  [28] 

approach. For the detail of the octree mapping, please refer to 

the original Octomap method [27]. 

In Octomap, the map is restored into a global static octree 

structure, and the mapping efficiency would be reduced 

significantly as the map growing into large scale. In this paper, 

we use the raw LiDAR point-clouds to construct the static 

octree map, but only keep the local octree nodes which are 

within a given distance to the robot (30 meters in this paper). 

This trick could enable the local 3D octree mapping with 

limited computation power and storage and guarantee a stable 

map generation in 7~10Hz. As shown in Figure 1, the 3D 

voxel maps are generated from the leaf node of local octree 

map, and the 2D top-view maps are generated by projecting 

the 3D voxel map onto the ground plane. The 2D top-view 

maps could capture the main structure of the road, and the 3D 

voxel maps contain the geometry detail into a simplified 3D 

voxel format. 

B. Synchronous Adversarial Feature Learning 

 

Figure 5 Flowchart of the unsupervised feature training networks. This mixture 

framework is combined with 3D and 2D BiGAN networks.  

 
 As shown in Figure 5, in our Sync-AFL method, we use a 
dual-BiGAN, which combined two independent 2D and 3D 
BiGAN. For 2D top-view maps, the 2D BiGAN is based on 
2D convolution/deconvolution operations. While for 3D voxel 
maps, the 3D BiGAN is based on 3D 
convolution/deconvolution operations. The mixture features 
of 3D/2D latent codes are obtained by a stitching operation. 
Though this method, we could inference the mixture features 
from both 3D and 2D maps at the same time, which could 
capture the LCD characteristics from different views.  

 Though we could train the 2D and 3D BiGAN separately, 
we could not guarantee the mixture 2D-3D feature could 
improve the overall LCD accuracy. This is caused by the 
model missing problem [29] [30] in the original GANs 
method, where the synthesis data could only focus on the part 
of real data distribution. When trained the 3D/2D BiGANs in 
separate branches, the synthesis 3D/2D data distributions may 
cover different parts of the real data distribution. Thus, the 
mixture 3D/2D features may get stocked into a  confusing 
situation. 

 To enhance the 3D-2D feature connection, we use a 
synchronous training manner. The basic idea of this method is 
to reweighting the samples according to the “unfamiliarity” 
for the local scenes. Ideally, the more the network is familiar 
with a specific scenes, the more the discriminator will value 
the scene with a high score. Here, we measure the 
unfamiliarity of the scene based on the reciprocal of the 
average discrimination values, 
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where D3D and D2D are the discrimination values of 3D map 
M3D and 2D map M2D. The lower U means the 3D-2D BiGANs 
are familiar with the scene, while the higher U means that at 
least one module is unfamiliar with the scene. The weighting 
of each sample scenes are labeled according to the 
unfamiliarity with a normalization function, 
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 The less valued real samples will be given higher weights, 
so such samples will play more important roles in the next 
epoch network updating. The whole algorithm is given in 
Algorithm 1. In each epoch, as shown in line 3~9, the 3D and 
2D BiGANs are updated with the given 3D map M3D and 2D 
map M2D, and calculate the sample’s unfamiliarity. Then in 
line 10, the training samples are reweighted according to 
Equation 5. 

Algorithm 1 Synchronous Training 

Inputs: N samples of (M3D, M2D) 

0 Initialize pair weighting to 1/N 

1 For Epoch in Max-Epochs: 

2    Samples shuffle; 

3  For (M3D, M2D) in samples: 

4   3D BiGAN updating based on M3D; 

5  Calculate D(M3D, En(M3D)) as D3D; 

6   2D BiGAN updating based on M2D; 

7  Calculate D(M2D, En(M2D)) as D2D; 

8  Estimate the sample (M3D, M2D) unfamiliarity. 

9 End For 

10 Re-weightings N samples. 

11 End For 

By using this approach, the training procedure will 
continue updating the sample weightings, and focus the 
unfamiliar samples, thus finally improve the 3D-2D features 
connections on the real data distribution. 

C. Real Time Feature Inference 

The feature inference step could achieved by applied the 
forwarding steps in 3D encoder and 2D encoder modules, this 
operation is easily to achieved with the support of normal 
GPU card or the embedded board Jetson TX1 or TX2. This 
property enables our method to imply on the traditional 
normal robots for the long term navigation task in real time. 
With the extracted mixture features, we could use Euclidean 
distance, cosine distance or other format distance to calculate 
their similarity. In this paper, we simply use the Euclidean 
distance, 

  
2

,
i j i j

Diff v v v v    (6) 

where vi is the encoded latent-code from the frames. 

III. EXPERIMENT AND ANALYSIS 

To investigate the performance of our method, the 
experiments are conducted on the KITTI odometry

1
 datasets. 

Within this dataset, there are 22 LiDAR sequences and only 
the sequence 00~10 have the ground truth GPS location. 
Among these sequences, we extract the 3D voxel maps and 2D 
top-view maps from sequence 01~08 for the SAFL networks 
training. And use sequence 00, 09 and 10 for LCD accuracy 
testing. The SAFL networks is applied on a single NVidia 
Titan X card with 64G RAM. The 3D/2D map extraction is 
based on the robot operation system (ROS). Since the 
inherently invariant property of the LiDAR inputs to the 
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appearance and illumination changes, the only thing that affect 
the LCD accuracy is the viewpoints differences. In practice, 
the local difference in pitch, roll and height are reduced by the 
log-odds based octree mapping step. For two map sequences, 
the major viewpoints differences come from the translation 
difference on the ground plane and the Heading difference. 

 To test the robustness of our proposed SAFL method in the 
LCD task, we generate different test sequences with T{Tt}_R{Rh} 
setting, where the translation is added with a two-dimensional 
random noise (amplitude is Tt meters), and the heading angle 
is added with one-dimensional random noise (amplitude is Rh 
radian). Since our method use the LiDAR inputs for the LCD 
task, so it will be meaningless to make the comparison with 
the appearance based methods. Here, the LCD is estimated 
under the same SeqSLAM based sequence matching 
framework 

A. Measurement Metrics 

To measure the LCD accuracy of different methods, we 

make qualitative analysis with PRC (Precision-Recall curve) 

and AUC (area under the Receiver operating characteristic 

(ROC)); for the quantitative analysis, we use the recall at 

100% perception in the PRC to measure LCD accuracy. Here, 

for the matched pairs, if the distance between ground truth 

position and estimated one is within Dthresh, then the pairs are 

regarded as true positive (TP), else will be regarded as false 

positive (FP); on the other side, the pairs erroneously 

discarded by the match score are regarded as false negative 

(FN), and the ones of no-matched pairs are regarded as the 

true negative (TN). Thus, the precision and recall are then 

obtained by, 
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The AUC score is the size of covered ROC area, where 

the higher the score, the more accurate of the LCDs. The ROC 

curve is created by plotting the true positive rate (TPR) 

against the false positive rate (FPR) at various threshold 

settings, which are obtained by, 
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B. Accurancy and efficiency analysis  

In this section we first given the qualitative analysis with 

PRC and ROC index for each method. Figure 9 shows the 

PRC of the SAD based LCD accuracy in the original 

SeqSLAM method. We can see in the smaller viewpoints 

difference cases; the SAD features could still achieve a stable 

LCD accuracy. While for the higher viewpoints difference 

cases, the LCD accuracy is decreasing. 



  

 

 

Figure 6 Precision-Recall Curve under different noising sequences in 

different methods. The feature difference between two places is estimated by 

calculating the Euclidean difference.  

Figure 6 shows the PRC of different methods. 2D 

top-view map features could significant improved than the 

SAD features. This explains the 2D adversarial features 

extracted from the 2D top-view maps can capture higher level 

connections of the local scenes, which could improve the 

robustness for the viewpoints changes. For 3D voxel map 

feature, though the results are still better than the SAD 

features, it is worse than the 2D features. This could be 

explained in two way: firstly, the 3D voxel maps is more 

difficult than the 2D top-view maps, so the 3D networks is 

more complex than 2D and the efficient 3D feature extraction 

is even more complex; secondly, in the KITTI odometry 

datasets, the 2D top-view has captured the major structure for 

efficient LCD detection, though 3D voxel map has the 

additional height dimension, the geometry in height may 

introduce limited benefit for LCD detection. Despite the 3D 

features is not better than 2D features, the mixture feature is 

even better than the 2D feature based sequence matching. It 

shows that, with our proposed synchronous training method, 

the mixture features could be better capture the higher 

representation for the local scenes. 

 

 

Figure 7 The area under an ROC curve (AUC) score for each sequence 
matching method under different noising sequences. 

TABLE I 

RECALL AT 100% PRECISION 

Metho

d 
T1 

R1 

T5 

R1 

T10 

R1 

T1 

R1.5 

T5 

R1.5 

T10 

R1.5 

SAD 28.3% 44.5% 12.4% 1.3% 0.8% 0.9% 

2D  51.9% 19.8% 35.7% 26.5% 3.8% 9.1% 

3D  21.6% 15.5% 3.8% 5.2% 5.3% 8.1% 

Mix 52.2% 43.6% 43.8% 49.7% 18.2% 20.5% 

 

TABLE III 

FEATURE INFERENCE TIME PER FRAME (MILLISECOND) 

Metho

d 
T1 

R1 

T5 

R1 

T10 

R1 

T1 

R1.5 

T5 

R1.5 

T10 

R1.5 

SAD 3.2 3.3 3.3 3.3 3.2 3.3 

2D  18.4 16.9 17.6 17.7 17.7 15.6 

3D  96.2 105.7 96.4 94.8 95.0 92.5 

Mix 110.6 117.3 110.9 109.6 110.4 104.3 

 

 

For a more intuitive view, Figure 7 shows the AUC 

index of different methods. The mixture feature based 

sequence matching is better in most viewpoints differences 

cases. Finally, TABLE II gives the quantitative analysis with 

recall rate at 100% precision. In the case of T10_R1, the recall 

rate of LCD task base on mixture features is 43.8%, which is 

353% than the SAD feature, 122% than the 2D based features 

and 11 times than the 3D features.  

C. Storage and Runtime Analysis Data Reconstruction 

 
Figure 8 2D top-view maps reconstruction. The bottom row is the original frames, 
the top row is the cycle reconstructed ones. 

 

Since our method is based on the BiGAN, the data 

reconstruction from real data X into De(En(X)) as shown in 

Figure 8. The better the reconstruction results, the better 

ability for the encoder module to capture he geometry detail 

from the real data. For the simple road structure case, such as 

straight road or simple square space, the data reconstruction is 

quite well.  

D. Storage and Runtime Analysis 

The mixture features are saved as a 1024 vector in the 
float32 format, so each code is occupied for 1024*4B=4KB. If 
we generate the code at 5Hz, after 24 hours running, the 
storage requirement for saving all the latent codes is only 
about 5*60*60*24*4KB~1.65GB. For the runtime analysis of 
feature inference, the average feature inference time is shown 
in Table III. As we can see, the mixture features 2D feature per 
frame could be estimated around 20ms, 3D features around in 
110ms.  

Thus, the proposed method could be easily plugged on 

the any kinds of mobile robots for the real time long term 

navigation task, with relative small computation power and 

storage requirement. 

IV. CONCLUSION 

 In this paper we propose a novel synchronous adversarial 
feature learning method for LiDAR based Loop closure 
detection. Based on the LiDAR inputs, we extract 3D voxel 



  

map and 2D top-view map to describe the local scene in 
difference angels. And our proposed adversarial feature 
learning method could extract the mixture features from both 
3D and 2D maps at the same time. With the synchronous 
training scheme, the proposed mixture features could capture 
the potential data distribution as much as possible, and could 
improve the robustness for the viewpoints difference. The 
proposed method could be easily applied on normal robots for 
the long term LCD task, without the required for higher 
computation power and larger storage space. In our future 
work, we will test this method in the more complex 3D 
environment, such as in the terrain area, forest and ruins, 
where the 3D features could be very necessary for the loop 
closure detection. 
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