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A Novel Optimal Sliding Mode Control For Multiple Time-Delay
Systems

Ahmadreza Arghal, Steven W. Su?, Andrey Savkin!, and Branko G. Celler!

Abstract— This paper considers the problem of delay-
independent optimal sliding mode control design for uncertain
systems with multiple constant delays. An improved delay-
independent framework for the design of SMC is established
in terms of a linear matrix inequality for time-delay systems,
in which multi-channel % performances of the closed-loop
system are under control. Unlike most of the existing methods,
the required level of control effort to maintain sliding will be
taken into account in this new framework. Our two-stage SMC
is constructed as follows. Firstly, a certain state feedback gain
is designed while assigning some of the closed-loop eigenvalues
precisely to a predetermined stable location as well as ensuring
a prescribed multi-channel .7 performance level of the closed-
loop system. In the second stage, we will find the optimal
switching surface associated with the gain designed in the
first stage via a novel approach developed for this goal while
ensuring the stability of the reduced-order dynamics.

I. INTRODUCTION

Dealing with time-delay systems is crucial in practical
control systems. Broadly speaking, the necessity of con-
sidering time delays in the systems to be controlled is
twofold. Firstly, time delays are employed to model systems
more accurately. Indeed, a large number of practical systems
including manufacturing processes involve this phenomena in
their dynamics owing to the deployment of sensors, actuators
and communication networks. Next, time delays are helpful
as a modeling tool to simplify some infinite-dimensional
systems [1]. Different control schemes have been proposed
for time-delay systems such as %, control [2].

Mostly, conventional SMC design methods, including the
approaches proposed for time delay systems, are unable to
take into account the control action required for inducing and
maintaining sliding. The reason can be found in the two-stage
nature of the conventional SMC design schemes employed in
the existing literature. Indeed, in the most of the current SMC
design schemes, while the switching function is synthesized
in the first stage, the control action required to induce and
maintain sliding is not possible to be penalized [3]. Clearly,
in such cases, a impractical switching surface and thereby a
control law may be selected.

A few investigators, in the related field, have considered
this problem, e.g. [3], [4], [5]. In this different thread of SMC
design, which can be referred to as LQR-based SMC design
schemes, the major idea is to select the switching surface
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while minimizing an index function of the system state
and control input. However, not necessarily any arbitrary
weighting matrices in the index function can lead to a sliding
mode control. To solve this problem, in [4], as the main focus
is on the single-input systems, it is ensured that at least one
of the closed-loop system eigenvalues is a real value. Hence,
the authors of [4] propose to either reselect the weighting ma-
trices or approximate the closed-loop system eigenvalues so
that a new set of eigenvalues are derived which is dividable
into the null-space and range-space dynamics. To resolve
two main drawbacks of [4], ie, 1) loss of optimality and/or
robustness due to the random approximation of eigenvalues,
2) not giving a rigorous method on how to reselect the
weighting matrices, of the approach in [4], the paper [5]
has proposed to search for a weighting matrix which is the
closest to the desired one and more importantly generates the
desired closed-loop eigenvalues. It is worthwhile noting that
the both methods in [4], [5] are only appropriate for single
input systems. Additionally, in order to design an optimal
sliding mode control that is able to penalize the control
effort required to maintain sliding, two new methods are
introduced in [3]. Both of these methods are constructed in a
specific coordinate system achieved by using two preliminary
coordinate transformations. Finally, it should be noted that
none of the above cited-papers, considering the problem of
optimal SMC design, considers time delay systems and the
proposed schemes may not simply be extended to time delay
systems.

This paper aims at developing a novel optimal SMC for the
systems involving time delay systems and proposes a novel
method for this purpose that offers several advantages to the
field. This approach employs a specific partial eigenstructure
assignment method to assign m (ie, the number of system
inputs) arbitrary stable real eigenvalues while an appropriate
sliding motion dynamics will be guaranteed by enforcing dif-
ferent Lyapunov-type constraints such as the multi-channel
St constraints.

Notation: herm(E), where E is a square matrix, stands
for E+E*.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider the following linear-time-invariant (LTI) system
with multiple constant time-delays:
h
x(r) = ZAix(t — 1)+ Ba[u(t) + f(x,u,t)],

i=0
A (1
x(1) = 9(0), 1€ [, 0], T=max(z)[L,,

z(t) = Cx(t) 4+ Du(t),



where x € R”, u € R™, and z € R? are the system state, con-
trol input, and J# performance output signal, respectively.
It is further assumed that all the system matrices are con-
stant and have appropriate dimensions. The unknown signal
fle,u,t) :R" x R™ x Ry — R™ denotes matched uncertainty
in (I) whose Euclidean norm is bounded by a known function
p(x,u,t). We further, without loss of generality, assume that
m < p <n, and rank(B) =m. Here =0 and 7; >0, i =
1,---,h are constant delays. ¢(¢) is a continuous vector-
valued initial function defined on ¢ € [—7, 0].
Now we consider a linear switching surface as follows:

S ={x: s(t) 2 Fx(t) =0}, (2)

where F' € R™" is a full rank matrix designed in this paper
so that the resulting reduced order sliding mode, when the
system states are steered to .#, has suitable dynamics. Now
consider the following control law:

u(t) = —(FBay) "' (FAg — AF)x(t) + £ (1), (3)

where A € R™*"™ is a prescribed stable matrix, and &(¢) €
R™ denotes the discontinuous component in the sliding
mode controller. Now the nonlinear part of the controller
is proposed as:

s(1)
@)

§(t) = —(FB2) ' [p+[|FBal| p(x,u,1)] if s(r) #0,

“4)

in which @ > 0 is a scalar gain to be designed in the sequel
of the paper. It is also assumed that A = 81, where 0 is a
given negative scalar. As A = 81I,, can commute with F, the
control law u(¢) in () can be reformulated as

u(t) = (FBy) ™' FAQx() + & (1), )

where AS = 81, —Ag. Now let f(-) =0 in (I). We then
assume the controller in (3) contains only the linear part;
ie, £(+) =0, therefore

h
x(t) = ZA,'X(I — T,') +B2u(t) + Byw(t) (6)
i—0

zZ(t) = Ex(t) +Du(t)
u(t) = (FBy) "' FASx(r),

where w(t) is an artificial mismatched disturbance and the
distribution matrix B; is of appropriate dimension. The
objective of this paper is to find a sliding matrix F so
that the resulting reduced order motion, when restricted
to .7, is stable and meets multi-channel % performance
specifications. For this target, one may resort to solve a
multi-channel J75 state feedback problem and thereby find
the corresponding switching matrix. This trivial scheme may
not necessarily lead to any solution, unless the obtained state
feedback gain K can ensure that m of the closed-loop poles
are exactly located at 8. In short, for the design of a multi-
channel % -based SMC, we need to address the following
two problems:

Problem 1: Blend the multi-channel % problem with
the partial eigenstructure assignment method, ie, design a

feedback gain K enforcing the multi-channel .53 constraints
while ensuring m poles of the closed-loop system are pre-
cisely located at §.

Problem 2: Select the switching matrix F' associated with
the particular matrix gain K, derived in Problem [I]
The above-stated problems are dealt with in the following
two sections.

III. EIGENSTRUCTURE ASSIGNMENT PROBLEM FOR
J%-BASED SMC DESIGN

In the current section, we develop an LMI characterization
of the multi-channel /% problem for the systems involving
multiple constant time-delays, which leads to potentially
less conservative results compared to the so-called quadratic
approach. It will also be very useful for the novel SMC of
this paper, as it allows to develop a partial eigenstructure
assignment scheme ensuring precise locations in terms of
LMIs. Let us assume temporarily that there is no matched
uncertainty in (1), ie, f(x,u,t) =0.

A. % LMI characterization

Lemma 1: The following statements, involving symmet-
ric matrix variables X, Z and W;, i=1,--- ,h, and the general
matrix variables Y and G are equivalent.

i) 3 K such that Z?:OAie"”i + B,K is stable and
B 2
H(C+DK) [s— (X Ae % + B,K)] "By H2 <.
i) 3X>0,Z>0,Y,and W; >0, i=1,--- ,h such that

(1311 * *
vec(X), —diagW), « | <0,
CX +DY 0 —yi
—Z x
b ] <o

trace(Z) < 1,

where @11 :=AoX + XAl +BoY +YTBY + Y AW,AT

and Y = KX.
i) 3X>0,Z>0,W;>0,i=1,---,h, Y, and G such that
(X - (G+G")  « * *

(I)zl @22 * * 0
vee(G)1 0 —v ldiag(W)t * <9
CG+DyY 0 0 —v~lyr

@)
(-7 *
B X <0, ()
trace(Z) < 1, )
where @31 := V(4G + BY) + G, ®p = —X +

VZ?:IA,-WI-AIT, 0 < v <1 is a constant scalar, and

Y =KG.
Proof: The proof is given in the Appendix section. W
Remark 1: The controller (E]) is a rational controller, see
[6]. However, considering a system with constant delays, it
is possible to employ a non-rational control strategy here. In
this work, the nonlinear part of the sliding mode controller is
used in order to cope with the influence of uncertainty arisen
from time delays in the system. This feature indeed makes



this scheme applicable to the systems with time varying
delays.

B. Multi-channel 76 state feedback using improved LMI
characterizations

Now let 7,,.(s) denotes the closed-loop transfer function
from w to z for control law u = Kx. Our target is to compute
a matrix K which meets several performance specifications
of the form

minimize 1 Twiz |l (10)
subject to  [|T,y, 7, ||§ <M, -, HTW,-,lz,-,l H; <%-1,
2 2
||Tw,-+1z,'+1 ||2 < Yit1, - 7HTW,,4/ZN/VH2 <Y,

where || T, |, = ||LiT\zRil|,, in which L; and R; are used
to specify the involving channel in the associated constraint.
In the sequel of this paper, we use .4 to denote the number
of channels or the independent Lyapunov variables. Further-
more, a realization of T, .. is achieved by replacing By, C and
Dby By, C;and D;, i=1,---,.4, respectively, in (I). The
closed-loop performance can be guaranteed by constraining
(minimizing) the .77 performance of the closed-loop systems
related to (input/output) signals w; = R;w and z; = L;z; see
[7], [8]. Suppose that each channel is associated with a set
of LMI constraints presented in (7), (), and (©). Then the
LMI characterization for state feedback synthesis with multi-
channel 7 specifications will be achieved by assigning a
different Lyapunov variable X; > 0 to every channel and using
common variables G and Y for all channels. As a result, using
the item iii) of Lemma [I} the LMI characterization for the
channel / can be represented as:

X, — (G+GT) * *

@21 &322 * * 0
vec(G) 0 —v !diag(W,)L, * <5
C,G+DyY 0 0 —v7lyr

) (1D
—Z[ *

B, X, <0, (12)
trace(Z;) < 1, (13)

where &y := X+ vyl AWAT, 0<v< 1, X, >0,2 >
0, W; >0, i=1,---,h, G and Y are LMI variables, and
further, Y = KG. Thereby the optimization problem in (10)
can be cast as
minimize Y
subject to (T1), (12), and for i-th channel,
(1), (12), and (13) for j-th channel

with given y;, j#i, j=1,---, A

(14)

C. Fartial eigenstructure assignment problem

Assigning m of the closed-loop eigenvalues to a certain
negative value can be performed through the LMI character-
ization presented in the previous section. The problem is to
partially assign the set of eigenvalues

m times

—
{57 T 5}7 (15)

of Ag+ ByF by state feedback, which can be dealt with in
two steps:
1) compute the base [%g of nullspace of [Ag — 61 B)
with conformable partitioning;

2) with arbitrary g € R™, k=1, --- ,m, the state feedback
will be obtained as K = YG~! with

Y =NI'y, G=MIy,, (16)
in which

m times  (n—m) times
N:=|[Ns, -+, Ns, I, -+, 1]’

m times (n—m) times
M = [M57 vy Mg, I, e []’
[y = diag(er, ==+, &n, A5 =5 Apem)),
Ly = diag(er, -+, &m, B, 5 Bou-m)) (17

with A, € R" and f; € R”". Note that only vectors 7 are

related to the assignment of the m eigenvalues to 6. In

other words, other vectors (A, and ) are not exploited

in the pole placement purposes and thereby can be

employed to meet other Lyapunov-type constraints.
Now, provided by the LMI characterization in (II), (12)
and @]) the first step of our multi-channel 7%3-based SMC
design can be set as an LMI program in the variables X; > 0,
Zi>0,i=1, ---, A, Ty, Ty and ¥ > 0, by recasting (14)
as:

minimize % (18)
subject to (1), (12), (13), and for i-th channel,

(T1), (12), (13), and for j-th channel
with given y;, j#i, j=1,---, 4.

However, we have not yet shown that the set of closed-
loop eigenvalues encompasses (I3). This is the subject of
the following lemma.

Lemma 2: The set of the eigenvalues of Ag+ B2K, ob-
tained by letting the state feedback K = YG~!, with ¥ and
G given in (I6), contains the subset (I5).

Proof: From (16), we can write

(Ao + Bo2K — 8I)Msg;
—=[Ao + By (NTy)(MT )~ — 81|Mse;
=[Ao + By (NTy)(MT )1 — SI)(MT ey
=[Ao(MTy;) 4+ By (NTy) — 8(MTyy)]ex
=AoMs€; + BaNge, — SM g€
=0Mgse, — OMs¢g;

=0, k=1, - ,m.

Note that e¢; denotes the canonical basis of R”. The above
manipulation shows that d is a solution of the characteristic
equation det(s] —Ag — B,K) = 0, repeated m-times. |

Remark 2: Rather than the proposed partial eigenstruc-
ture assignment in the first stage, it is also possible to
exploit a pure pole placement method. This means that the
poles that govern the sliding motion are known and will be



assigned during the designing procedure. However, this can
limit the degrees of freedom in the problem, especially for
single input systems, so that no more freedom remains for
other performance constraints. Notice that this eigenstructure
assignment scheme is significantly different from the ones
explained in [9], [10], [11], in which the control effort,
required to induce and maintain sliding, is not taken into
account.

IV. STABILITY OF THE REDUCED-ORDER DYNAMICS
AND OBTAINING THE SLIDING MATRIX

This section proposes an approach to obtain the sliding
matrix S related to the matrix gain K, derived based on
the partial eigenstructure assignment scheme in the previous
section, while ensuring the stability of the resulting reduced
order dynamics. The approach is built based on the regular
form scheme. Consider a change of coordinates x — T,x. In
this new coordinate system, the system matrices are of the

form:
Aiz| 5 0
y By =
Ao 2 B,
where the square matrix B, € R™*™ has full rank and more
importantly is nonsingular; see [12]. Now, the switching

function matrix in the original coordinates is parameterized
such that [12]

A= {A"“ (19)

Apy

F=FR|[-4# I.T, (20)

where F, € R™ and # = —F2_1F1 e Rm*(n=m) g an
unknown matrix which will be derived hereafter. Notice that
theoretically the choice of >, may not influence the sliding
motion [12]. Let (¥,%2) be the partition of the system states
associated with the certain system coordinates in @]) then
it can readily be shown that while the system states are
confined to the sliding manifold, ie, s = 0, the reduced-
order sliding mode dynamics are governed by the following
reduced order system

h
£1(0) =Y (A + A )% (1 — 7).
i=0

2n

As a result, the matrix .# can be considered as a state-
feedback matrix that stabilizes the reduced order dynamics.
Consider the following LyapunovKrasovskii functional:

h
V(0= Oha0+Y, [ (B (B—)dp,
i=1 '
(22)

where B > 0,i = 1,---,h. Now, in order to ensure the
asymptotic stability of the reduced-order dynamics, we let
V(t) < 0. It follows then

1=
>
=5
—~
~
—
S
>
=
—~
-~
=

V() =28 (1) Py (1) t,

|
= |

=
=N
—~

-~

|

Kl

NPx (t—1) <0. (23)

Il
-

Using the equation ZI) in (23), it can be obtained
herm (Py(Ao11 +Ao124 ) +Yr B * —0
~\h . 5\ h )
vee ((Ain +Ai12///)TP0)i:1 —diag(P)!,
(24)

or by introducing P; := 151.’1 and Qg := .# Py and using the
Schur complement:

herm (Ag11 Py +A01200) +Zzh:l H;
T h . po | <0
vec ((A,-11Po +Ai1200) ),-zl —diag(H;)i_

(25)

where H; .= PO’IPiPO’I.

Suppose that K denotes the state feedback, derived based
on the partial eigenstructure assignment scheme, in the new
coordinate. Then, to obtain the associated sliding matrix,
we equate K and the linear controller in (6) in the new
coordinate. Assume that 6 does not belong to the spectrum
of Ay, ie, (Ao —61,) is invertible, and let

KAy —-61)"" = [0 A (26)
where ¢ € R™*("=m) Then, we can obtain
M =By, Q7
Further, since .# = QoF, ! from 23):
QuPy ' =By, (28)

or by right multiplication of both sides of the above equality

to By
Qo = By 1 Po. (29)

The condition in (29) can be dealt with a simple relaxation
method as:

minimize o subject to
@I) and ||Q0—B,,<%/1P()|| <a,

where o > 0 is a scalar variable. Simply it can be shown
that the above problem is equivalent to the following LMI
minimization problem:

(30)

minimize o subject to (25) and (31)
—al * | <o
Qo—B,o01Ry —ol ’

Hence, the multi-channel 5% based SMC problem is to
find the global solution of the above minimization problem
and then the switching function matrix F can be derived
using (20). In the case of feasibility, the above optimization
problem will enforce o to be an extremely small number
associated with the precision of the computational unit. Now,
the switching function matrix F can be derived using (20).

Remark 3: Note that as the spectrum of the closed-
loop matrix Ag+ B>K includes m repeated eigenvalues &,
the spectrum of Ay — 81, + B>K includes m repeated zero
eigenvalue. Hence, it can be shown that there always exists
a matrix F such that F(Ay — 81, + B,K) = 0. This statement
is equivalent to the equality (27), employed for obtaining the
switching matrix.



V. FINITE TIME REACHABILITY ANALYSIS OF THE
DESIGNED OPTIMAL SLIDING SURFACE

This section aims to find a condition under which the
controller (3)), drives the system state to the sliding
surface (@) in finite time.

Proposition 1: If ||Y2 Aix(t—7)|| < v, with y >0 a
constant scalar, the states of the closed-loop system, obtained
by applying the controller (3), @) to the system in (I)), reach
to the sliding surface and remain there thereafter if the
gain @ > 0 satisfies

o> |F[ly, (32)

where F is a given sliding function matrix.
Proof: Let us take the time derivative of (2), substitute
X as the state equation (TJ), and use the controller (3), @), we
may obtain then
. u s(t)
§(t) =6s(t) +F ZlAiX(t = %)= [@+|FBa| p(x,u,1)] TS
i

+FByf(x,u,t). (33)

Now, it is required to show that the following reachability
condition is satisfied:
sTs

— <0. (34)
sl

It follows from (33) and ||X1, Aix(t — )| < w that

T .

shs
sl <8 |s|[+||IF|lw— @+ ||FBof (x,u,t)|| — ||FB2| p(x,u,t)
<[IFlly—eo. 35)
Finally, if ¢ satisfies (32)), the reachability condition
holds. .

VI. NUMERICAL EXAMPLE

Consider a second order single delay system in form of
with the following data:

0 1 10 0
A0:|:0 0:|,A1:|:0 0:|,Bz=|:1:|,’[:1s.

The above system is considered in [13], and with no time
delay, ie, A| =0, is the first example of [3]. As stated in [3], if
A1 =0, the closed-loop system obtained by applying the state
feedback obtained from the standard LQR problem, with any
given G, and D, = ¢, for all choices of ¢ > 0, is governed
by a complex poles with a damping ratio of { =0.7071 [3],
[14]. This feedback gain cannot be assumed as the linear part
of a sliding mode controller. Now let C = [10 5], D = 0.24,
C, =110 0] and D, = 1.

We solve (I8), with B; =1, by letting y» = 150, § = 10, the
state feedback gain is obtained as

K =[-16.9756 —11.6976],

By employing the given approach, the switching function
matrix is

F =[1.6976 1.0000].

Proposed method
- = = Pole placement method | 7

State 1
= N
T T =
;
~
7

(b)

Proposed method
- = = Pole placement method | |

State 2
N
é\ Ay

-4,
'
Y
-6 L
0 5 10 15
Time (Sec)
Fig. 1. Evolution of the closed-loop system state trajectories

The poles of Ag+ BK are at {—10, —1.6976}, and the upper
bound of 745 cost from w to z; and zp, when the system in (1)
is without time delay, are 3.5669 and 7.6074, respectively.
For comparison, we also find the switching function matrix
by placing the poles of Ao+ BK at {—10, —5.9000}. In such
a case, the switching function matrix is

F = [5.9000 1.0000].

In this case, the upper bound of % cost from w to z;
and zp, when the system in (I) is without time delay, are
6.5167 and 11.6595, respectively. We further let the matched
uncertainty term in (I) be f(x,u,t) =x3(¢) +0.1sin(¢)x2(t).
The discontinuity in the nonlinear control term & (7) in @) is
also smoothed by using a sigmoidal approximation [15] as

s(7)
e+ |s@l
with the scalar € = 0.05 which this can remove the dis-
continuity at s = 0 and introduce the possibility to ac-
commodate the actuator rate limits. We further let y = 2
(¢ =2||F||+0.01) and p(x,u,t) = 4.3 in (B36). Fig. [1| shows
the trajectories of the system state by the initial condition
of x(0) =[2 1]7, and using the switching surfaces and state
feedback gains obtained above. The corresponding control
signals and switching function are also demonstrated in
Fig. As seen, the proposed method here requires less
control efforts, in comparison with the control law obtained
as the solution of the pole placement problem explained
above, for stabilizing the system.

Ee(t) = —(FB2) "' [@+ |[FBa|| p(x,u,1)] (36)

VII. CONCLUSIONS

This paper has been devoted to the development of a novel
method for the design of an SMC, whose switching surface is
derived from an optimization problem constructed to meet a
number of Lyapunov-type performance constraints, for multi-
ple time delay systems. In doing so, in the first stage, through
a convex optimization approach, a state feedback gain is
found while assigning a certain number (m) of the closed-
loop system eigenvalues to a predetermined negative value,
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as well as satisfying multi-channel .#-norm constraints.
Then, the proposed second stage finds the associated sliding
surface while ensuring the stability of the associated reduced
order dynamics. The advantages of the proposed scheme are
threefold: (a) it can set the stage for designing SMC while the
level of control efforts is taken into account; (b) it makes it
possible to integrate a number of Lyapunov-type constraints,
e.g. regional pole placement constraints, into the SMC design
problem; (c) the controller can be computed in a numerically
very efficient method. The achieved results, in the simulation
section, confirmed the effectiveness of the developed scheme.
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APPENDIX
A. Proof of Lemmal[]|
The equivalence between the first two statements can be
proved using the method employed e.g. in [6, Lemma 2].

We just show the equivalence between the statements ii) and
iii). Let

X * * *

- 0 CI)ZZ * *

T 10 0 —vldiagW), 37)
0 0 0 —v"y]

With well-known Schur complement, it can readily be shown
that the first LMI in iii) can be reformulated as

—1 17
- I+ V(A + B:K) 0
E 4 herm vee(I)", vee(0)", <0.
C+DK 0

Using the well-known Projection lemma, it can be readily
shown that (38) holds iff

Ql'zo <o, (39)
and
QIEQ, <0, (40)
where
1+ v(A0+BK)T v (vee(D)l )" Vv(C+DK)T
Q I 0 0
: 0 diag(v/VI)L, 0 :
I 0 0 VI
0 0 0
I 0 0
D= o vdiag(t)l, 0 @b
0 0 VI

Notice that X > 0. It can be seen that @0) is implied by
(39). Further, (39) can be rewritten as

(herm[v(Ag + B2K)X] + v, A,W,AT *
Vvvee(X) | —diag(W),  «
VV(C+DK)X 0 I
V(Ao +BK)]  [v(Ao+B.K)]"
+ [ Vvvee(D) | X | V/vvec(D), (42)
VV(C+DK) VV(C+DK)
By performing congruence transformation

[%1 (vec(l)fl:,)T 1 ] in the above inequality and introducing
Y = KX, it can be readily seen that the feasibility of the
obtained inequality is equivalent to that of the first LMI in
item ii).
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