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Feedback Regularization and Geometric PID Control for Robust

Stabilization of a Planar Three-link Hybrid Bipedal Walking Model

W.M.L.T.Weerakoon1, T. W. U. Madhushani2, D.H.S.Maithripala3 and J.M.Berg4

Abstract— This paper applies a recently developed
geometric PID controller to stabilize a three-link planar
bipedal hybrid dynamic walking model. The three links
represent the robot torso and two kneeless legs, with an
independent control torque available at each hip joint. The
geometric PID controller is derived for fully actuated
mechanical systems, however in the swing phase the
three-link biped robot has three degrees of freedom and only
two controls. Following the bipedal walking literature,
underactuation is addressed by choosing two “virtual
constraints” to enforce, and verifying the stability of the
resulting two-dimensional zero dynamics. The resulting
controlled dynamics do not have the structure of a mechanical
system, however this structure is restored using “feedback
regularization,” following which geometric PID control is used
to provide robust asymptotic regulation of the virtual
constraints. The proposed method can tolerate significantly
greater variations in inclination, showing the value of the
geometric methods, and the benefit of integral action.

I. INTRODUCTION

Insight into bipedal walking may be gained through the

study of the simple three-link planar model shown in Fig.

1, consisting of a torso and two straight, unjointed, legs

[1], [2], [3]. Each leg is connected to the torso at a hip

joint, and each leg is actuated by an independent hip

moment. The free end of each leg is referred to as a foot.

A walking gait alternates between a stance phase, in which

both feet are on the ground, and a swing phase, in which

the foot of the support leg is in contact with the ground,

and the foot of the swing leg is not in contact with the

ground. The stance phase is assumed to be instantaneous,

and is associated with impulsive momentum transfer

between the links as the swing leg impacts the ground and

becomes the support leg [3], [4]. The impact dynamics

associated with the stance phase are discrete, while the

rigid-body dynamics associated with the swing phase are

continuous. Thus the complete description combining both

phases is a hybrid model. This model requires certain

non-physical assumptions, such as neglect of “scuffing” –

that is, incidental contact between the swing foot and the

ground during the swing phase. Other assumptions include

that the support foot may rotate freely, but cannot slip.
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The three-link hybrid model is used in [4] to analyze the

stability of planar walking gaits under a certain class of

control laws. In this paper the approach of [4] is used to

analyze the stability of an alternate class of control laws. In

[4], the desired walking gait is parametrized using the

stance leg angle q1, which is assumed to increase

monotonically in time. That is, the desired swing leg angle

is written as q2,d = η2(q1) and the desired torso angle is

written as q3,d = η3(q1). Then an output function is defined

as y(q) = [q2 − η2(q1), q3 − η3(q1)]
T , and the equation

y(q) = [0, 0]T defines the output zeroing manifold. Finally,

a switching hypersurface is defined by S(q) = 0. A

fundamental assumption is that system trajectories intersect

the switching surface, S, transversely. When the trajectory

crosses the switching surface, the swing leg is assumed to

have contacted the ground, and the old stance leg becomes

the new swing leg. A discrete-time stability analysis can be

carried out using the switching surface as a Poincare

section. In [4], partial-feedback linearization (PFL)

followed by a nonlinear finite-time feedback law is used to

guarantee finite-time convergence of the output function to

zero. That is, the system trajectories converge to the output

zeroing manifold in finite time, and remain on that

manifold for the remainder of the swing phase. The

convergence time is chosen so that the system trajectory

converges to the output zeroing manifold before crossing

Fig. 1. Planar three link biped walker on an inclined plane with lumped
masses. The robot consists of a torso and two equal length legs connected
to the torso at the hip. A control moment is applied at the hip joint between
each leg and the torso.
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the switching surface, so that the Poincare section can be

taken as the intersection of the switching surface and the

output zeroing manifold. This significantly simplifies their

stability analysis.

Different methods incorporating feedback linearization

have been used extensively to control biped robots on a flat

perfectly horizontal ground [3], [4], [5], [6], [7], [8], [9] as

well as on rough terrain [10], [11], [12]. Decentralized

control methods have been used in [13] for stabilization of

periodic orbits in walking gaits. Human inspired techniques

as well as bionic methods also have been experimented in

[14], [15], [16], [17] to achieve stable periodic gaits.

For the current paper, feedback regularization and

geometric PID control take the place of partial-feedback

linearization and finite-time control. This approach to

exponential tracking for underactuated mechanical systems

was introduced in [18], [19] and a feedback regularization

based geometric PD control for a class planar of three link

was tested in [20]. Geometric PID control as presented in

[21], [22], [23] provides a powerful and intuitive robust

control design method for fully actuated mechanical

systems. To apply this method to underactuated systems,

the configuration variables are replaced by a number of

output functions equal to the number of controls. This

takes care of the underactuation, however the coordinate

change typically destroys the mechanical system structure.

Then feedback is used to recover the form of a mechanical

system – this is the process of feedback regularization.

Now a geometric PID control may be designed. The

resulting closed-loop system is stable if the zero dynamics

resulting from the output functions are stable.

Use of feedback regularization plus geometric PID

guarantees asymptotic convergence of trajectories to the

output zeroing manifold, but the trajectories do not actually

reach the manifold in finite time. However we show that

given any small neighborhood, Zδ , of the zerodynamic

manifold, Z , there exists PID controller gains that

guarantee that if you start in Zδ then you will repeatedly

return to this neighborhood. The underlying motivation for

using this controller is that the robustness provided by the

PID control – particularly the integral action – will result

in a larger region of attraction for the walking gait. Note

that while the planar three-link biped model is simple, it

provides a valuable test bed to demonstrate the robust

properties of the proposed control framework.

Section II presents the hybrid dynamical model used in

[4] for the three-link planar biped model shown in Figure

1. For convenience, and validity of comparison, we use the

same output function as [4]. Section III derives the

feedback regularization and geometric PID controller for

this model, and analyzes the stability of the resulting gaits.

Section IV present simulation results for the proposed

controller on planes with various unknown, but constant,

inclination, and in the presence of substantial parameter

variations showing that the geometric control approach, and

that the use of integral action provides an important degree

of robustness. We consider both uphill and downhill

motion.

II. BIPED ROBOT DYNAMICS

In this section we briefly discuss the mathematical model

of the planar three-link biped robot on an inclined plane of

unknown inclination λ. The model was originally

introduced in [4] and serves as the initial test bed for

control algorithms for a class of biped robots that are

characterized by dynamic stability [4]. As shown in Fig 1

the masses of the links are lumped. The mass of each leg

is denoted by m, the mass of the torso at the hip joint end

is denoted by MH and the mass of the torso at the other

end is denoted by MT . The coordinates q , (q1, q2, q3) as

indicated in Fig 1 are used to prescribe the configuration of

the robot and we refer the reader to [4] for a detailed

analogous derivation of the mathematical model for a

three-link biped robot on a flat surface.

The motor torques u = [u1, u2]
T will be applied between

the torso and the two legs; u1 and u2 are the torques

associated with the stance leg and the non stance leg

respectively. Typically, the dynamics of a biped robot fall

into two distinct phases, the single stance (swing phase)

and the double stance (impact phase) and thus the complete

dynamic behavior of the biped is a hybrid of these two

phases [3], [4].

During the swing pahse, one of the robot’s legs is

implanted on the ground and the other leg is swinging. The

dynamics of the system during this phase is described by

the Euler Lagrange equations,

I∇q̇ q̇ = G+B u (1)

where ∇q̇ q̇ is the Levi-civita connection associated with the
mass-inertia tensor I that is given by,

I(q) =

















4MHr2+4MT r2

+5mr2

4
−

mr2 cos(q1−q2)

2
MT lr cos(q1−q3)

−
mr2 cos(q1−q2)
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mr2
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0

MT lr cos(q1−q3) 0 MT l2

















the gravitation interactions,

G =









gr(2MH+2MT+3m) sin(q1−λ)
2

− gmr sin(q2−λ)
2

MT gl sin(q3−λ)









and input matrix,

B =







−1 0

0 −1

1 1






.

The explicit expression for I∇q̇ q̇ in terms of the

coordinates q , (q1, q2, q3)
T is provided in equation-(17)

of the appendix for easy reference. We also refer the reader

to the excellent texts [24], [25], [26] for supplementary

material on mechanical systems on Riemannian manifolds.



Letting x , (q, q̇) ∈ X we will denote the state space

representation of the swing phase as,

ẋ = f(x) + g(x) u, (2)

where f(x) and g(x) are found using (1).

The impact phase is the phase during the infinitesimally

small time when both the legs will be on the ground. It

happens when the swing leg comes and strikes the ground

with the assumption of no slip and no rebound conditions.

At the end of the double stance case the robot will move on

to the single stance again and this periodic cycle is known

as a walking gait. Therefore at the end of the double stance

phase, the labelling of the two legs must interchange, and

hence one must switch the legs, relabelling the stance leg as

the swing leg and the swing leg as the stance leg. A complete

derivation of the impact model is found in [4] and it is used

to derive the reset map for the new step. Taking x− as the

instance just prior to the impact and x+ as the instance just

after the impact, the reset map [4] can be stated as,

x+ = ∆(x−) (3)

An overview of the reset map is provided in section-B of the

the Appendix for completeness.

The walking gait is a combination of the above

mentioned swing phase and the impact phase. This

combination is referred to as the hybrid model of walking

and can be stated as,

∑

:=

{

ẋ = f(x) + g(x) u ;x− /∈ S

x+ = ∆(x−) ;x− ∈ S

(4)

where S is the switching surface defined as,

S := {(q, q̇) ∈ X | q1 = q1ref }, (5)

with q1ref being a preset constant angle for this work.

When the tracking error is identically equal to zero, the

switching surface (5) indicates the instance when the swing

leg reaches the ground. If the tracking error is not zero

then when the trajectories cross S then either the swing leg

may not have reached the ground or leg scuffing may occur

as 0 < |q2 + q1| ≤ δ for some δ > 0. Specifically we

assume the following;

Assumption 1: When δ is sufficiently small there exists a

mechanism to initiate contact with the walking surface or

avoid leg scuffing without affecting the impact map.

Thus in effect assuming that it is enough to reach

sufficiently close to the zerodynamics manifold in order to

complete the step.

III. STABILIZATION OF A PERIODIC GAIT

The simplest way to idealize walking is to achieve

posture control and swing leg advancement. It is shown in

[4], [6] that an input-output linearization based finite time

stabilizing controller is sufficient to achieve an

asymptotically stable periodic gait for the class of bipeds

used in this work. Following [4] we select the output

function for our planar three-link biped robot to be,

qe = (q1 + q2, q3 − q3ref )
T ∈ Ge = S× S where q3ref is a

constant. Notice that the state space X is now

diffeomorphic to TGe × TS with local coordinates

x = (qe, q̇e, q1, q̇1). The zerodynamics of the system then

evolve on Z , {(0, 0)} × TS ≡ TS.

In this section we will develop a nonlinear controller that

will exponentially stabilize the output during the swing

phase and show that this is sufficient to robustly achieve an

asymptotically stable periodic gait under the Assumption 1.

The controller is based on the notion of feedback

regularization control plus intrinsic PID control introduced

in [18], [19], [22].

From (1) we see that the dynamic model of the biped robot

can be written down in the coupled form:

Ieω̇e + τe(ωe, ω1) + τeg = τeu (6)

Izω̇1 + τz(ω1, ωe) + τzg = τzu (7)

where q̇1 = ω1 and,

Ie(qs) =





l2(4MH+2MT (1−cosα)
+m(3−2 cosβ) )

0

0
r2(4MH+2MT (1−cosα)

+m(3−2 cos β) )





Iz(qs) =
r2

4
(4MH+2MT+3m−2MT cos(α)−2m cos(β))

with α , 2(q1 − q3ref − qe1), β , 2(2q1 − qe2) and qs ≡
(α, β), and the control inputs,

τeu =Beu

τzu =
(

−
r
l
cos(α

2 )−1 −2 cos( β
2 )− r

l
cos(α

2 )
)

u

where,

Be11 = 4MH+3m−2m cos(β)

MT
+

4

(

r+l cos(α
2

)

)

r

Be12 = 4MH+3m−2m cos(β)

MT
+

4

(

r+l cos(
α−β

2
)+l cos(

α+β
2

)

)

r

Be21 =
−

4

(

l+r cos( α
2

)

)(

2 cos(
β
2

)+1

)

l

Be22 =
−

4

(

4MH+2MT +5m−2MT cos(α)+2m cos(
β
2

)

)

m

−

4

(

r cos( α
2

)+r cos(
α−β

2
)+r cos

α+β
2

)

l

Let ωs , q̇s = (α̇, β̇). The quadratic velocity dependent

forces τe(ωe, ω1), τz(ω1, ωe) and the gravitational

interaction terms τg
e, τg

z are provided in equations

(20)–(23) in the Appendix. Here (6) represents the error

dynamics of the system and when the output qe(t) is

restricted to zero (7) represents the zerodynamics of the

system.

Following the feedback regularization approach proposed

in [18], [19] we choose the regularizing plus potential

shaping controls,

τeu = τeg − I
−1
e Γ(ωs)ωe + τ̃ , (8)



where

Γ(qs, ωs) =I
−1
e









MT l2 sin(α)α̇

+ml2 sin(β)β̇

ml2 sin(β)α̇

−MT r2 sin(α)β̇

−ml2 sin(β)α̇

+MT r2 sin(α)β̇

MT r2 sin(α)α̇

+mr2 sin(β)β̇









to give the error dynamics (6) the structure of a simple

mechanical system on the Lie group Ge = S× S:

Ie(qs)∇
e
ωs
ωe =τ̃u + τd (9)

where ∇e
ωs
ωe is the unique Levi-Civita connection associated

with the inertia tensor Ie that is explicitly given by,

∇e
ωs
ωe = ω̇e + Γ(ωs)ωe. (10)

The term τd is introduced here to represent any moments

due to unmodelled disturbances, parameter uncertainties,

and the effects due to the lack of accurate information of

the inclination plane. This structure allows us to use the

intrinsic PID controller proposed in [22] to ensure that the

error dynamics converge to zero exponentially, provided

that the zerodynamics of the system remains bounded. This

PID controller takes the form,

τ̃u = −Is(kpηe + kdωe + kIωI) (11)

Ie(qs)∇
e
ωs
ωI = Ieηe (12)

where,

∇e
ωs
ωI = ω̇I + Γ(ωs)ωI , (13)

Ieηe =

[

sin
(

q3 − q3ref
)

sin(q1 + q2)

]

. (14)

Notice that the controller does not require the knowledge

of the inclination of the plane. However, it can be shown

that the system parameters should satisfy,
sin(q3ref −λ)

sin(λ) ≥ (MT+MH+m)r
MT l

for static stability. Hence, it

should be noted that the selection of the desired torso angle

q3ref is not arbitrary for a particular range of inclinations.

Considering the unique Levi-Civita connection of Iz(θz)
that is explicitly given by

Iz(θ1)∇
z
ω1
ω1 = Iz(θ1)ω̇1 −MT rl sin(θ1)ω

2
1 ,

we see that the dynamics (7) also have the mechanical system

structure:

Iz(θ1)∇
z
ω1
ω1 = −τzg − τz(ωe, ω1). (15)

The gravitational interaction term τzg and the quadratic

velocity term τz(ωe, ω1) satisfy the conditions specified in

Assumption 1 of [18] and hence from Theorem 1 of [18]

we have that during the swing phase for any initial

condition set X 0
e × Z0 ⊂ TGe × Z there exists PID

controller gains for the controller (11) – (12) such that

limt→∞(ηe(t), q̇e(t)) = (0, 0) ∈ TGe exponentially while

ensuring that |q̇1(t)| remains bounded even in the presence

of bounded parameter uncertainty. Using this result we

prove following theorem in the appendix.

Theorem 1: Given any small δ > 0 there exists PID

controller gains for the controller (11) – (12) such that the

trajectories of the closed loop system (1) satisfies

x(t−k ) ∈ Zδ, where

Zδ = {(qe, q̇e) ∈ X|
√

||ηe||2 + ||q̇e||2 ≤ δ}, (16)

for some increasing sequence of time steps t−0 < t−1 < · · · <
t−k < · · · .

We point out that Z ⊂ Zδ and that Zδ is a small δ-

neighborhood of the zerodynamics manifold Z . Thus what

this theorem implies is that if the biped robot starts with an

initial condition that is close to Z then the trajectories of

the closed-loop system visit this neighborhood during every

step of the robot. In the following we will show numerically

that these repeated trajectories converge asymptotically to a

periodic orbit. Thus ensuring the asymptotic stabilization of

a walking gait.

IV. SIMULATION RESULTS

In this section we present the simulation results for the

proposed feedback regularization and geometric PID

controller for the planar three-link biped robot walking on

an inclined plane. The nominal parameters of the robot

used in this work are m = 1kg, MT = 3kg, MH = 1kg,

l = 0.75m and r = 1m which assumes a planar three link

biped carrying a substantial load on its torso. The

maximum inclination of the plane for equilibrium for these

parameters is λmax = 26.7◦. Thus for the simulations we

use an inclination of λ = 25◦. The switching surface for all

the simulations were set at q1ref = 15◦ and for all the

simulations we have picked δ = 1.5× 10−3. The controller

gains we use are Kp = 1500, Kd = 1250 and KI = 120.

The existence of a periodic orbit, with the trajectory

projected on (q1, q̇1, q̇3), and the step times are shown in

Fig. 2 which clearly illustrates the convergence of the

trajectory to a periodic orbit. The desired torso angle was

set at q3ref = 105◦ for this simulation. We also show the

robustness of the periodic orbit to parameter uncertainties

as large as 50% in Fig. 3. The output error tracking for the

torso and leg angles for this case are shown in Fig. 4 and it

clearly shows that there exists a periodic orbit that reaches

Zδ at the end of each step.

We re-iterate that the accurate information of the

inclination angle is not required in the controller and we

demonstrate it in Fig. 5 for uphill climbing and Fig. 6 for

downhill descent. The simulation shows that even if the

actual inclined angle is different from the angle set in the

controller the asymptotically stable periodic orbit still exists

even in the presence of large parameter uncertainties. The

simulation also shows that the controller is applicable for

uphill as well as downhill walking.

V. CONCLUSION

In this paper we propose a novel control strategy to

obtain an asymptotically stable periodic gait for a class of

under actuated planar biped robots. We have used the

intrinsic notion of feedback regularization plus geometric
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q̇1 = 1.168rad/s. This shows that the periodic orbit that gives rise from
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controller was set assuming the inclination λ = −15◦ (15◦ slope) and
desired torso angle was set to 0◦.

PID control to ensure the robust existence of an

asymptotically stable periodic orbit that can be made to

approach the output zerodynamic manifold arbitrarily

closely by picking sufficiently large gains. In particular it

allows the robot to move up or down and inclined plane of

unknown inclination. The controller does not require finite

time stability. Since the notions developed are geometric

and does not depend on coordinates it is expected that

these ideas will equally be valid in the case of a more

realistic five-link or seven-linked biped robot model and

remains as future work.

APPENDIX

A. Levi-Civita Connection of the three-linked biped robot

The unique Levi-Civita connection corresponding to the
inertia tensor I that corresponds to the Euler-Lagrange
dynamics during the swing phase is explicitly computed to
be,

I∇q̇ q̇ = Iq̈ + Γ(q, q̇)q̇ (17)

where the non zero elements of Γ(q, q̇) the connection
matrix are given by,

Γ(q, q̇)12 = −
mr2 sin(q1 − q2)q̇2

2
Γ(q, q̇)13 = MT lr sin(q1 − q3)q̇3

Γ(q, q̇)21 =
mr2 sin(q1 − q2)q̇1

2
Γ(q, q̇)31 = −MT lr sin(q1 − q3)q̇1.

B. The reset map

The dynamic equation for the double stance model [4] is
as follows;

Dds(qds) ¨qds + Cds(qds, ˙qds) ˙qds +Gds = Bdsu+ δFext (18)

where the explicit expressions for Dds(qds), Cds(qds, ˙qds),
Gds and Bds can be found in the Appendix of [4].

The coordinate system for this case is taken to be

qds = [q; ph], where ph = [pxhip; p
y
hip] are the Cartesian

coordinates of the hip. Here the δFext represents the

impact force due to the striking of the non-stance leg on

the ground. The impulsive contact force can be found as,

Fext =
∫ t+

t−
δFextdt.

At the instance just before the foot strike, let ˙qds
− be the

velocities and it is obtained from the single stance model.

At this instance, the hip position p−h = γds(q) can be found

using the body angle coordinates. The reaction force is at

the end of the non-stance leg p2(qds). The impact map,

x+ = ∆(x−) (19)

where,

∆(x−) =







∆qq
−

∆q̇(q
−)q̇−







∆q = R

∆(̇q−) =
[

R 03×2

]

∆̄ ˙qds(q
−)

∆̄ ˙qds = D
−1
ds E

′

2∆F2 +







I3×3

∂
∂q

γds







∆F2 = −(E2D
−1
ds E

′

2)
−1

E2







I3×3

∂
∂q

γds







E2(qds) =
∂

∂qds
p2(qds)

Here,

R =





0 1 0
1 0 0
0 0 1





C. Decoupled Dynamic Model

Explicit expressions for the quadratic velocity forces and

gravitational forces for the decoupled systems (6)–(7) are,

τe =





























−l

(

(4MH q̇21r+mω2
e2

r+3mq̇21r) sin(
α
2 )+2mq̇21r sin(β−α

2 )

+(mq̇21r−2mωe2 q̇1r) sin(
α−β

2 )+2MT lω2
e1

sin(α)

+(2mωe2 q̇1r−mω2
e2

r−mq̇21r) sin(
α+β

2 )
)

4MT lr

(

sin(α
2 )+sin(α−β

2 )+sin(α+β
2 )

)

ω2
e1

+r2
(

(8MH q̇21+4MT q̇21−2mω2
e2

+8mq̇21+4mωe2 q̇1) sin(
β
2 )

+(4mωe2 q̇1−2mω2
e2

) sin(β)+2MT q̇21 sin(α)

+4MT q̇21 sin(α− β
2 )
)





























(20)



τz =
MT lr sin(α

2 )ω2
e1

+ r2

2

(

−(mω2
e2

−mq̇21+2mωe2 q̇1) sin(
β
2 )

+mq̇21 sin(β)+MT q̇21 sin(α)
) (21)

τeg =





























gl

(

2(MH+MT +m) sin(q1+
α
2 −λ)

−m sin(q1+
α
2 −β−λ)+m sin(q1−

α
2 +β−λ)

−(2MH+2MT +m) sin(q1−
α
2 −λ)

)

−2gr
(

(MT+MT ) sin(α−q1−λ)+m sin(β−q1−λ)

+(2MH+MT+3m) sin(q1+
β
2 −λ)

+(2MH+MT+2m) sin(q1−λ)

−2(MH+MT +m) sin(q1−
β
2 −λ)

+MT sin(q1+α−
β
2 −λ)

)





























(22)

τzg =
−

gr
2

(

(2MH+MT+2m) sin(q1−λ)+MT sin(α−q1−λ)

+m sin(β−q1−λ)
) (23)

D. Proof of Theorem-1

Proof of Theorem 1: Consider the compact set

X 0 , X 0
e × Z0 ⊂ X there exists a positive definite

function We : TGe → R with a unique minimum at the

origin such that during the swing phase

We(t) ≤ ϑe−κt,

for all x+ ∈ X 0 , X 0
e × Z0 for some ϑ, κ > 0 while

ensuring that |q̇1(t)| ≤ ξ for some ξ > 0. Since q̇1 not zero

we find that q1(t) reaches the switching surface S ⊂ Z at

some time t−k+1 > t+k .

Consider the kth step of the robot and let W
t
−

k
e be the

largest set such that W
t
−

k
e ⊂ W−1

e (ϑe−κt
−

k ). Thus we see

that x(t−k ) ∈ W
t
+
k

e , W
t
−

k
e × {q1ref} × [−ξ, ξ] for any

x(t+k ) ∈ X 0. Now if x(t−k+1) = ∆(x(t−k )) ∈ X 0 then in the

next step x(t−k+1) ∈ W
t
+
k+1

e ⊂ W
t
+
k

e . Thus we see that the

trajectories of the closed-loop switched system visit W
t
+
1

e at

the increasing sequence of time steps

t−0 < t−1 < · · · < t−k < · · · .
This set can be made arbitrarily small by picking

sufficiently large gains for the PID controller and/or by

making X 0 sufficiently small. Thus for any given δ > 0 we

can pick either the gains sufficiently large or the initial

condition set sufficiently small such that for any small

δ > 0, W
t
+
1

e ⊂ Zδ . Now it is clear that if X0 ⊂ ∆(Zδ) then

the trajectories visit Zδ at the end of every swing phase of

the robot.
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