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Abstract— Distributed model predictive control (MPC) is
either cooperative or competitive, and control-theoretic prop-
erties have been less studied in the competitive (e.g., game
theory) setting. This paper studies MPC with linear dynam-
ics and a Stackelberg game structure: Given a fixed lower-
level linear MPC (LoMPC) controller, the bilevel linear MPC
(BiMPC) controller chooses inputs to steer LoMPC knowing
that LoMPC is optimizing with respect to a different cost
function. After defining LoMPC and BiMPC, we give examples
to demonstrate how interconnections in a dynamic Stackelberg
game can lead to loss/gain (as compared to the same system
being centrally controlled) of controllability or stability. Then,
we give sufficient conditions under an arbitrary finite MPC
horizon for stabilizability of BiMPC, and develop an approach
to synthesize a stabilizing BiMPC controller. Next, we define two
(a duality-based technique and an integer-programming-based
technique) reformulations to numerically solve the optimization
problem associated with BiMPC, prove equivalence of these
reformulations to BiMPC, and demonstrate their useful by
simulations of a synthetic system and a case study of an electric
utility changing electricity prices to perform demand response
of a home’s air conditioner controlled by a linear MPC.

I. INTRODUCTION

Distributed model predictive control (MPC) is classified by
information flows and the order of controller computations.
Most work [1]–[8] studies how to decentralize solution of the
MPC optimization problem. Hierarchical MPC [4], [9]–[11]
has interactions between a supervisory MPC layer and a low-
level MPC layer, and both layers are engineered to ensure
closed-loop stability. In contrast, noncooperative MPC [2],
[3] has several coequal MPC controllers that have differing
objective functions. Thus, noncooperative MPC has a game-
theoretic interpretation: The stationary solution of the con-
trollers is a Nash equilibrium, which means noncooperative
MPC can model competition between agents/systems.

Stackelberg games [12] have a leader-follower intercon-
nection structure that has not been well-studied in the context
of distributed MPC. In these games, the follower’s controller
is fixed and the leader engineers their own controller. It
differs from hierarchical MPC [4], [9]–[11] in that only the
leader’s controller is engineered and the follower’s controller
may be unstable, and it differs from noncooperative MPC
[2], [3] in that the follower gets to first observe the leader’s
control actions and then choose their own control.
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Though Stackelberg games have been used in control
applications featuring human-automation interactions [13]–
[20], little attention has been paid towards controllability, sta-
bility, and controller synthesis. Stackelberg games are bilevel
programs [21]–[23], which are optimization problems where
some constraints are the solutions to a lower-level optimiza-
tion problem. This perspective of bilevel programs provides a
promising framework from which to study control-theoretic
questions (like stability and synthesis) of Stackelberg games.

This paper defines and then studies control-theoretic prop-
erties of bilevel linear MPC (BiMPC), which is a distributed
linear MPC with Stackelberg game structure. The idea is that
the lower-level linear MPC is a model of either the human
decision-making process [15], [17], [18], [20], [24] or of
an automated system [6], [19], [25]–[29]. And our goal in
designing BiMPC is to engineer the system in order to steer
the lower-level MPC towards desired configurations.

We first define BiMPC, and then give examples that show
how interconnections in dynamic Stackelberg games can
lead to loss/gain (as compared to the same dynamics being
centrally controlled) of controllability or stability. Next, we
provide sufficient conditions for stabilizability of BiMPC.
An approach to synthesize a stable BiMPC controller is
also derived. We then define two reformulations (based on
duality theory [22], [23] and integer-programming [24], [30])
to numerically solve the optimization problem associated
with BiMPC, prove equivalence of these reformulations to
BiMPC, and demonstrate their usefulness by simulations of
a synthetic system and a case study of an electric utility
changing electricity prices to perform demand response of a
home’s air conditioner controlled by a linear MPC.

II. FORMULATION OF BILEVEL LINEAR MPC
Let ξ ∈ Rp and ν ∈ Rq , and suppose the overall control

system is linear ξ+ = Aξ+Bν with matrices of dimensions
A ∈ Rp×p and B ∈ Rp×q . We decompose the state space
as ξT =

[
xT yT

]
with x ∈ Rρ and y ∈ Rp−ρ, and we

decompose the input as νT =
[
uT wT

]
with u ∈ Rγ

and w ∈ Rq−γ . It is also useful to decompose B as B =[
B1 B2

]
with B1 ∈ Rp×γ and B2 ∈ Rp×(q−γ). Lastly, the

sets X ,Y,U ,W are compact, non-singleton polytopes that
contain the origin. These sets are assumed to be characterized
by a finite number of linear inequalities, and they are used
to provide constraints on x, y, u, w, respectively.

Now let 〈r〉 = {0, . . . , r− 1} and [r] = {1, . . . , r}, define
the positive semidefinite matrices U, V ∈ Rp×p, and define
the matrix W ∈ Rq×q that decomposes as

W =

[
W1 Φ
ΦT W2

]
(1)
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with the matrix W2 ∈ R(p−ρ)×(p−ρ) assumed to be positive
definite. To simplify our notation for defining MPC with a
time horizon of N time steps, we use ξ = {ξ1, . . . , ξN},
u = {u0, . . . , uN−1}, and w = {w0, . . . , wN−1}. We define
the lower-level linear model predictive control (LoMPC)
problem with a horizon of N to be

PL(ξ0,u) = min
ξ,w

ξT
NUξN +

∑N−1
n=0 ξ

T
nV ξn + νT

nWνn

s.t. ξn+1 = Aξn +Bνn for n ∈ 〈N〉
yn ∈ Y, wn ∈ W for n ∈ 〈N〉
yN ∈ YΩ

(2)

where YΩ is a positively robust invariant set such that given a
matrix KL ∈ R(q−γ)×p then the set YΩ satisfies: (i) YΩ ⊆ Y
and KLξ ∈ W for (x, y) ∈ X ×YΩ, and (ii) (A+B2KL)ξ+
B1u ∈ YΩ for (x, y, u) ∈ X × YΩ × U . The set YΩ can be
computed by existing algorithms [31]–[35].

Next let P,Q ∈ Rp×p, R ∈ Rq×q be positive semidef-
inite matrices. The bilevel linear model predictive control
(BiMPC) problem with a horizon of N is given by

PB(ξ0) = min
ξ,u,w

ξT
NPξN +

∑N−1
n=0 ξ

T
nQξn + νT

nRνn

s.t. (ξ,w) ∈ arg min
ξ,w

PL(ξ0,u)

h(ξ0, ξ) ≤ 0

xn ∈ X , un ∈ U for n ∈ 〈N〉
xN ∈ X

(3)

where h(ξ0, ξ) ≤ 0 is a constraint that will be designed in
Sect. IV to ensure recursive feasibility and stability. This
constraint is similar to a Lyapunov constraint that has been
used in certain MPC schemes to ensure stability [36], [37],
though a conceptual difference is that our constraint is
needed for both recursive feasibility and stability.

III. INTERCONNECTION EXAMPLES

Interconnections in dynamic Stackelberg games can cause
a loss/gain of controllability or stability as compared to the
same dynamics when they are centrally controlled by u with
w ≡ 0, which is behavior not often seen in hierarchical or
noncooperative control. Our examples use h(ξ0, ξ) ≡ 0 and
X = Y = YΩ = U =W = R, and we refer to the dynamics
on the x states (y states) as the upper (lower) dynamics.

A. Controllability Examples

Our first example is a problem where the LoMPC is

PL(ξ0,u) = min
ξ,w

(u0 + w0)2

s.t. x1 = 2x0 + y0

y1 = y0 + u0 + w0

y1 ∈ R, w0 ∈ R

(4)

The overall system is controllable in u when w ≡ 0. But a
simple calculation shows the control of LoMPC is w = −u,
and so for n ≥ 1 the dynamics seen by BiMPC are

xn+1 = 2xn + yn

yn+1 = yn
(5)

which is not controllable in u. The control action of LoMPC
leads to a loss of controllability by BiMPC in this example.

The next example is a problem where the LoMPC is

PL(ξ0,u) = min
ξ,w

(y1)2 + (w0)2

s.t. x1 = 2x0 + w0

y1 = y0 + u0 + w0

y1 ∈ R, w0 ∈ R

(6)

The overall system is not controllable in u when w ≡ 0.
But a simple calculation shows the control of LoMPC is
w = −(y + u)/2, and so the dynamics seen by BiMPC are[

xn+1

yn+1

]
=

1

2
·
[
4 −1
0 1

] [
xn
yn

]
+

1

2
·
[
−1

1

]
un (7)

which is controllable in u. The control action of LoMPC
leads to a gain of controllability by BiMPC in this example.

B. Stability Examples
Our first example is a problem where the LoMPC is

PL(ξ0,u) = min
ξ,w

(y1)2 + (w0)2

s.t. x1 = x0 + 2y0 + u0

y1 = 2x0 + y0 + u0 + w0

y1 ∈ R, w0 ∈ R

(8)

and the BiMPC is
PB(ξ0) = min

ξ,u,w
(x1)2 + (u0)2

s.t. x1 ∈ R, u0 ∈ R
(ξ1, w0) ∈ arg min

ξ,w
PL(ξ0,u)

(9)

A simple calculation gives that the closed loop system is[
xn+1

yn+1

]
=

1

4
·
[
2 4
3 0

] [
xn
yn

]
(10)

which is unstable. The lower dynamics are stable when
(x, u) = (0, 0), and the upper dynamics are stable when
(y, w) = (0, 0); yet the overall control system is unstable.
But by changing the objective function of the BiMPC to
(x1)2 + (u0)2 + (y1)2, the closed loop system becomes[

xn+1

yn+1

]
=

1

5
·
[
1 5
3 0

] [
xn
yn

]
(11)

which is stable. Thus stability of the overall control system
is dependent on the gains of the upper and lower dynamics.

As another example, consider the LoMPC given by

PL(ξ0,u) = min
ξ,w

(w0)2

s.t. x1 = x0 + 4y0 + u0

y1 = 4y0 + u0 + w0

y1 ∈ R, w0 ∈ R

(12)

and the BiMPC is
PB(ξ0) = min

ξ,u,w
(x1)2 + (u0)2

s.t. x1 ∈ R, u0 ∈ R
(ξ1, w0) ∈ arg min

ξ,w
PL(ξ0,u)

(13)



A simple calculation gives that the closed loop system is[
xn+1

yn+1

]
=

1

2
·
[

1 4
−1 4

] [
xn
yn

]
(14)

which is unstable. This example is interesting because the
control provided by LoMPC (the control is always w ≡ 0)
is never stabilizing, while the control of BiMPC stabilizes
the upper dynamics when (y, w) = (0, 0). On the other hand,
when the objective function of BiMPC is changed to (x1)2 +
(u0)2 + 3(y1)2, the closed loop system is[

xn+1

yn+1

]
=

1

5
·
[

4 4
−1 4

] [
xn
yn

]
(15)

which is stable. This example shows that in certain situations
the BiMPC can stabilize the overall control system indepen-
dent of the control action provided by LoMPC.

IV. SUFFICIENT CONDITION FOR STABILITY

The above examples show that stability of BiMPC depends
non-trivially on the dynamics and cost functions, and so we
focus on providing sufficient conditions for stabilizability and
then develop an approach for controller synthesis in BiMPC.

It is helpful to define some additional notation. Let ΛN =
U , define the matrices

Θn = W2 +BT
2 ΛnB2

Λn−1 = ATΛnA−ATΛnB2Θ−1
n BT

2 ΛnA+ V

Ψn−1 = −Θ−1
n BT

2 ΛnA

(16)

for n ∈ [N ], and define the matrix Γ = I − B2Θ−1
1 BT

2 Λ1.
Our first result concerns the properties of a specific set.

Proposition 1: Let G ∈ Rγ×p be any matrix. Then the set

Ξ =
{
ξ0 : Gξ0 ∈ U

Θ−1
1 (BT

2 Λ1(A+B1G) + ΦTG)ξ0 ∈ W
Ψnξn ∈ W for n ∈ [N − 1]

ξ1 = (ΓA+ (ΓB1 −B2Θ−1
1 ΦT)G)ξ0

ξn+1 = (A+B2Ψn)ξn for n ∈ [N − 1]

xn ∈ X , yn ∈ Y, for n ∈ 〈N〉

xN ∈ X , yN ∈ YΩ

}
(17)

is non-singleton and contains the origin if YΩ is non-
singleton and contains the origin.

Proof: We start by proving the origin belongs to Ξ.
Note that if ξ0 = 0, then Gξ0 = 0, Θ−1

1 (BT
2 Λ1(A+B1G) +

ΦTG)ξ0 = 0, ξ1 = (ΓA + (ΓB1 − B2Θ−1
1 ΦT)G)ξ0 = 0,

ξn+1 = (A+B2Ψn)ξn = 0 for n ∈ [N − 1], and Ψnξn = 0
for n ∈ [N − 1]. Thus 0 ∈ Ξ since the sets X ,Y,U ,W
contain the origin. Next we prove Ξ is non-singleton. Since
N is finite, this means Λn,Ψn for n ∈ 〈N〉 and ΨN are
finite. So we can pick an r > 0 such that {ξ0 : ξT

0ξ0 ≤
r} ⊆ Ξ since G, Θ−1

1 (BT
2 Λ1(A + B1G) + ΦTG), Ψn for

n ∈ [N − 1], ΓA + (ΓB1 − B2Θ−1
1 ΦT)G, and A + B2Ψn

for n ∈ [N − 1] have finite norm. So Ξ is non-singleton.
With the above definied matrices and set, we can now

study stabilizability and controller synthesis for BiMPC.

Theorem 1: If (ΓA,ΓB1−B2Θ−1
1 ΦT) is stabilizable, then

BiMPC is stabilizable. In particular, let G ∈ Rγ×p be any
matrix so Z = ΓA + (ΓB1 − B2Θ−1

1 ΦT)G is Schur stable,
and let H ∈ Rp×p be the unique positive definite matrix that
solves the discrete time Lyapunov equation ZTHZ − H =
−I. If ξ0 ∈ Ξ and X = {ξ : ξTHξ ≤ ξT

0Hξ0} ⊆ Ξ, then we
have that BiMPC with the choice

h(ξ0, ξ) = ξT
1Hξ1 − ξT

0 (H − I)ξ0 (18)

stabilizes the control system, is recursively feasible, and
ensures ξn ∈ X × Y , un ∈ U , and wn ∈ W for all n ≥ 0.

Proof: Suppose u = {Gξ0, 0, . . . , 0}. Then a dynamic
programming calculation on LoMPC gives wn = ΨnAξn
and ξn+1 = (A+B2ΨnA)ξn for n ∈ [N − 1], and that

PL(ξ0,u) = min
ξ1,w0

ξT
1Λ1ξ1 + ξT

0V ξ0 + νT
0Wν0

s.t. ξ1 = Aξ0 +Bν0

y0, y1 ∈ Y, w0 ∈ W

(19)

when wn+1 ∈ W for n ∈ 〈N−1〉, yn+2 ∈ Y for n ∈ 〈N−2〉,
and yN ∈ YΩ. Since u0 = Gξ0, solving (19) gives

w0 = Θ−1
1 (BT

2 Λ1(A+B1G) + ΦTG)ξ0

ξ1 = (ΓA+ (ΓB1 −B2Θ−1
1 ΦT)G)ξ0

(20)

when w0 ∈ W and y0, y1 ∈ Y . But if ξ0 ∈ Ξ, then the
above described requirements on yN and wn, yn for n ∈
〈N − 1〉 hold by definition of Ξ. And so the above values
of ξ,w are in fact the minimizers of LoMPC when u =
{Gξ0, 0, . . . , 0} and ξ0 ∈ Ξ, which implies the above ξ,u,w
are feasible for BiMPC since h(ξ0, ξ) = ξT

0 (ΓA + (ΓB1 −
B2Θ−1

1 ΦT)G)TH(ΓA+ (ΓB1−B2Θ−1
1 ΦT)G)ξ0− ξT

0 (H −
I)ξ0 = 0 by the discrete time Lyapunov equation.

Now consider the (possibly different) values ξ,u,w that
are optimal for BiMPC. This minimizer exists because we
showed that BiMPC is feasible when ξ0 ∈ Ξ. By definition
of LoMPC and BiMPC we have u0 ∈ U , w0 ∈ W , and
ξ1 ∈ X ×Y when we use the optimal ξ,u,w. Furthermore,
our choice of h(ξ0, ξ) gives that ξT

1Hξ1 ≤ ξT
0Hξ0 − ξT

0ξ0 ≤
ξT
0Hξ0. This means ξ1 ∈ X , and so by assumption we

have ξ1 ∈ Ξ since we assumed X ⊆ Ξ. Using the same
argument as above, this implies BiMPC is feasible for ξ1.
This proves recursive feasibility and recursive constraint
satisfaction. Stability of BiMPC follows by noting ξTHξ is
a Lyapunov function for the control provided by BiMPC.

Observe that this result gives a method for synthesizing
a controller because Γ,Θ1 are both constant matrices that
can be computed using matrix operations on A,B,U, V,W ,
and so controller design for BiMPC consists of appropriately
choosing the matrices G,P,Q,R and computing the matrix
H by solving a discrete time Lyapunov equation.

V. DUALITY APPROACH TO SOLVING BIMPC

New algorithms that use duality theory to solve bilevel
programs have recently been proposed [22], [23], and here
we describe how to adapt these approaches to solve BiMPC.



A. Duality-Based Reformulation of BiMPC

We first specify some notation: Define ‖ξ‖2M = ξTMξ for
a matrix M , X = {ξ : Fxξ ≤ gx}, Y = {ξ : Fyξ ≤ gy},
YΩ = {ξ : Foξ ≤ go}, U = {ν : Fuν ≤ gu}, W = {w :
Fww ≤ gw}, µ = {µ0, . . . , µN−1}, λ = {λ0, . . . , λN}, and
γ = {γ0, . . . , γN−1}. With this notation, we next present
our duality-based reformulation of BiMPC:

PDB(ξ0, ε) =

min
ξ,u,w
µ,λ,γ

ξT
NPξN +

∑N−1
n=0 ξ

T
nQξn + νT

nRνn

s.t. ξT
NUξN +

∑N−1
n=0 ξ

T
nV ξn + νT

nWνn+

− ζ(ξ0,u,µ,λ,γ) ≤ ε
ξn+1 = Aξn +Bνn for n ∈ 〈N〉
ξT
1Hξ1 − ξT

0 (H − I)ξ0 ≤ 0

Fxxn ≤ gx, Fyyn ≤ gy for n ∈ 〈N〉
Fuun ≤ hu, Fwwn ≤ hw for n ∈ 〈N〉
FxxN ≤ gx, FoyN ≤ go
λn ≥ 0, γn ≥ 0 for n ∈ 〈N〉

(21)

where λn, µn, γn have appropriate dimensions to define

ζ(ξ0,u,µ,λ,γ) = − 1
4‖F

T
o λN + µN−1‖2U† − g

T
oλN+∑N−1

n=1

[
− 1

4‖F
T
y λn + µn−1 −ATµn‖2V † − g

T
yλn

]
+∑N−1

n=0

[
− 1

4‖F
T
wγn −BTµn + 2ΦTun‖2W−1

2

+

− gT
wγn + uT

nW1un

]
+ (Fyξ0 − gy)Tλ0 − ξT

0A
Tµ0 (22)

and U†, V † are the Moore-Penrose pseudoinverse of U , V .
Our next result shows that the solutions of this duality-based
reformulation match the solutions of BiMPC.

Theorem 2: Consider the problem PDB(ξ0, ε). We have
that arg minPB(ξ0) = arg minPDB(ξ0, 0) and

lim
ε→0

dist(arg minPDB(ξ0, ε), arg minPB(ξ0)) = 0, (23)

where dist(S, T ) = sups inft{‖s− t‖ | s ∈ S, t ∈ T }.
Proof: The Langrangian corresponding to LoMPC is

L = ξT
NUξN +

∑N−1
n=0 [ξT

nV ξn+νT
nWνn+µT

n(ξn+1−Aξn−
Bνn)+λT

n(Fyξn−gy)+γT
n(Fwνn−gw)+λT

N (FoξN −g0)],
where the λn, µn, γn variables have appropriate dimensions.
This Lagrangian has a separable structure, and so we indi-
vidually consider its minimization in each decision variable.
Moreover, each minimization is a convex quadratic program
that we solve by setting the gradient in the corresponding
decision variable equal to zero. Then arg infξN L 3 ξ

N
=

− 1
2U
†(F T

o λN+µN−1) and ξT
N
Uξ

N
+(F T

o λN+µN−1)Tξ
N

=

− 1
4‖F

T
o λN+µN−1‖2U† . For n ∈ [N−1], arg infξn L 3 ξn =

− 1
2V
†(F T

y λn+µn−1−ATµn) and ξT
n
V ξ

n
+(F T

y λn+µn−1−
ATµn)Tξ

n
= − 1

4‖F
T
y λn + µn−1 −ATµn‖2V † . For n ∈ 〈N〉,

wn = arg infwn L = − 1
2W

−1
2 (F T

wγn−BTµn+ 2ΦTun) and
wT
nW2wn + (F T

wγn − BTµn + 2ΦTun)Twn = − 1
4‖F

T
wγn −

BTµn + 2ΦTun‖2W−1
2

. Combining these intermediate calcu-
lations shows that the Lagrange dual function is given by

-1.5 -1 -0.5 0 0.5 1 1.5
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

Fig. 1. A phase plot (with 5 initial conditions) for the overall system with
BiMPC in (25) solved using our duality-based reformulation (21).

the function ζ(ξ0,u,µ,λ,γ) as defined earlier. Since the
constraints of LoMPC are all linear, strong duality holds [38]
and so PB(ξ0) is equivalent to PDB(ξ0, 0). The final part
of the result follows by applying epi-convergence theory,
similar to the proofs [22], [23]. Specifically, it follows by
combining Proposition 7.4.d and Theorem 7.31 of [39].

The ε in the reformulation PDB(ξ0, ε) provides numerical
regularization, and setting ε > 0 ensures certain improved
numerical properties [22], [23]. The above result shows that
solving PDB(ξ0, ε) with a sufficiently small ε generates a
solution close to the solution of the original BiMPC problem.

B. Example: Simulation of Two-Dimensional System

Consider a situation where the LoMPC is
PL(ξ0,u) = min

ξ,w
y2

1 + y2
0 + w2

0

s.t. x1 = 2x0 + y0 + u0

y1 = 2y0 + u0 + w0

w0 ∈ [−3, 3], y1 ∈ [−1, 1]

(24)

Using the synthesis procedure from Sect. IV we can compute
ΓT = 1

2 ·
[
2 1

]
, choose a stabilizing G = − 1

2 ·
[
3 1

]
, and

compute H = 1
12

[
59 −10
−10 44

]
. Theorem 1 implies that

PB(ξ0) = min
ξ,u,w

ξT
1ξ1 + ξT

0ξ0 + νT
0ν0

s.t. (ξ,w) ∈ arg min
ξ,w

PL(ξ0,u)

ξT
1Hξ1 − ξT

0 (H − I)ξ0 ≤ 0

u0 ∈ [−2, 2], x1 ∈ [−1, 1]

(25)

is stabilizing. Simulation results where the control action of
BiMPC was computed using the duality-based reformulation
(21) with regularization of ε = 0.01 are shown in Fig. 1.

VI. INTEGER-BASED APPROACH TO SOLVING BIMPC
Another approach to solving bilevel programs is to use

mixed-integer programming [24], [30], and here we describe
how to adapt these approaches to solve BiMPC.



A. Integer-Programming Reformulation of BiMPC

Let κ > 0 be a constant, σ = {σ0, . . . , σN}, and τ =
{τ0, . . . , τN−1}. Our integer-programming reformulation is

PIP (ξ0) = (26)

min
ξ,u,w
µ,λ,γ
σ,τ

ξT
NPξN +

∑N−1
n=0 ξ

T
nQξn + νT

nRνn

s.t. 2UξN + µN−1 + F T
o λN = 0

2V ξn + µn−1 −ATµn + F T
y λn = 0 for n ∈ 〈N〉

2W2wn + 2Φun −BTµn + F T
wγn = 0 for n ∈ 〈N〉

λn ≤ κσn, F T
y ξn − gy ≥ −κ(1− σn) for n ∈ 〈N〉

λN ≤ κσN , F T
o ξN − go ≥ −κ(1− σN )

γn ≤ κτn, F T
wwn − gw ≥ −κ(1− τn) for n ∈ 〈N〉

ξn+1 = Aξn +Bνn for n ∈ 〈N〉
ξT
1Hξ1 − ξT

0 (H − I)ξ0 ≤ 0

Fxxn ≤ gx, Fyyn ≤ gy for n ∈ 〈N〉
Fuun ≤ hu, Fwwn ≤ hw for n ∈ 〈N〉
FxxN ≤ gx, FoyN ≤ go
λn ≥ 0, γn ≥ 0 for n ∈ 〈N〉
σ, τ are binary (0/1) valued

where λn, µn, γn, σn, τn have the right size. This mixed-
integer quadratically-constrained quadratic program is solved
by standard software [40], and its solutions match BiMPC.

Theorem 3: Consider the problem PIP (ξ0). We have that
arg minPB(ξ0) = arg minPIP (ξ0) for sufficiently large κ.

Proof: The dual (22) is concave quadratic in (µ,λ,γ);
and X , Y , U are bounded. So we can choose κ to bound the
norm of a maximizer of ζ and of Fyξn − gy , Fwwn − gw
for n ∈ 〈N〉 and FoξN − g0 for feasible points, since Y , W ,
YΩ are bounded. LoMPC is a convex quadratic program, so
KKT equals optimality [38]. Replacing LoMPC in PB(ξ0)
with KKT where complementarity terms λ(F Tη−g) = 0 are
replaced by the equivalent λ ≤ κσ and F Tη−g ≥ −κ(1−σ)
for σ ∈ {0, 1} shows PB(ξ0) is equivalent to PIP (ξ0).

B. Case Study: Demand Response for Home Air-Conditioner

Electric utilities use demand response (DR) to better match
the usage and generation of electricity, and one approach is
time-of-day pricing to disincentivize electricity usage during
peak demand hours. Here, we use BiMPC to design electric-
ity pricing for a home with an air-conditioner controlled by
linear MPC. This scenario is motivated by recent work on
using MPC to control HVAC [6], [25]–[29], and is similar
to the bilevel approach described in [41].

In particular, consider a single home that uses the follow-
ing (simplified) linear MPC to control an air-conditioner:

PL(ξ0,u) =

min
ξ,w

∑N
n=0(ξn − Td)2 + Φunwn

s.t. ξn+1 = Aξn −Bwn + βdn + q for n ∈ 〈N〉
ξn ∈ [20, 24], wn ∈ [0, 0.5] for n ∈ 〈N + 1〉

(27)

where ξn is room temperature (◦C), Td is desired room
temperature, Φ quantifies the home owner’s trade off between
comfort and cost, un is electricity price (cents/kWh), wn is
the air-conditioner’s duty cycle, dn is outdoor temperature,
and q is heating due to occupancy. The sampling period is
15 minutes, and the parameter values A = 0.64, B = 2.64,
β = 0.10, q = 6.98 are from the HVAC model in [26].

If the electric utility would like to reduce electricity con-
sumption during 1PM-5PM, then the problem of choosing
time-of-day pricing can be written as the BiMPC given by

PB(ξ0) = min
ξ,u,w

100
∑
n∈J wn +

∑N−1
n=0 un

s.t. (ξ,w) ∈ arg min
ξ,w

PL(ξ0,u)

un ∈ [5, 10] for n ∈ 〈N〉

(28)

where J are the indices that correspond to 1PM-5PM. The
integer-programming reformulation (26) for this BiMPC was
solved with Gurobi [40] and CVX [42] in MATLAB R2016b.
Simulation results over one day with weather data from
[43] are shown in Fig. 2, and the chosen price induces the
HVAC controller to precool the room to reduce electricity
consumption between 1PM-5PM (which was the DR goal of
the electric utility). The solution time on a laptop computer
with a 2.4GHZ processor and 16GB RAM was on average
2.55s, with a minimum of 0.56s and maximum of 8.95s.

VII. CONCLUSION

In this paper, we defined BiMPC, gave examples that show
interconnections in dynamic Stackelberg games can lead to
loss/gain of controllability or stability, provided sufficient
conditions under an arbitrary finite MPC horizon for stabiliz-
ability of BiMPC, and developed an approach to synthesize
a stabilizing BiMPC controller. We derived duality-based
and integer-programming-based techniques for numerically
solving the optimization problem associated with BiMPC,
and demonstrated these reformulations with simulations.
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