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Abstract—This paper presents the formulation of fault detection and
accommodation schemes for a network of autonomous agents running
internal model-based dynamic average consensus algorithms. We focus
on two types of consensus algorithms, one that is internally stable
but non-robust to initial conditions and one that is robust to initial
conditions but not internally stable. For each consensus algorithm, a
fault detection filter based on the unknown input observer scheme is
developed for precisely estimating the communication faults that occur
on the network edges. We then propose a fault remediation scheme so
that the agents could reach average consensus even in the presence of
communication faults. Numerical results are provided to illustrate the
efficacy of the proposed approach.

I. INTRODUCTION
In networked systems, the individual agents are often required to

reach consensus on certain quantities of interest. The problem of
reaching consensus on the average of a set of local time-varying
reference signals in a distributed fashion is typically known as
dynamic average consensus and it plays a crucial role in several
network applications such as distributed sensor fusion [1]–[3],
formation control [4]–[6], and distributed mapping [7]–[9].
Related Work: Networks are often disrupted by faulty/malicious

nodes, external attacks, or erroneous communication links. Al-
though there exist consensus algorithms that can accommodate
these network disruptions, almost all these approaches focus on
static average consensus problems involving malicious nodes. These
fault-or attack-tolerant approaches are called resilient consensus
algorithms and they are mainly based on either a traditional
fault accommodation scheme or simply disregard extreme values
observed by the nodes. The latter method, commonly known as the
mean-subsequence-reduced (MSR) algorithms, requires the nodes to
reject the largest and smallest values it received from its neighbors
and update their state based on the remaining values. An MSR-
type algorithm was first proposed in [10] for a fully connected
network and later extended to more general network topologies
[11]. In [12], authors proposed a continuous-time version of the
MSR algorithm to solve the asymptotic consensus problem when
the maximum number of malicious nodes is known. The results of
[12] were extended to dynamic networks in [13]. In [14] authors
present an MSR-based resilient consensus algorithm for second-
order, discrete-time systems. An extension of [14] for a known
number of maximum malicious agents in the network is addressed
in [15]. More recent developments on MSR-type algorithms can
be found in [16] and [17]. Even though MSR-based algorithms
have shown to be resilient to malicious nodes, they do not solve
the fault detection problem and they are not concerned with
erroneous communication scenarios. Also, currently there exists no
straightforward way of extending these algorithms to a network of
agents running dynamic average consensus protocols.
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The problem of detecting and identifying misbehaving agents
in a linear consensus network is first introduced in [18]. The
unknown input estimator given in [18] assumes a single faulty node
and requires knowledge of the global network structure. Several
extensions of this unknown input observer based algorithm for the
case of both Byzantine as well as non-colluding agents can be
found in [19]–[21]. Further development of this algorithm for cyber-
physical systems under attacks modeled by linear time-invariant
descriptor systems with exogenous input is given in [22]. These
works reveal that the necessary and sufficient conditions for the
detectability of faulty nodes in a linear consensus network can be
developed based on the strong detectability condition needed for the
existence of the unknown input observers. In [23], authors propose
a distributed algorithm based on the unknown input observers
for the detection and isolation of faulty nodes. An extension of
[23] to jointly detect and isolate faults occurring in nodes and
edges is given in [24]. In [25], authors provide an explicit strategy
that k malicious nodes can follow to prevent a 2k-connected
node from computing the desired function of the initial state, or
reaching consensus. Also shown in [25] is that the topology of
the network completely characterizes the resiliency of the linear
iterative algorithms and if the connectivity is 2k + 1 or more,
then the k malicious nodes can be identified independent of their
behavior. Almost all the unknown input observer based approaches
require at least some nonlocal network structural information or
measurements from non-neighbor nodes.
Besides the above-mentioned two main approaches, a distributed

fault diagnosis architecture for large-scale dynamical systems is
presented in [26]. In [27], a bank of distributed Kalman filters
running a dynamic average consensus algorithm is used to tackle
the problem of distributed fault diagnosis. A sliding mode observer
based fault detection algorithm is given in [28] for the distributed
detection of corrupted measurement exchange in a network of linear
time-invariant systems. Though the algorithm in [28] successfully
detects the presence of corrupted data using only local information,
the fault isolation requires a centralized monitoring coordination
layer. A clustering procedure based on both the similarity of
measurements and the communication connectivity is proposed
in [29] to address the problem of distributed fault detection and
isolation of faulty nodes in the average consensus network. Since
this clustering-based approach requires sequential processing of
information, it scales poorly with network size.

Contributions and Outline
Almost all existing dynamic average consensus algorithms as-

sume error-free communication and currently there exist no fault
detection and accommodation schemes for dynamic average con-
sensus algorithms with communication faults. Besides, the available
distributed fault detection schemes rely on at least some global
information. Therefore, we present the formulation of fault de-
tection and accommodation schemes for a network running the
internal model based dynamic average consensus algorithms given
in [30]. Here we focus on two types of dynamic average consensus
algorithms, one that is internally stable but non-robust to initial
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conditions and one that is robust to initial conditions but not
internally stable. We develop an unknown input observer based
fault detection filter for each algorithm and propose an approach
that would allow the nodes to reach average consensus even in the
presence of communication faults.
The structure of this paper is as follows. Details of the dynamic

average consensus algorithms are first presented in section II.
Formulation of the fault detection and accommodation scheme
for the non-robust dynamic average consensus estimator and its
numerical evaluation are given in sections III and IV, respectively. A
fault detection and accommodation scheme for the robust dynamic
average consensus estimator is given in section V. In section VI,
we compare the performance of the proposed fault detection and
accommodation schemes for the robust as well as non-robust
estimator.

Network Model
Consider a connected undirected graph G (V, E) of order n,

where V � {v1, . . . , vn} represents the nodes and E ⊆ V × V
represents the communication links between the nodes. The set of
neighbors of node vi is denoted byNi = {vj ∈ V : (vi, vj) ∈ E}.
Let A be the adjacency matrix and Δ be the degree matrix
associated with the graph G (V, E). The graph Laplacian L induced
by the information flow in G (V, E) is defined as L = Δ−A. The
Laplacian’s eigenvalues are listed in ascending order as λ1 . . . λn.
The row sums of the Laplacian are always zero so λ1 = 0 with
corresponding eigenvector the vector of n ones, 1n. We denote the
numerator and denominator polynomials of the transfer function
q(s) as nq(s) and dq(s), respectively.

II. DYNAMIC AVERAGE CONSENSUS
This section presents two dynamic average consensus schemes

based on the robust dynamic average consensus algorithm given
in [30]. In the dynamic average consensus problem, all the nodes
in the network have access to their own local reference signal and
the nodes must estimate the average of all such signals within the
network.
Let φi(t) ∈ R denote the ith node’s reference signal (input) at

time t. Every node must track the time-varying signal:

φ̄(t) =
1

n
1T
n1n φ(t),

where φ(t) =
[
φ1(t) . . . φn(t)

]T . We assume that each node’s
input, φi(s), has a transfer function of the following form:

φi(s) =
ci(s)

d(s)qi(s)
, (1)

where ci(s) is a polynomial that may differ between agents, d(s)
is a monic polynomial common to all agents with no roots in the
open left half-plane and qi(s) is a monic polynomial with all of its
roots in the open left half-plane. We assume that ci(s) and d(s)qi(s)
are coprime. Examples of such φi(s) include the outputs of stable
systems driven by step, ramp, sinusoidal, or exponentially growing
signals. We further assume, without loss of generality, that qi(s) =
1, because any open left half-plane pole of φi(s) contributes an
exponentially vanishing component to φi(s).
We consider two dynamic average consensus estimators, related

to the internal model (IM) estimator of [30], whose global dy-
namics are depicted in Figs. 1 and 2. We call the estimator in
Fig. 1 the internally stable average consensus (ISAC) estimator
and we call the estimator in Fig. 2 the robust average consensus
(RAC) estimator. In both estimators, h(s) and g(s) correspond

φ
h(s)

. . .
h(s)

ξh

L
g(s)

. . .
g(s)

ξg

μ ν
−

Fig. 1. Block diagram of the internally stable average consensus (ISAC)
estimator; ξh and ξg represent exogenous inputs due to the initial conditions
of the internal states of h(s) and g(s), respectively.
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Fig. 2. Block diagram of the robust average consensus (RAC) estimator;
ξh and ξg represent the exogenous inputs due to the initial conditions of
the internal states of h(s) and g(s), respectively.

to the transfer function associated with the internal dynamics of
the estimators and ν(s) =

[
ν1(s) · · · νn(s)

]T denotes the
network estimate of φ̄(t). Vectors η(s) and μ(s) are auxiliary
signals, where μ(s) is kept internally for the ISAC estimator while
agents communicate η(s) to their neighbors in the RAC estimator.
Note that the implementation of these estimators only requires the
communication of a single variable, i.e., ν for the ISAC estimator
and η for the RAC estimator. The effect of the initial conditions
of the states of h(s) and g(s) appear as exogenous disturbances
ξh and ξg in the block diagram. These disturbances have the same
poles as their corresponding subsystems.
Both the ISAC and RAC estimators have the same transfer

function from the input φ to the average output ν:

ν(s) = (I + h(s)g(s)L)−1h(s)φ(s). (2)

However, their internal structure and their response to the initial
condition disturbances differ; an important distinction when imple-
menting the system on a network of nodes.
We first examine both estimators, assuming that the disturbances

are zero (equivalently, the states of the h(s) and g(s) systems have
been initialized to zero). The steady-state error for these estimators
is given by

ess = lim
t→∞

(
ν(t)− 1

n
1n1

T
nφ(t)

)
. (3)

The following theorem provides the conditions under which both
of these estimators successfully track the average of the group’s
inputs with zero steady-state error.
Lemma 1: For a connected undirected graph G (V, E), with ξh =

ξg = 0 and g(s) and h(s) having no common unstable roots, the



ISAC and RAC estimators achieve dynamic average consensus with
zero steady-state error (i.e., ess = 0) if
i. ) the individual node inputs φi(s) satisfy (1) for all i ∈

{1, . . . , n},
ii. ) for some polynomial p(s), nh(s)− dh(s) = p(s)d(s) and

h(s) is stable,
iii. ) the roots of dg(s)dh(s) + ng(s)nh(s)λi(L) = 0 are in the

open left half-plane for all i ∈ {2, 3, . . . , n},
iv. ) for some polynomial pg(s), dg(s) = pg(s)d(s).

Proof: For brevity, we provide an intuitive explanation, the
details are similar to the proof in [30]. Conditions (i) and (iv)
ensure zero steady-state error and arise from the internal model
principle. Condition (iii) ensures that output components orthogonal
to the consensus direction decay to zero (ensuring consensus).
Condition (ii) ensures that when the agents reach consensus (which
effectively disconnects the feedback path due to the Laplacian
having an eigenvalue of 0 corresponding to the consensus direction
1n) that the agents agree on the average.
For the rest of this paper, we assume that h(s) and g(s) satisfy the
restrictions set forth in Lemma 1.
Next, we examine the robustness of the estimators to initialization

error. Robust estimators converge to the correct average regardless
of the initial states of the h(s) and g(s) systems. Robustness
provides resilience to situations when not all nodes start their
estimators simultaneously, such as when nodes are added to or
removed from the network or when the network splits into two
separate connected components.
The following lemmas examine the robustness of the ISAC and

RAC estimators with respect to the initial conditions of the h(s)
and g(s) systems. We provide intuitive explanations and refer the
reader to [30] for similar rigorous proofs.
Lemma 2: The ISAC and RAC estimators achieve zero steady-

state tracking error (ess = 0) for any initial conditions of the h(s)
system (i.e., ξh �= 0).

Proof: This result follows because of the stability condi-
tions (ii) and (iii), and because ξh has the same poles as h(s).

Lemma 3: The ISAC estimator does not achieve zero steady-
state tracking error for arbitrary initial conditions of g(s).

Proof: This result occurs because, to satisfy Lemma 1, g(s)
and therefore the disturbance ξg are not stable. Additionally, ξg
passes through to ν without first going through the Laplacian.
See [31].
Lemma 4: The RAC estimator achieves zero steady-state track-

ing error for any initial conditions of g(s).
Proof: For this estimator, ξg passes through the Laplacian

prior to reaching ν, causing the effect of ξg to dissipate. See [31].

The net result of Lemmas 2, 3, and 4 is that the RAC estimator is
robust to initialization error, but the ISAC estimator is not. Another
property that differs between these estimators is internal stability.
As the following lemmas show, the ISAC estimator is internally
stable, but the RAC estimator has an internal state that grows faster
than the input and is not internally stable. The concern for internal
stability arises from g(s), which, because it contains the internal
model d(s) in its denominator, is not stable.
Lemma 5: The RAC estimator is not internally stable.
Proof: Neither the transfer function g(s) nor its input are

stable and the output, ν, reaches the integrator g(s) without ever
passing through a Laplacian [31].
Lemma 6: The ISAC estimator is internally stable.

Proof: Although g(s) is not stable, when the estimator reaches
consensus, the vector ν is parallel to 1n, hence it is the eigenvector
of L corresponding to the zero eigenvalue. Thus the input to g(s)
is zero.
Overall, choosing the internally stable but non-robust ISAC

estimator or the robust but not internally stable RAC estimator
depends on the application. Both estimators, however, allow the
nodes to converge to the average of the time-varying signals with
zero steady-state error while communicating only one variable per
agent. The estimator of [30] is both robust and internally stable;
however, it requires every agent to communicate two values instead
of just one. In the subsequent sections, we present fault detection
and recovery schemes for both the ISAC and RAC estimators. We
leave fault recovery for the estimator of [30] for future work.

III. DISTRIBUTED FAULT DETECTION AND ACCOMMODATION

We now present a distributed fault detection and accommodation
scheme for agents running the ISAC estimator. Here we focus on
communication faults that are associated with edges of the network.
LetMi ⊆ Ni be the subset of agent i’s neighbors from which agent
i receives faulty data. Any value received by agent i from agent j
for all j ∈ Mi ⊆ Ni is corrupted by an error signal f i

j .
Remark 1: We do not assume any particular functional form for

f i
j nor do we presume a known upper bound on f i

j . The only
assumption on f i

j is that it is piecewise differentiable.
Implementation of the traditional internal model based dynamic

average consensus estimator requires the communication of both ν
and η between two adjacent nodes. The ISAC and RAC estimators
given here require the nodes to communicate only one output,
i.e., ν for the ISAC estimator and η for the RAC estimator.
Furthermore, the traditional consensus estimator assumes perfect
communication between nodes. In reality, communication links are
imperfect and any error in communication would prevent the nodes
from reaching consensus. Here we show that if we permit the nodes
to communicate a second variable besides ν, then the nodes would
be able to detect any communication faults in its incoming links and
deploy schemes to counteract the adverse effects of communication
errors.

A. Fault Detection Filter

To simplify notation and facilitate the formulation of the fault
detection and isolation scheme, we assume that the transfer function
h(s) is strictly proper. Note that either h(s) or g(s) must be strictly
proper to implement ISAC.
The state equations that every agent executes for the ISAC

algorithm are

Ẋ1
i = A1X

1
i −B1μi, (4a)

νi = C1X
1
i , (4b)

and

Ẋ2
i = A2X

2
i +B2

∑

j∈Ni

(νi − νj) , (5a)

μi = C2X
2
i +D2

∑

j∈Ni

(νi − νj)− φi. (5b)

Here X1
i ∈ Rm1 is agent i’s state corresponding to the h(s)

subsystem and X2
i ∈ Rm2 is agent i’s state corresponding to

the g(s) subsystem, from the block diagram in Fig. 1. Agent j
communicates νj to its neighbors.



To facilitate fault detection and recovery, agents communicate μi

in addition to νi. Therefore, agent i receives the following corrupt
signals from agent � for all � ∈ Mi ⊆ Ni:

ν̃i
� = C1X

1
� + f i

� , (6)

μ̃i
� = C2X

2
� +D2

∑

j∈N�

(ν� − νj)− φ� + f i
� . (7)

Consider the following extended system, representing agent i’s
view of agent �’s X1 dynamics:
[
Ẋ1

�

ḟ i
�

]
=

[
A1 B1

0T
m1×1 0

] [
X1

�

f i
�

]
+

[
−B1

0

]
μ̃i
� +

[
0m1×1

1

]
ḟ i
� , (8)

ν̃i
� =

[
C1 1

] [X1
�

f i
�

]
. (9)

The above extended system can be written as

ẋi
� = Axi

� +Bμ̃i
� + Eḟ i

� , (10a)
ν̃i
� = Cxi

�, (10b)

where xi
� =

[
X1

�

f i
�

]
, A =

[
A1 B1

0 0

]
, B =

[
−B1

0

]
, E =

[
0
1

]
,

and C =
[
C1 1

]
. Based on the observations ν̃i

� and μ̃i
�, node i

deploys the following full-order observer:

żi� = Fzi� + TBμ̃i
� +Kν̃i

�, (11a)
x̂i
� = zi� +Hν̃i

�, (11b)

where F,K, T , and H are matrices to be designed for achieving
desirable estimation error

(
x̃i
� = xi

� − x̂i
�

)
performance as shown

next.
Theorem 1: For the extended system given in (10) and the

observer given in (11), the estimation error x̃i
� is exponentially

stable if the matrices F, H, T , and K = K1 + K2 are selected
such that

(HC − I)E = 0, (12)
T = I −HC, (13)
F = (A−HCA−K1C) , (14)

K2 = FH, (15)

and K1 is selected such that F is strictly stable.
Proof: After some algebraic manipulations, the estimation

error dynamics can be written as

˙̃x
i

� =(A−HCA−K1C) x̃i
� − [F − (A−HCA−K1C)] zi�

− [K2 − (A−HCA−K1C)H ] ν̃i
�

− [T − (I −HC)]Bμ̃i
� − (HC − I)Eḟ i

� ,
(16)

Substituting (12), (13), (14), and (15) yields

˙̃x
i

� =F x̃i
�. (17)

If all eigenvalues of F have negative real parts, then the estimator
is exponentially stable.
Remark 2: The observer in (11) is typically known as the

unknown input observer because the estimation error asymptotically
approaches zero, regardless of the presence of the unknown input
ḟ i
� . The necessary and sufficient conditions for the existence of such
an observer are given next.
Theorem 2: For the extended system given in (10) and the

observer given in (11), the estimation error x̃i
� is exponentially

stable if and only if
(i) rank (CE) = rank (E), and

(ii) invariant zeros of (A,E,C) are strictly stable.
Proof: A proof and more details on unknown input observers

can be found in [32] and [33].
If condition (i) is satisfied, then a matrix H that satisfies (12) can
be calculated as

H = E
[
(CE)T (CE)

]−1

(CE)T . (18)

Furthermore, if (A−HCA,C) is a detectable pair, then a gain
matrix K1 can be easily obtained such that F is Hurwitz.
Remark 3: Therefore, after implementing an observer for each

of its neighbors, node i would be able to precisely estimate any
faults in its incoming links. Note that the implementation of the
proposed observer does not require any nonlocal information or
knowledge of the network structure.
Given next is a fault recovery scheme that allows the nodes

to accommodate any communication faults and reach consensus
despite the presence of any such faults.

B. Fault Accommodation

If, for each potentially faulty incoming link, the agents implement
a fault detection filter from the previous section, then they can
compensate for any faults using the scheme we develop here. For
illustrative purposes, assume agent i receives corrupt information
from agent � and all other links are error-free; however, our scheme
works with multiple corrupt communication links. Let f̂ i

� be the
estimates of f i

� obtained by the fault detection filter given in (11).
Since the estimation error x̃i

� is guaranteed to be exponentially
stable, node i can account for the erroneous ν̃i

� by subtracting the
estimated faults from the erroneous signal. Thus the new dynamic
average consensus algorithm can be written as

Ẋ1
i = A1X

1
i −B1μi, (19)

Ẋ2
i = A2X

2
i +B2

⎛
⎝ ∑

j∈Ni\v�

(νi − νj) +
(
νi − ν̃i

� + f̂ i
�

)
⎞
⎠

(20)
νi = C1X

1
i , (21)

μi = C2X
2
i +D2

⎛
⎝ ∑

j∈Ni\v�

(νi − νj) +
(
νi − ν̃i

� + f̂ i
�

)
⎞
⎠− φi.

(22)

Remark 4: Although the fault estimate converges asymptotically
to the actual fault, the transient error in this estimate enters the
system in the same manner as an initial condition for the g(s)
subsystem. Therefore, unless the fault estimator state is initialized
to zero, there will be a transient in the fault estimate and thus a non-
zero steady-state error (see Lemma 3). Our fault accommodation
scheme for the RAC estimator does not suffer from this drawback.

IV. EXAMPLE I

We evaluate the performance of the ISAC fault detection and
accommodation scheme through numerical simulation. Consider the
connected undirected graph of 9 nodes shown in Fig. 3.
The inputs φi(t) are

φi(t) = i sin

(
ωt+

i

4
π

)
, for all i ∈ {1, 2, 3, 4, 5},

φi(t) = i cos

(
ωt+

i

4
π

)
, for all i ∈ {6, 7, 8, 9}.

(23)
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Fig. 3. Network topology.

where the frequency ω = 1.5. Here d(s) =
(
s2 + ω2

)
(sinusoids

with frequency ω). We choose h(s) to be

h(s) =
2ωs + 3ω2

s2 + 2ωs + 4ω2

and g(s) to be

g(s) =
1.5s

s2 + ω2
.

It can be verified that h(s) and g(s) satisfy the conditions for
Lemma 1 for our chosen graph. The matrices A1, A2, B1, B2, C1,
and C2 can now be obtained from h(s) and g(s). Note that D1 =
D2 = 0 for the selected h(s) and g(s).
Figure 4 displays the results of running the ISAC estimator in

the absence of communication faults.
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Fig. 4. ISAC estimates and estimation error for faultless communication.

Now we consider a scenario where the following communication
error is associated with the link between agents 1 and 2.

f2
1 (t) = f1

2 (t) =

{
0, if t ≤ 25;
cos

(
1
2
ωt

)
, otherwise. (24)

Remark 5: For ease of simulation, here we assume the fault is
symmetric, i.e., f2

1 (t) = f1
2 (t). The proposed fault detection and

accommodation scheme works for non-symmetric faults. Also, the
sinusoidal fault signal is selected because the individual reference
signals are sinusoidal and thus it may be difficult to detect a
sinusoidal fault signal rather than an arbitrary fault. As shown
in Theorem 1, the proposed fault detection and accommodation
scheme works for any type of faults as along as it is piecewise
differentiable.
The results obtained by the ISAC estimator without fault accommo-
dation are given in Fig. 5 and show that the fault introduces error
into the estimate.
After constructing the extended system given in (10), we

have C =
[
3 6.75 1

]
and E =

[
0 0 1

]T . Note that
rank (CE) = rank (E) = 1 and a matrix H that satisfies (12) can
be selected as H = E. The pair (A−HCA,C) is detectable. The
gain matrix K1 is

[
5.3993 12.1485 1.7998

]T . Now matrices
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Fig. 5. Consensus estimates and errors for the erroneous scenario.

F , T , and K2 can be calculated from (13), (14), and (15),
respectively.
The estimation errors x̃1

2 and x̃2
1, as well as the estimated faults

f1
2 and f2

1 obtained from implementing the fault detection filter
given in (11a) and (11b) for the erroneous scenario, are given in
Fig. 6.
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(b) Fault detection filter for node 2
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Fig. 6. Fault detection filter estimation errors and estimated communication
faults

Finally, the dynamic average consensus algorithm given in sub-
section III-B is implemented using the error estimates obtained from
the fault detection filters. Figure 7 shows that, when using our fault
accommodation scheme, the system converges with zero steady-
state error despite the presence of communication faults.
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Fig. 7. Consensus estimates and corresponding errors for the ISAC with
the fault detection and accommodation algorithm.



V. ROBUST FAULT DETECTION AND ACCOMMODATION

We now present a distributed fault detection and accommodation
scheme for agents running the RAC estimator. We use the same fault
model as in section III, with faults being associated with commu-
nication links. Unlike the ISAC estimator and the associated fault
compensation scheme, this estimator is robust to initial condition
errors. This robustness, however, comes at the expense of internal
stability.

A. Robust Fault Detection Filter

The dynamics of the individual agents implementing the RAC
estimator can be written as

Ẋ1
i = A1X

1
i +B1

⎛
⎝φi −

∑

j∈Ni

(ηi − ηj)

⎞
⎠ , (25a)

νi = C1X
1
i +D1

⎛
⎝φi −

∑

j∈Ni

(ηi − ηj)

⎞
⎠ , (25b)

and

Ẋ2
i = A2X

2
i +B2νi, (26a)

ηi = C2X
2
i (26b)

where X1
i ∈ Rm1 is the state associated with the h(s) subsystem

and X2
i ∈ Rm2 is the state associated with the g(s) subsystem in

the block diagram of Fig. 2. We have assumed that g(s) is strictly
proper, so D2 = 0.
To implement RAC, the agents communicate the intermediate

output ηi rather than their estimate νi. To implement fault detection,
the agents also must communicate νi.
When the communication channel from agent � to agent i is

corrupted by f i
� , for all � ∈ Mi ⊆ Ni, agent i receives the

following observations

ν̃i
� = −ν� + f i

� , (27)
η̃i
� = η� + f i

� . (28)

Now consider the following extended system, which is agent i’s
view of agent �’s X2 dynamics:

[
Ẋ2

�

ḟ i
�

]
=

[
A2 B2

0T
m2×1 0

] [
X2

�

f i
�

]
+

[
−B2

0

]
ν̃i
� +

[
0m2×1

1

]
ḟ i
� ,

(29)

η̃i
� =

[
C2 1

] [X2
�

f i
�

]
. (30)

After defining xi
� =

[
X2

�

f i
�

]
, A =

[
A2 B2

0 0

]
, B =

[
−B2

0

]
,

E =

[
0
1

]
, and C =

[
C2 1

]
, the above extended system can

be placed into the same form as the system (10). Now based on
the observations η̃i

� and ν̃i
�, node i deploys the following full-order

observer:

żi� = Fzi� + TBν̃i
� +Kη̃i

�, (31a)
x̂i
� = zi� +Hη̃i

�, (31b)

where the matrices F,K, T , andH are selected such that conditions
(12), (13), (14), and (15) are satisfied. Now following the same
reasoning given in Theorem 2, we can conclude that the observer
given in (31) is exponentially stable.

B. Robust Fault Accommodation

As with the ISAC fault accommodation scheme, the RAC scheme
assumes that every agent implements a fault detection filter for each
potentially faulty incoming communication link. For illustrative
purposes, we assume agent i receives corrupt information from
agent � and the other communication links have no faults; however,
this scheme extends to multiple faulty links. Let f̂ i

� be the estimate
of f i

� obtained by the fault detection filter described in section V-
A. Since the estimation error x̃i

� is guaranteed to be exponentially
stable, node i can account for the erroneous η̃i

� by subtracting the
estimated faults from the erroneous signal. Thus the new dynamic
average consensus algorithm can be written as

Ẋ1
i = A1X

1
i +B1

⎛
⎝φi −

∑

j∈Ni\v�

(ηi − ηj)−
(
ηi − η̃i

� + f̂ i
�

)
⎞
⎠

(32a)

νi = C1X
1
i +D1

⎛
⎝φi −

∑

j∈Ni\v�

(ηi − ηj)−
(
ηi − η̃i

� + f̂ i
�

)
⎞
⎠

(32b)

and

Ẋ2
i = A2X

2
i +B2νi, (33a)

ηi = C2X
2
i . (33b)

Remark 6: Since the transient error in the fault estimate enters
the system in the same manner as an initial condition for the h(s)
subsystem, the proposed fault accommodation scheme for the RAC
estimator achieves zero steady-state tracking error (ess = 0) for
any initial conditions of the fault estimator state.

VI. EXAMPLE II

Here we evaluate the performance of the fault detection and
accommodation algorithm for the RAC estimator though numerical
simulations. We consider the same connected undirected graph of 9
nodes given in Fig. 3. The inputs φi(t) are the same as those given
in (23). Thus the same h(s) and g(s) from the previous example
can be used to implement the robust dynamic average consensus
algorithm.
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Fig. 8. Network topology before (a) and after (b) the split.

We demonstrate the robustness of the dynamic average consensus
algorithms by severing the link between agents 3 and 6 at time t =
30, which splits the graph into two disjoint connected components
for the rest of the simulation time (see Fig. 8). Thus for t ≥ 30,
nodes v1, v2, v3, v4, v5, v7 should converge to

φ̄1(t) =
1

6

(
5∑

i=1

φi(t) + φ7(t)

)
,
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Fig. 9. Consensus estimates for the error-free scenario. The network splits
at t = 30.

and nodes v6, v8, v9 should converge to

φ̄2(t) =
1

3
(φ6(t) + φ8(t) + φ9(t)) .

The results obtained from both the RAC and ISAC estimators
without communication error are shown in Figs. 9 and 10. Due
to the non-robustness of the ISAC estimator, when the graph splits,
the agents in each connected component converge to the incorrect
average (see Figs. 9(a) and 9(b)). The robustness of the RAC
estimator allows the agents in each connected component to reach
the average of the inputs in their respective subgraphs. However,
this robustness comes at the price of internal stability, so there is a
tradeoff between these two estimators.
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Fig. 10. Consensus errors for the error-free scenario. The network splits
at t = 30.

Next, we consider a scenario where the communication error
between agents 1 and 2 is given in (24). When the agents implement
the RAC estimator without fault accommodation, their estimates are
erroneous, as shown in Fig. 11. Note that the fault first becomes
nonzero at t = 25, which causes some initial error. When the
network splits at t = 30, the component of the network that did
not contain the faulty link converges to the desired value, while the
component containing the faulty link continues to have an error.
We implement the fault detection filter as described in section V-

A, based on (31). The estimated faults f1
2 and f2

1 from the fault
detection filter for the erroneous scenario are shown in Fig. 12.
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Fig. 11. RAC estimates and error. The communication fault begins at
t = 25 and the networks splits at t = 30.
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Finally, the dynamic average consensus algorithm given in sub-
section V-B is implemented using the error estimates obtained from
the fault detection filters. Results obtained from implementing the
robust fault accommodation scheme are given in Fig. 13. These
results show that even with the fault and the network split, the
agents’ estimates converge to the correct average.

VII. CONCLUSION

We have presented fault detection and recovery schemes for
two types of dynamic average consensus estimators, one that is
internally stable but non-robust to initial conditions (ISAC) and
one that is robust to initial conditions but not internally stable
(RAC). The agents use unknown input observers to estimate their
neighbor’s state and any faults on the communication links. These
estimates are then used to recover from the fault and reach average
consensus. Future work includes extending these methods to a
robust and internally stable average consensus estimator. We also
plan to develop stochastic version the proposed algorithm to account
for random communication noise.
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