
Human-in-the-Loop Synthesis for
Partially Observable Markov Decision Processes

Steven Carr1 Nils Jansen2 Ralf Wimmer3 Jie Fu4 Ufuk Topcu1

Abstract— We study planning problems where autonomous
agents operate inside environments that are subject to uncer-
tainties and not fully observable. Partially observable Markov
decision processes (POMDPs) are a natural formal model to
capture such problems. Because of the potentially huge or
even infinite belief space in POMDPs, synthesis with safety
guarantees is, in general, computationally intractable. We
propose an approach that aims to circumvent this difficulty:
in scenarios that can be partially or fully simulated in a virtual
environment, we actively integrate a human user to control
an agent. While the user repeatedly tries to safely guide the
agent in the simulation, we collect data from the human input.
Via behavior cloning, we translate the data into a strategy
for the POMDP. The strategy resolves all nondeterminism and
non-observability of the POMDP, resulting in a discrete-time
Markov chain (MC). The efficient verification of this MC gives
quantitative insights into the quality of the inferred human
strategy by proving or disproving given system specifications.
For the case that the quality of the strategy is not sufficient, we
propose a refinement method using counterexamples presented
to the human. Experiments show that by including humans into
the POMDP verification loop we improve the state of the art
by orders of magnitude in terms of scalability.

I. INTRODUCTION

We aim at providing guarantees for planning scenarios
given by dynamical systems with uncertainties and partial
observability. In particular, we want to compute a strategy
for an agent that ensures certain desired behavior [15].

A popular formal model for planning subject to stochastic
behavior are Markov decision processes (MDPs). An MDP
is a nondeterministic model in which the agent chooses to
perform an action under full knowledge of the environment
it is operating in. The outcome of the action is a probabil-
ity distribution over the system states. Many applications,
however, allow only partial observability of the current
system state [20], [40], [45]. For such applications, MDPs are
extended to partially observable Markov decision processes
(POMDPs). While the agent acts within the environment,
it encounters certain observations, according to which it
can infer the likelihood of the system being in a certain
state. This likelihood is called the belief state. Executing an
action leads to an update of the belief state according to
new observations. The belief state together with the update
function form a (possibly infinite) MDP, commonly referred
to as the underlying belief MDP [35].

1The University of Texas at Austin, USA
2Radboud University, Nijmegen, The Netherlands,

n.jansen@science.ru.nl
3Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
4Worcester Polytechnic Institute (WPI), USA

G

X

Fig. 1: Example Gridworld Environment. Features are (1) an
agent with restricted range of vision (green area), (2) static
and randomly moving obstacles (red), and (3) a goal area G.

As a motivating example, take a motion planning scenario
where we want to devise a strategy for an autonomous agent
accounting for both randomly moving and static obstacles.
Observation of these obstacles is only possible within a
restricted field of vision like in Fig. 1. The strategy shall
provably ensure a safe traversal to the goal area with a certain
high probability. On top of that, the expected performance of
the agent according to the strategy shall encompass taking the
quickest possible route. These requirements amount to having
quantitative reachability specifications like “The probability to
reach the goal area without crashing into obstacles is at least
90%” and expected cost specifications like “The expected
number of steps to reach the goal area is at most 10”.

Quantitative verification techniques like probabilistic model
checking (PMC) [21] provide strategies inducing guarantees
on such specifications. PRISM [25] or Storm [12] employ
efficient methods for finite MDPs, while POMDP verification
– as implemented in a PRISM prototype [29] – generates a
large, potentially infinite, belief MDP, and is intractable even
for rather small instances. So-called point-based methods [30],
[38] employ sampling of belief states. They usually have
slightly better scalability than verification, but there is no
guarantee that a strategy provably adheres to specifications.

We discuss two typical problems in POMDP verification.
1) For applications following the aforementioned example,

verification takes any specific position of obstacles
and previous decisions into account. More generally,
strategies inducing optimal values are computed by
assessment of the full belief MDP [35].

2) Infinite horizon problems may require a strategy to have
infinite memory. However, randomization over possible
choices can often trade off memory [9]. The intuition is
that deterministic choices at a certain state may need to

ar
X

iv
:1

80
2.

09
81

0v
1

 [
cs

.A
I]

 2
7

Fe
b

20
18

n.jansen@science.ru.nl

vary depending on previous decisions and observations.
Allowing for a probability distribution over the choices
– relaxing determinism – is often sufficient to capture
the necessary variability in the decisions. As also finite
memory can be encoded into a POMDP by extending
the state space, randomization then supersedes infinite
memory for many cases [2], [19].

Here, we propose to make active use of humans’ power
of cognition to (1) achieve an implicit abstraction of the
belief space and (2) capture memory-based decisions by
randomization over choices. We translate POMDP planning
scenarios into virtual environments where a human can
actively operate an agent. In a nutshell, we create a game that
the human plays to achieve a goal akin to the specifications
for the POMDP scenario.

This game captures a family of concrete scenarios, for
instance varying in characteristics like the agent’s starting
position or obstacle distribution. We collect data about the
human actions from a number of different scenarios to
build a training set. With Hoeffding’s inequality [46], we
statistically infer how many human inputs are needed until
further scenarios won’t change the likelihoods of choices.
Using behavior cloning techniques from Learning-from-
Demonstration (LfD) [3], [34], we cast the training set into
a strategy for a POMDP that captures one specific scenario.
Such a strategy fully resolves the nondeterminism and partial
observability, resulting in a discrete-time Markov chain (MC).
PMC for this MC is efficient [25] and proves or disproves
the satisfaction of specifications for the computed strategy.

A human implicitly bases their decisions on experiences
over time, i. e., on memory [11]. We collect likelihoods of
decisions and trade off such implicit memory by translating
these likelihoods into randomization over decisions. In
general, randomization plays a central role for describing
human behavior in cognitive science. Take for instance [23]
where human behavior is related to quantifying the trade-off
between various decisions in Bayesian decision theory.

Formally, the method yields a randomized strategy for the
POMDP that may be extended with a finite memory structure.
Note that computing such a strategy is already NP-hard,
SQRT-SUM-hard, and in PSPACE [41], justifying the usage
of heuristic and approximative methods.

Naturally, such a heuristic procedure comprises no means
of optimality. However, employing a refinement technique
incorporating stochastic counterexamples [1], [17] enables
to pointedly immerse the human into critical situations to
gather more specific data. In addition, we employ bounds
on the optimal performance of an agent derived from the
underlying MDP. This delivers an indication whether no
further improvement is possible by the human.

Besides simple motion planning, possible applications
include self-driving cars [13], autonomous trading agents
in the stock market [42], or service robots [22].

We implemented this synthesis cycle with humans in
the loop within a prototype employing efficient verification.
The results are very promising as both PRISM and point-
based solvers are outperformed by orders of magnitude both

regarding running time and the size of tractable models.
Our approach is inherently correct, as any computed

strategy is verified for the specifications.
Related Work: Closest to our work is [10], where deep

reinforcement learning employs human feedback. In [32],
a robot in a partially observable motion planning scenario
can request human input to resolve the belief space. The
availability of a human is modeled as a stochastic sensor.
Similarly, oracular POMDPs [4] capture scenarios where
a human is always available as an oracle. The latter two
approaches do not discuss how to actually include a human
in the scenarios. The major difference of all approaches listed
above in comparison to our method is that by employing
verification of inferred strategies, we obtain hard guarantees
on the safety or performance.

Verification problems for POMDPs and their decidability
have been studied in [7]. [44] investigates abstractions for
POMDP motion planning scenarios formalizing typical human
assessments like “the obstacle is either near or far”, learning
MDP strategies from human behavior in a shared control
setting was used in [16]. Finally, various learning-based
methods and their (restricted) scalability are discussed in [5].

Structure of the paper: After formalisms in Sect. II,
Section III gives a full overview of our methodology. In
Sect. IV, we formally discuss randomization and memory for
POMDP strategies; after that we introduce strategy generation
for our setting together with an extensive example. We
describe our experiments and results in Sect. VI.

II. PRELIMINARIES

A probability distribution over a finite or countably infinite set
X is a function µ : X→ [0, 1]⊆R with ∑x∈X µ(x) = µ(X) =
1. The set of all distributions on X is Distr(X). The support
of a distribution µ is supp(µ) = {x ∈ X |µ(x)> 0}.

A. Probabilistic Models
Definition 1 (MDP) A Markov decision process (MDP) M is
a tuple M = (S,sI,Act,P) with a finite (or countably infinite)
set S of states, an initial state sI ∈ S, a finite set Act of actions,
and a probabilistic transition function P : S×Act→Distr(S).

The available actions in s ∈ S are Act(s) = {a ∈ Act | (s,a) ∈
dom(P)}. We assume the MDP M contains no deadlock states,
i. e., Act(s) 6= /0 for all s ∈ S. A discrete-time Markov chain
(MC) is an MDP with |Act(s)|= 1 for all s ∈ S.

A path (or run) of M is a finite or infinite sequence
π = s0

a0−→ s1
a1−→ ·· · , where s0 = sI, si ∈ S, ai ∈ Act(si)

The set of (in)finite paths is PathsM
fin (PathsM). To define

a probability measure for MDPs, strategies resolve the
nondeterministic choices of actions. Intuitively, at each state
a strategy determines a distribution over actions to take. This
decision may be based on the history of the current path.

Definition 2 (Strategy) A strategy σ for M is a function
σ : PathsM

fin→Distr(Act) s. t. supp
(
σ(π)

)
⊆Act

(
last(π)

)
for

all π ∈ PathsM
fin. ΣM denotes the set of all strategies of M.

A strategy σ is memoryless if last(π) = last(π ′) implies
σ(π) = σ(π ′) for all π,π ′ ∈ dom(σ). It is deterministic if

σ(π) is a Dirac distribution for all π ∈ dom(σ). A strategy
that is not deterministic is randomized. Here, we mostly use
strategies that are memoryless and randomized, i. e., of the
form σ : S→ Distr(Act).

A strategy σ for an MDP resolves all nondeterministic
choices, yielding an induced Markov chain (MC) Mσ , for
which a probability measure over the set of infinite paths is
defined by the standard cylinder set construction.

Definition 3 (Induced Markov Chain) Let MDP M =
(S,sI,Act,P) and strategy σ ∈ ΣM . The MC induced by M
and σ is given by Mσ = (S,sI,Act,Pσ) where:

Pσ (s,s′) = ∑
a∈A(s)

σ(s)(a) ·P(s,a)(s′) ∀s,s′ ∈ S .

B. Partial Observability

Definition 4 (POMDP) A partially observable Markov de-
cision process (POMDP) is a tuple D = (M,Z,O) such that
M = (S,sI,Act,P) is the underlying MDP of D, Z is a finite
set of observations and O : S→ Z is the observation function.

We require that states with the same observations have
the same set of enabled actions, i. e., O(s) = O(s′) implies
Act(s) = Act(s′) for all s,s′ ∈ S. More general observation
functions take the last action into account and provide a
distribution over Z. There is a transformation of the general
case to the POMDP definition used here that blows up the
state space polynomially [8].

Furthermore, let Pr(s|z) be the probability that given
observation z ∈ Z, the state of the POMDP is s ∈ S. We
assume a maximum-entropy probability distribution [18] to
provide an initial distribution over potential states for an
observation z given by Pr(s|z) = 1

|{s′∈S |z=O(s′)}| . Vice versa,
we set Pr(z|s) = 1 iff z = O(s) and Pr(z|s) = 0 otherwise.

The notion of paths directly transfers from MDPs to
POMDPs. We lift the observation function to paths: For
a POMDP D and a path π = s0

a0−→ s1
a1−→ ·· ·sn ∈ PathsM

fin,
the associated observation sequence is O(π) = O(s0)

a0−→
O(s1)

a1−→ ·· ·O(sn). Note that several paths in the underlying
MDP may yield the same observation sequence. Strategies
have to take this restricted observability into account.

Definition 5 An observation-based strategy of POMDP D is
a function σ : PathsM

fin→Distr(Act) such that σ is a strategy
for the underlying MDP and for all paths π,π ′ ∈ PathsM

fin
with O(π) = O(π ′) we have σ(π) = σ(π ′). ΣD

z denotes the
set of observation-based strategies for D.

An observation-based strategy selects actions based on the ob-
servations encountered along a path and past actions. Note that
applying an observation-based strategy to a POMDP yields
an induced MC as in Def. 3 where all nondeterminism and
partial observability is resolved. Again, we use memoryless
and randomized strategies of the form σz : Z→ Distr(Act).

The semantics of a POMDP can be described using a belief
MDP with an uncountable state space. The idea is that each
state of the belief MDP corresponds to a distribution over

Initial
POMDP D,

Specification ϕ

Training
Environment

Behavior
Cloning

Model
Checking

Refinement

Demonstration

Strategy

UNSAT

SAT

Refined
POMDP

Fig. 2: Workflow of human-in-the-loop (HiL) methodology.

the states in the POMDP. This distribution is expected to
correspond to the probability to be in a specific state based
on the observations made so far.

C. Specifications

For a POMDP D = (M,Z,O), a set G ⊆ S of goal states
and a set B ⊆ S of bad states, we consider quantitative
reach-avoid specifications of the form ϕ = P>λ (¬B U G). A
strategy σz ∈ Σz satisfies this specifications if the probability
of reaching a goal state without entering a bad state in
between is at least λ in the induced MC, written Dσz |= ϕ . We
also use similar specifications of the form EC≤κ(¬B U G),
measuring the expected cost to safely reach a goal state. For
POMDPs, observation-based strategies in their full generality
are necessary [33].

Consider a specification ϕ that is not satisfied by an MC
or MDP M. One common definition of a counterexample is a
(minimal) subset S′ ⊆ S of the state space such that the MC or
sub-MDP induced by S′ still violates ϕ [1]. The intuition is,
that by the reduced state space critical parts are highlighted.

III. METHODOLOGY

A. Problem Statement

We are given a partially observable planning scenario, which is
modeled by a POMDP D, and a specification ϕ . The POMDP
D is one of a family of similar planning scenarios, where
each concrete scenario can modeled by an individual POMDP.
The goal is to compute an observation-based randomized
memoryless strategy σz ∈ ΣD

z such that Dσz |= ϕ .
The general workflow we employ is shown in Fig. 2. Note

that we mostly assume a family of POMDP scenarios to train
the human strategy, as will be explained in what follows. We
now detail the specific parts of the proposed approach.

B. Training Environment

Our setting necessitates that a virtual and interactive envi-
ronment called training environment sufficiently captures the
underlying POMDP planning scenarios. The initial training
environment can be parameterized for: the size of the
environment; the numbers and locations of dynamic obstacles
and landmarks; and the location of the goal state.

1

2

3 4 5

6

78 X

X

Fig. 3: Possible observations (left) and two observations
triggering similar actions.

Similar classes of problems would require similar initial
training environments. For example, an environment may
incorporate a small grid with one dynamic obstacle and two
landmarks, while the actual POMDP we are interested in
needs the same number of dynamic obstacles but may induce
a larger grid or add additional landmarks. The goal state
location also impacts the type of strategy trained by the
human. With a randomized goal location, the human will
prioritize obstacle avoidance over minimizing expected cost.

We directly let the human control the agent towards a
conveyable goal, such as avoiding obstacles while moving
to the goal area. We store all data regarding the human
control inputs in a training set. For a POMDP, this means
that at each visited state of the underlying MDP we store the
corresponding observation and the human’s action choice.
We now collect data from several (randomly-generated)
environments until statistically the human input will not
significantly change the strategy by collecting further data.
In fact, the training set contains likelihoods of actions.

C. Strategy Generation from Behavior Cloning

We compute an environment-independent strategy for the
agent by casting the collected data into probability distribu-
tions over actions for each observation at each state of the
system. Intuitively, the strategy is independent from a concrete
environment but compatible with all concrete scenarios
the training environment captures. Generally, linear [14]
or softmax regression [46] offers a means to interpret the
likelihoods over actions into probabilities. Formally, we
get an observation-based strategy of the POMDP. The
computed strategy mimics typical human choices in all
possible situations.

So far, such a strategy requires a large training set that
needs a long time to be established, as we need human input
for all different observations and actions. If we do not have a
sufficiently large training set, that is, we have a lack of data,
the strategy is underspecified.

We use data augmentation [24] to reduce the observation-
action space upon which we train the strategy. Our assumption
is that the human acts similarly upon similar observations of
the environment. For instance, take two different observations
describing that a moving obstacle is to the right border or
to the left of the agent’s range of vision. While these are in
fact different observations, they may trigger similar actions
(moving into opposite directions – see Fig. 3) where on the
left we see the possible observations for the agent and on
the right two observations triggering similar actions (away
from the obstacle). Therefore, we define an equivalence

s0

s1

s2

s3

s4

s5 s6

s7a

2/3

1/3

a

1/2

1/2

a

up

down

down

up

up

down
a

a

Fig. 4: Randomization vs. memory

relation on observations and actions. We then weigh the
likelihoods of equivalent actions for each state with equivalent
observations and again cast these weighted likelihoods into
probability distributions. Summarized, as this method reduces
the observation-action space, it also reduces the required size
of the training set and the required number of human inputs.

D. Refinement through Model Checking and Counterexamples

We apply the computed strategy to a POMDP for a concrete
scenario. As we resolve all nondeterminism and partial
observability, the resulting model is an MC. To efficiently
verify this MC against the given specification, we employ
probabilistic model checking using PRISM. For instance,
if for this MC the probability of reaching the goal area
without bumping into obstacles is above a certain threshold,
the computed strategy provably induces this exact probability.

In case PMC reveals that the obtained strategy does not
satisfy the requirements, we need to improve the strategy for
the specific POMDP we are dealing with. Here, we again
take advantage of the human-in-the-loop principle. First,
we generate a counterexample using, e. g., the techniques
described in [17]. Such a counterexample highlights critical
parts of the state space of the induced MC. We then immerse
the human into critical parts in the virtual environment
corresponding to critical states of the specific POMDP. By
gathering more data in these apparently critical situations for
this scenario we strive to improve the human performance
and the quality of the strategy.

IV. RANDOMIZED STRATEGIES

Deciding if there is an observation-based strategy for a
POMDP satisfying a specification as in Sec. II-C typically re-
quires unbounded memory and is undecidable in general [27]

If we restrict ourselves to the class of memoryless strategies
(which decide only depending on the current observation), we
need to distinguish two sub-classes: (1) finding an optimal
deterministic memoryless strategy is NP-complete [26], (2)
finding an optimal randomized memoryless strategy NP-hard,
SQRT-SUM-hard, and in PSPACE [41]. From a practical
perspective, randomized strategies are much more powerful
as one can – to a certain extent – simulate memory by
randomization. The following example illustrates this effect
and its limitations.

Example 1 In the POMDP in Fig. 4, observations are
defined by colors. The goal is to reach s7 with maximal
probability. The only states with nondeterminism are s3,
s4, and s5 (blue). For a memoryless deterministic strategy
selecting “up” in all blue states, the optimal value is 2/3.

A memoryless randomized strategy can select “up” with
probability 0 < p < 1 and “down” with probability 1− p
for blue states. Then both from s3 and s4, the target states
are eventually reached with probability 1 and from s5 with
probability p. Therefore the probability to reach s7 from the
initial state is 2/3+ 1/3p < 1.

Finally, deterministic strategies with memory can distin-
guish state s5 from s3 and s4 because their predecessors have
different observations. An optimal strategy may select “up”
in a blue state if its predecessor is yellow, and otherwise “up”
if a blue state has been seen an even number of times and

“down” for an odd number, yielding probability 1 to reach s7.

Summarized, computing randomized memoryless strategies
for POMDPs is – while still a hard problem – a powerful
alternative to the harder or even undecidable problem of
computing strategies with potentially infinite memory.

V. STRATEGY GENERATION

We detail the four phases to behavior cloning from human
inputs: (1) building a training set, (2) feature-based data aug-
mentation, (3) the initial strategy generation, and (4) refining
the initial strategy using counterexamples.

A. Training Set

We first provide a series of randomly-generated sample
environments to build a human-based training set. The
environments are randomized in size, location and number of
obstacles as well as the location of initial and goal states. The
training set ΩE is represented as a function ΩE : Z×Act→N,
where ΩE(z,a) = na means that na is the number of times
action a is selected by the human for observation z. The size
of the training set is given by |ΩE |= ∑z∈Z,a∈Act ΩE(z,a).

In each sample environment, the human is given a map of
the static environment – the locations of static obstacles and
goal states – as well as an observation in the current state.
This observation may, for instance, refer to the position of a
visible obstacle. Moreover, the human is provided with one or
more specifications. Proscribing a threshold on the probability
of reaching the goal to a human seems unpractical. Instead, to
have the human act according to the specifications outlined in
Sect. II, we can for instance ask the human to maximize the
probability of reaching the goal whilst minimizing an expected
cost. In practice, this just means that the human attempts
to maximize the probability of reaching the goal without
crashing and as quickly as possible. The human observes
the obstacles one-step from the agent (see Fig. 3), but is not
aware of the agent’s precise position or if observed obstacles
are static or dynamic. For an unknown initial position, there
are two phases [36], [37]:

1) Exploration: The human will first try to determine
their position while taking advantage of knowledge of
the static environment.

2) Exploitation: When the human is confident about their
current position they will start moving towards the goal.

The human acts on each (randomly generated) concrete
scenario until they either reach the goal or crash. We
continue collecting data until the human’s inputs no longer
significantly change the strategy. The statistically-derived
minimum required size |ΩE | of the initial training set is bound
by Hoeffding’s inequality [46]. In particular, we derive an
upper bound ε ∈R (with a confidence of 1−δ for δ ∈ [0,1])
for the difference between (1) a strategy that is independent
from further training with other concrete environments and
(2) the strategy derived from the training set of size |ΩE |.
The number of samples is bounded by

|ΩE | ≥ 1
2ε2

(
ln

2
δ

)
. (1)

B. Feature Representation
Human input – choices of observation-action pairs – for
our simulations has limitations. First, it may not cover the
entire observation-space so we may have observations without
(sufficient) human choices of actions; the resulting strategy
will be underspecified. Additionally, many of the observation-
action pairs are equivalent in nature since – in our example
setting – the tendency for the human’s action input is to
move away from neighboring obstacles. Similar equivalences
may be specified depending on the case study at hand. We
introduce a feature-based representation to take advantage of
such similarities to reduce the required size of a training set.

Consider therefore the gridworld scenario in Fig. 1. Recall
that the agent has restricted range of vision, see Fig. 3. The
set of positions in the grid Gridx×Gridy ⊆ N×N is

Pos =
{
(x,y)

∣∣x ∈ {0, . . . ,Gridx},y ∈ {0, . . . ,Gridy}
}
.

For one dynamic obstacle, an agent state consists of
the position (xa,ya) ∈ Pos of agent a and the posi-
tion (xo,yo) ∈ Pos of the dynamic obstacle o, i. e., s =
(xa,ya,xo,yo) ∈ Pos × Pos. The agent’s actions Act =
{(−1,0),(1,0),(0,1),(0,−1)} describe the one-step direc-
tions “left”, “right”, “up”, “down”. The set B of obstacle
positions is B = {(xo,yo),(xl1 ,yl1), . . . ,(xlm ,ylm) | (xo,yo) ∈
Pos,(xli ,yli) ∈ Pos,1 ≤ i ≤ m} for dynamic obstacle o and
landmarks l1, . . . , lm.

The observations describe the relative position of obstacles
with respect to the agent’s position, see Fig. 3. We describe
these positions by a set of Boolean functions Oi : S×2Pos→
{0,1} where S = Posx×Posy is the agent’s position and for
a visibility distance of 1, Oi is defined for 1≤ i≤ 8 by:

O1(s,B) = 1 iff ((xa−1,ya−1) ∈ B)∨ (xa = 0)∨ (ya = 0),
O2(s,B) = 1 iff ((xa−1,ya) ∈ B)∨ (xa = 0),
O3(s,B) = 1 iff ((xa−1,ya +1) ∈ B)∨ (xa = 0)∨ (ya = n),
O4(s,B) = 1 iff ((xa,ya +1) ∈ B)∨ (ya = n),
O5(s,B) = 1 iff ((xa +1,ya +1) ∈ B)∨ (xa = n)∨ (ya = n),
O6(s,B) = 1 iff ((xa +1,ya) ∈ B)∨ (xa = n),
O7(s,B) = 1 iff ((xa +1,ya−1) ∈ B)∨ (xa = n)∨ (ya = 0),
O8(s,B) = 1 iff ((xa,ya−1) ∈ B)∨ (ya = 0) .

Note that for a visibility distance of 2, Oi is defined for
1 ≤ i ≤ 24. Consequently, an observation z = O(s) at state
s is a vector z = (z(1), . . . ,z(8)) ∈ {0,1}8 with z(i) = Oi(s,B).
The observation space Z = {z1, . . . ,z256} is the set of all
observation vectors.

Providing a human with enough environments to cover
the entire observation space is inefficient. [39] To simplify
this space, we introduce action-based features [31], which
capture the short-term human behavior of prioritizing to avoid
obstacles for current observations. Particularly, we define
features f : Z×Act→ N. In our example setting we have

f1(z,a) =
8

∑
i=1

z(i) ,

f2(z,a) =
∣∣∣ax−

3

∑
i=1

z(i)+
7

∑
i=5

z(i)
∣∣∣ ,

f3(z,a) =
∣∣∣ay− ∑

i∈{1,7,8}
z(i)+

5

∑
i=3

z(i)
∣∣∣ ,

where f1 describes the number of obstacles in the observations.
f2 and f3 are the respective x and y directional components of
the difference between the motion of the agent’s action (ax and
ay respectively) and position of the obstacles in its observation.
Then, the comprised feature function is f : Z×Act→N3 with
f (z,a) =

(
f1(z,a), f2(z,a), f3(z,a)

)
.

We define a component-wise “equivalence” of observations-
action features:

f (z1,a1) = f (z2,a2) ⇐⇒
∧

i

(
fi(z1,a1) = fi(z2,a2)

)
.

In Fig. 3, both observations see an obstacle in the corner
of the observable space. For the left-hand case, the obstacle
is on the bottom-left and action “right” is taken to avoid it.
In the right-hand case, the obstacle is on the top-right and
action “left” is taken to avoid it. These observation-action
cases are considered equivalent in our feature model.

In developing a strategy for the POMDP, we iterate
through the observation-action space Z×Act and find feature-
equivalent inputs based on the above criteria. A set of feature-
equivalent inputs is then F̂ = {(z1,a1), . . . ,(zk,ak)} where
f (z1,a1) = f (zk,ak). By using the feature-equivalent inputs
we are guaranteed to require less human inputs. The maximum
possible size of the equivalent-feature set is |F̂ | ≤

(8
4

)
= 70,

due to the number of permutations of f1. So at best our feature
method can allow for 70 times fewer inputs. The efficiency
gained by the introduction of features is at least |F̂ | ≥ 1+ 4

n
for an empty n sized gridworld, the worst possible case. The
majority of observations in sparse gridworlds are zero- or
single-obstacle observations with an average efficiency of
approximately E[|F̂ |] ∈ [

(8
0

)
= 1,

(8
1

)
= 8], which gives us a

conservative lower bound on the efficiency from a feature-
based representation.

C. Initial Strategy Generation

The human training set ΩE has been generated from a series of
similar but randomly-generated environments. Therefore the
initial strategy generated from the training set is independent

from the particular environment that we synthesize a strategy
for. For all (z,a) ∈ Z × Act we assign the probability of
selecting an action σz(z,a) from its corresponding feature’s
f (z,a) frequency in the training set compared to the set of
all features with observation z:

σz(z,a) = ∑
(z j,a j)∈F̂

(
ΩE(z j,a j)

∑ai∈Act ΩE(z j,ai)

)
.

For the cases where a sequence has no equivalence, we evenly
distribute the strategy between the action choices Act (such
occasions are rare and our refinement procedure will improve
any negative actions after model checking).

σz(z,a) :=
1
|Act|

if ∑
ai∈Act(z)

Ω
E(z,ai) = 0 .

For the strategy σz, we perform model checking on the
induced MC Dσz to determine if the specification is satisfied.

D. Refinement Using Counterexamples

When the specification is refuted, we compute a counterex-
ample in form of a set of critical states S′ ⊆ S. Note the
probability of satisfying the specification will be compara-
tively low at these states. The human is then requested to
update the strategy for the observations z = O(s) for all s∈ S′.
For an observation z with an action update selection of ai,
the observation-action strategy update parameter ωE(z,a) is:

ω
E(z,a) =

{
1

∑s∈S Pr(s|z)Prreach(s)
if a = ai ,

1 otherwise .

We perform a Bayesian update with normalization constant
c to calculate the stochastic strategy where c=∑a∈Act σz

′(z,a)

σz
′(z,a) =

1
c

ω
E(z,a)σz(z,a) .

Thereby, at each control loop the probability of the human
input ai in the strategy is increased.

Bounds on Optimality. As discussed in Sect. IV, a random-
ized memoryless strategy for a POMDP may not induce
optimal values in terms of reachability probabilities or
expected cost. Moreover, in our setting, there is a limit
on the human’s capability – for instance if there are too
many features to comprehend. An optimal strategy for the
underlying MDP of a POMDP provides bounds on optimal
values for the POMDP. These values are a measure on what
is achievable, although admittedly this bound may be very
coarse. Such a bounding within a reinforcement learning
context is discussed in [5].

VI. IMPLEMENTATION AND EXPERIMENTS

We implemented the motion planning setting as in Fig. 1
inside an interactive MATLAB environment. Grid size, initial
state, number of obstacles, and goal location are variables.
We use PRISM [25] to perform probabilistic model checking
of the induced MC of the POMDP, see Sect. III-D. We use
the PRISM POMDP prototype [29] and a point-based value
iteration (PBVI) solver [6], [28] for comparison with other

TABLE I: Expected cost improvement – 4×4 gridworld

Iteration Pr(¬BUG) Expected Cost (EC=?[C])

0 0.225 13.57
1 0.503 9.110
2 0.592 7.154
3 0.610 6.055
4 0.636 5.923
Optimal – n. a. – 5

TABLE II: Expected cost of initial strategy from training sets

Training Grids Pr(¬BUG) Expected Cost (EC=?[C])

Variable 0.425 10.59
Fixed-4 0.503 9.27
Fixed-10 0.311 14.53
Optimal – n. a. – 3

tools. Note that there exists no available tool to compute
optimal randomized memoryless strategies. All experiments
were conducted on a 2.5 GHz machine with 4 GB of RAM.

A. Efficient Data Collection

A human user trains an initial “generic” strategy through
a simulation of multiple randomly-generated environments,
varying in size, number of obstacles and goal location. In
order to more accurately reflect the partially observable nature
of the problem, the human is only shown a map of the “known”
features (landmarks and goal location) in the environment as
well as the observation associated with the current state.

The goal is to obtain a strategy from the data that is
independent of a change in the environments. We gather
inputs according to Sect. V-A and Sect. V-B. For a bound
of ε = 0.05 with confidence of 1− δ = 0.99, we require∣∣ΩE

∣∣= 1060 samples, see Eq. 1. Furthermore, the efficiency
factor introduced by the feature equivalence depends on the
generated scenarios, i. e., the number of features. For our
examples, we conservatively assume an efficiency factor of
4, so we require

∣∣ΩE
∣∣= 265 samples. If the specification is

refuted, we compute a critical part S′ ⊆ S of the state space S,
i. e., a counterexample. By starting the simulation in concrete
scenarios at locations induced by S′, we “ask” the human for
specific inputs that refine the strategy at critical parts.

B. Experiments

a) Strategy Refinement: In Table IV we show 5 iterations
of counterexample-based strategy refinement for a 4×4
gridworld. In each iteration, we measure the time to construct
the MC and the time to model check. These running times are
negligible for this small example, important however is the
probability for safely reaching a target, namely Pr(¬BUG).
One can see that for the initial, generic strategy this probability
is rather low. Having the simulation start in critical parts
iteratively improves this probability up to nearly 0.8, at which
point we find no measurable improvement. For this example,
the upper bound on the maximum probability derived from
MDP model checking is 1. Figure 5 shows a heatmap of
this improving behavior where darker coloring means higher
probability for safely reaching the goal.

TABLE III: Comparison to existing POMDP tools

HiL Synth PRISM-POMDP PBVI
grid states time (s) states time (s) states time (s)

3×3 277 43.74 303 2.20 81 3.86
4×4 990 121.74 987 4.64 256 2431.05
5×5 2459 174.90 2523 213.53 625 – MO –
6×6 5437 313.50 5743 – MO – 1296 – MO –

10×10 44794 1668.30 54783 – MO – – MO – – MO –
11×11 – MO – – MO – 81663 – MO – – MO – – MO –

TABLE IV: Strategy refinement – 4×4 gridworld

Iteration Construction (s) Model Checking (s) Pr(¬BUG)

0 2.311 1.533 0.129
1 2.423 1.653 0.521
2 2.346 1.952 0.721
3 2.293 1.727 0.799
4 2.293 1.727 0.799

b) Fixed goal location: When we fix the goal-location
parameter to the top-right of the grid, we can examine the
strategy refinement’s impact on the expected number of steps
to the goal (see I). The grid-size space was randomly sampled
between n ∈ [4,11], we also compare the impact of fixing
the grid-size for the training set. There is clearly a benefit
to restricting the samples from the training set to samples of
similar problem styles. In a 4×4 gridworld, a fixed training
set of similar sized environments outperforms the strategies
generated by a varying set of environment sizes (see Table II).

c) Comparison to Existing Tools and Solvers: We
generated POMDP models for several grid sizes with one
landmark and one dynamic obstacle. We list the number of
model states and the solution times for our human-in-the-loop
synthesis method, PRISM-POMDP and PBVI. From Table III
we can see that for the smaller problem sizes, the existing
tools perform slightly better than our method. However, as the
problem grows larger, both PRISM-POMDP and PBVI run
out of memory and are clearly outperformed. The advantage
of our memoryless approach is that the strategy itself is
independent of the size of the state space and the problem
scales with the size of the verification for the induced MC.

VII. CONCLUSION AND FUTURE WORK

We introduced a formal approach to utilize humans’ inputs
for strategy synthesis in a specific POMDP motion planning
setting, where strategies provably adhere to specifications.
Our experiments showed that with a simple prototype we
could raise the state-of-the-art, especially in the combination
with formal verification. In the future, we will investigate
how to infer decisions based on memory and how to employ
human-understandable counterexamples [43].

ACKNOWLEDGMENT

This work has been partly funded by ONR N00014-15-IP-
00052, NSF 1550212, and DARPA W911NF-16-1-0001.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Fig. 5: Heatmap for the quality of agent strategies with
dynamic obstacle location (2,0) and static landmark at (1,2).

REFERENCES

[1] Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-
Pieter Katoen, and Ralf Wimmer. Counterexample generation for
discrete-time Markov models: An introductory survey. In SFM, volume
8483 of LNCS, pages 65–121. Springer, 2014.

[2] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. Opti-
mizing fixed-size stochastic controllers for POMDPs and decentralized
POMDPs. Autonomous Agents and Multi-Agent Systems, 21(3):293–
320, 2010.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483, 2009.

[4] Nicholas Armstrong-Crews and Manuela Veloso. Oracular partially
observable Markov decision processes: A very special case. In ICRA,
pages 2477–2482. IEEE, 2007.

[5] Anthony R. Cassandra and Leslie Pack Kaelbling. Learning policies
for partially observable environments: Scaling up. In ICML, page 362.
Morgan Kaufmann, 2016.

[6] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman.
Acting optimally in partially observable stochastic domains. In AAAI,
volume 94, pages 1023–1028, 1994.

[7] Krishnendu Chatterjee, Martin Chmelı́k, Raghav Gupta, and Ayush
Kanodia. Qualitative analysis of POMDPs with temporal logic
specifications for robotics applications. In ICRA, pages 325–330.
IEEE, 2015.

[8] Krishnendu Chatterjee, Martin Chmelı́k, Raghav Gupta, and Ayush
Kanodia. Optimal cost almost-sure reachability in POMDPs. Artificial
Intelligence, 234:26–48, 2016.

[9] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger.
Trading memory for randomness. In QEST. IEEE, 2004.

[10] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane
Legg, and Dario Amodei. Deep reinforcement learning from human
preferences. CoRR, abs/1706.03741, 2017.

[11] Martin A. Conway. Cognitive models of memory. The MIT Press,
1997.

[12] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A Storm is coming: A modern probabilistic model checker. In
CAV (2), volume 10427 of LNCS, pages 592–600. Springer, 2017.

[13] Kurt Dresner and Peter Stone. A multiagent approach to autonomous
intersection management. Artificial Intelligence, 31:591–656, 2008.

[14] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal
control with linearly-solvable MDPs. In ICML, pages 335–342, 2010.

[15] Ronald A. Howard. Dynamic Programming and Markov Processes.
The MIT Press, 1960.

[16] Nils Jansen, Murat Cubuktepe, and Ufuk Topcu. Synthesis of shared
control protocols with provable safety and performance guarantees. In
ACC, pages 1866–1873. IEEE, 2017.

[17] Nils Jansen, Ralf Wimmer, Erika Ábrahám, Barna Zajzon, Joost-Pieter
Katoen, Bernd Becker, and Johann Schuster. Symbolic counterexample
generation for large discrete-time markov chains. Sci. Comput.
Program., 91:90–114, 2014.

[18] Edwin T. Jaynes. On the rationale of maximum-entropy methods.
Proceedings of the IEEE, 70(9):939–952, 1982.

[19] Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore
Winterer, Joost-Pieter Katoen, and Bernd Becker. Permissive finite-
state controllers of pomdps using parameter synthesis. CoRR,
abs/1710.10294, 2017.

[20] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101(1):99–134, 1998.

[21] Joost-Pieter Katoen. The probabilistic model checking landscape. In
LICS, pages 31–45. ACM, 2016.

[22] Piyush Khandelwal et al. BWIBots: A platform for bridging the gap
between AI and human–robot interaction research. Int’l Journal of
Robotics Research, 2017.

[23] Konrad P. Körding and Daniel M. Wolpert. Bayesian decision theory
in sensorimotor control. Trends in Cognitive Sciences, 10(7):319–326,
2006.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[25] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, volume 6806
of LNCS, pages 585–591. Springer, 2011.

[26] Michael L. Littman. Memoryless policies: Theoretical limitations and
practical results. In SAB, pages 238–245. The MIT Press, 1994.

[27] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov
decision problems. In AAAI, pages 541–548. AAAI Press, 1999.

[28] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and An-
thony R. Cassandra. Solving POMDPs by searching the space of finite
policies. In UAI, pages 417–426. Morgan Kaufmann, 1999.

[29] Gethin Norman, David Parker, and Xueyi Zou. Verification and
control of partially observable probabilistic systems. Real-Time Systems,
53(3):354–402, 2017.

[30] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value
iteration: An anytime algorithm for POMDPs. In IJCAI, volume 3,
pages 1025–1032, 2003.

[31] David L. Poole and Alan K. Mackworth. Artificial Intelligence:
foundations of computational agents. CUP, 2010.

[32] Stephanie Rosenthal and Manuela Veloso. Modeling humans as
observation providers using POMDPs. In RO-MAN, pages 53–58.
IEEE, 2011.

[33] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming.
Academic Press, Inc., 1983.

[34] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning.
In AISTATS, pages 627–635, 2011.

[35] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-
based POMDP solvers. Autonomous Agents and Multi-Agent Systems,
27(1):1–51, 2013.

[36] David R. Shanks, Richard J. Tunney, and John D. McCarthy. A re-
examination of probability matching and rational choice. Journal of
Behavioral Decision Making, 15(3):233–250, 2002.

[37] Robert Sim and Nicholas Roy. Global a-optimal robot exploration in
slam. In ICRA, pages 661–666. IEEE, 2005.

[38] Trey Smith and Reid Simmons. Heuristic search value iteration for
POMDPs. In UAI, pages 520–527. AUAI Press, 2004.

[39] Martin A Tanner and Wing Hung Wong. The calculation of posterior
distributions by data augmentation. Journal of the American Statistical
Association, 82(398):528–540, 1987.

[40] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. The MIT Press, 2005.

[41] Nikos Vlassis, Michael L. Littman, and David Barber. On the
computational complexity of stochastic controller optimization in
POMDPs. ACM Trans. on Computation Theory, 4(4):12:1–12:8, 2012.

[42] Michael P. Wellman et al. Designing the market game for a trading
agent competition. IEEE Internet Computing, 5(2):43–51, 2001.

[43] Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám, Joost-
Pieter Katoen, and Bernd Becker. High-level counterexamples for
probabilistic automata. Logical Methods in Computer Science, 11(1),
2015.

[44] Leonore Winterer, Sebastian Junges, Ralf Wimmer, Nils Jansen, Ufuk
Topcu, Joost-Pieter Katoen, and Bernd Becker. Motion planning under
partial observability using game-based abstraction. In CDC. IEEE,
2017.

[45] Tichakorn Wongpiromsarn and Emilio Frazzoli. Control of probabilistic
systems under dynamic, partially known environments with temporal
logic specifications. In CDC, pages 7644–7651. IEEE, 2012.

[46] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K.
Dey. Maximum entropy inverse reinforcement learning. In AAAI, pages
1433–1438. AAAI Press, 2008.

	I Introduction
	II Preliminaries
	II-A Probabilistic Models
	II-B Partial Observability
	II-C Specifications

	III Methodology
	III-A Problem Statement
	III-B Training Environment
	III-C Strategy Generation from Behavior Cloning
	III-D Refinement through Model Checking and Counterexamples

	IV Randomized Strategies
	V Strategy Generation
	V-A Training Set
	V-B Feature Representation
	V-C Initial Strategy Generation
	V-D Refinement Using Counterexamples

	VI Implementation and Experiments
	VI-A Efficient Data Collection
	VI-B Experiments

	VII Conclusion and Future Work
	References

