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Wiener Filtering for Passive Linear Quantum Systems

V. Ugrinovskii M. R. James

Abstract— This paper considers a version of the Wiener
filtering problem for equalization of passive quantum linear
quantum systems. We demonstrate that taking into considera-
tion the quantum nature of the signals involved leads to features
typically not encountered in classical equalization problems.
Most significantly, finding a mean-square optimal quantum
equalizing filter amounts to solving a nonconvex constrained
optimization problem. We discuss two approaches to solving
this problem, both involving a relaxation of the constraint. In
both cases, unlike classical equalization, there is a threshold on
the variance of the noise below which an improvement of the
mean-square error cannot be guaranteed.

I. INTRODUCTION

The task of transferring quantum information differs sig-

nificantly from its classical (non-quantum) counterpart, since

the laws of quantum mechanics limit the accuracy of in-

formation transfer through quantum channels. Specifically,

the signal-to-noise ratio of possible quantum measurements

on the transmission line is limited [4], reflecting the well

known fact that a quantum state cannot be cloned at the

remote location. This motivates a great interest in devel-

oping systematic methodologies for the design of optimally

performing quantum communication systems.

In the classical communication theory, optimization plays

an instrumental role in balancing various trade-offs in the

design of classical communication systems. The most cele-

brated example of using optimization in signal processing are

due to N. Wiener [15] who developed a general method for

reducing the effects of noise and channel distortion through

minimization of the mean square error (MSE) between the

signal and its estimate over a class of linear filters. This

paper highlights conceptual challenges that arise when the

Wiener optimization paradigm is applied in the derivation

of coherent quantum filters, i.e., filters which themselves are

quantum systems. To be concrete, we restrict attention to

one type of the coherent filtering problem concerned with

equalizing distortions of quantum signals transmitted via

a quantum communication channel. Owing to the analogy

with classical channel equalization, we call this problem the

quantum equalization problem. The paper shows that the

requirement for the filter to be physically realizable translates
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into additional constraints which render the problem of opti-

mizing the mean square of the equalization error nonconvex.

The paper is centered around the so-called passive quan-

tum equalizers. Mathematically, dynamics of a passive quan-

tum system in the Heisenberg picture are described by

complex quantum stochastic differential equations expressed

in terms of annihilation operators only [7]. Such systems

are simple to implement experimentally by cascading con-

ventional quantum optics components such as beam splitters

and optical cavities [11]. Furthermore, in a general quantum

system, passivity ensures that the system dissipates energy

in the input. A striking observation that emerges from our

analysis is that passivity appears to be a rather restrictive

property in the context of equalization, in that an optimal

passive coherent equalizer is not always able to improve the

MSE. It turns out that the achievable improvement depends

on the variance of the quantum noise in the filter input signal.

We give examples which reveal a threshold on this variance

above which the optimal passive coherent equalizer delivers

an improved MSE.

The paper is organized as follows. In the next section we

present the basics of passive linear quantum systems. The

quantum passive equalization problem is posed in Section III.

A relaxation of the problem is proposed in Section IV. Next,

in Section V, the problem is particularized to demonstrate

the dependency between the power spectrum density of the

equalization error and the variance of the system noise. Two

examples of the quantum coherent filter design are presented

in that section, reflecting two approaches to optimization of

the equalization error, the first one is via direct optimization

of the power spectrum density, and the second one is

using the Wiener-Hopf factorization technique [8]. Finally,

concluding remarks are given in Section VI.

Notation: For an operator a in a Hilbert space H, a∗

denotes the Hermitian adjoint operator, and if a is a complex

number, a∗ is its complex conjugate. Let a = (a1, . . . , an)
be a column vector comprised of n operators (i.e., a is

an operator H → Hn); then a# = (a∗1, . . . , a
∗
n), aT =

(aT1 . . . aTn ) (i.e, the row of operators), and a† = (a#)T .

The notation col(a, b) denotes the column vector obtained

by concatenating vectors a and b. For a complex matrix

A = (Aij), A#, AT , A† denote, respectively, the matrix

of complex conjugates (A∗
ij), the transpose matrix and the

Hermitian adjoint matrix. [·, ·] denotes the commutator of

two operators in H. tr[·] denotes the trace of a matrix. I is

the identity matrix. The quantum expectation of an operator

V with respect to a state ρ, is denoted 〈V 〉 = tr[ρV ] [12].

http://arxiv.org/abs/1901.09494v1


II. OPEN LINEAR PASSIVE QUANTUM SYSTEMS

An open quantum annihilation-only system represents a

linear system

ȧ=Aa+Bu, a(t0) = a,

y=Ca+Du; (1)

where A, B, C, D are complex m × m, m × n, n × m,

n × n matrices, and u is a (column) vector of n quantum

input processes. The input is assumed to be of the form

u(t) = u0(t) + b(t), (2)

where b is a (column) vector of n quantum noise processes,

b = (b1, . . . ,bn), and u0(t) is an adapted process [5]. The

noise processes can be represented as annihilation operators

on an appropriate Fock space [5], but from the system theory

viewpoint they can be treated as quantum Gaussian white

noise processes with zero mean, and the covariance
〈[

b(t)
b#(t)

] [

b†(t′)
bT (t′)

]〉

=

[

I +ΣT
b Πb

Π†
b Σb

]

δ(t− t′), (3)

where Σb, Πb are complex matrices with the properties

that Σb = Σ†
b, ΠT

b = Πb. Along with their adjoint

(creation) operators b∗
j (t), the noise operators satisfy canon-

ical commutation relations [bj(t),b
∗
k(t

′)] = δjkδ(t − t′),
[bj(t),bk(t

′)] = 0. Here, δjk = 0 when j 6= k, and is the

identity operator when j = k; δ(t − t′) is the δ-function.

The column vector a(t) = (a1(t), . . . , am(t)) represents

the system modes and consists of annihilation operators on

a certain Hilbert space H. A discussion about open linear

quantum systems can be found in [7], [2], [6]. From now

on, it will be assumed that the pair (A,B) is controllable.

For a system of the form (1) to correspond to quantum

physical dynamics, it must preserve the canonical commuta-

tion relations during its evolution [13], [6]. According to [9],

for the system (1) this is guaranteed if and only if there exists

a Hermitian complex matrix Θ such that

AΘ+ΘA† +BB† = 0, B = −ΘC†, D = I. (4)

Without loss of generality we will assume from now on

that the conditions (4) are satisfied for the systems under

consideration with Θ = I; this can always be achieved by

an appropriate choice of coordinates [9]. Furthermore, we

will assume that the matrix A is Hurwitz.

From (1), the output of the system can be represented as

y(t) =CeA(t−t0)a

+

∫ t

t0

g(t− τ)u0(τ)dτ +

∫ t

t0

g(t− τ)b(τ)dτ. (5)

Here we introduced the notation for the impulse response,

associated with the system [16],

g(t) =

{

CeAtB + δ(t)I, t ≥ 0,

0, t < 0.
(6)

Let us introduce the transfer function of the system (1),

G(s) = C(sI −A)−1B + I.

Since B = −C†, the transfer function G(s) is square.

This observation holds for all passive systems considered

henceforth. Furthermore, if follows from the properties of

the physical realizability [13] that for the passive system (1),

G(s)[G(−s∗)]† = I. (7)

In the sequel we will be interested in stationary behaviours

of the systems under consideration. Since the matrix A is

assumed to be stable and assuming that u0(t) is stationary,

the stationary component of the system output is obtained

from (5) by letting t0 → −∞:

y(t) =

∫ +∞

−∞
g(t− τ)u0(τ)dτ +

∫ +∞

−∞
g(t− τ)b(τ)dτ.(8)

Also, for convenience the upper limit of integration has been

changed to +∞ since g(t) is causal.

Consider the correlation function of stationary quantum

operator processes xj(t), xk(t) associated with the system,

Rxj ,xk
(t) = 〈(xj(0)− 〈xj(0)〉)(xk

∗(t)− 〈xk
∗(t)〉)〉.

The corresponding power spectrum density is then

Pxj,xk
(iω) =

∫ +∞

−∞
e−iωtRxj,xk

(t)dt. (9)

The Fourier transform is understood in the sense of tempered

distributions when Rxj ,xk
is not integrable. Also, consider

the extension of Pxj,xk
(iω) to the complex plane, given by

the bilateral Laplace transform of Rxj,xk
,

Pxj,xk
(s) =

∫ +∞

−∞
e−stRxj ,xk

(t)dt. (10)

Often, Pxj,xk
(s) is also referred to as the power spectrum

density function [8], although in general it may not be real.

Since the matrix A is Hurwitz, Pxj,xk
(s) is well defined

on s = iω and Pxj,xk
(s)|s=iω = Pxj,xk

(iω), where the

expression on the left-hand side refers to the power-spectrum

density defined in (10), and the expression on right-hand side

is defined in (9). It is easy to obtain that the power spectrum

density matrix of the output y(t), Py,y(s) = (Pyj ,yk
(s)) is

related to the power spectrum density matrix of the noise b,

Pb,b(s) = (Pbj ,bk
(s)), in the standard manner:

Py,y(s) = G(s)Pb,b(iω)[G(−s∗)]†. (11)

III. EQUALIZATION PROBLEM FOR ANNIHILATION-ONLY

COMMUNICATION SYSTEMS

In this section, a general equalization scheme for a passive

communication system is outlined.

Consider a system in Fig. 1 consisting of a quantum

channel and an equalizer. The input signal u plays the role

of a message signal to be transmitted through the channel,

of the form

u(t) = u0(t) + b(t), (12)

and w denotes the vector comprised of additional quantum

noises. It includes the noise inputs that are necessarily

present in the physically realizable system G(s) [6], [14],

as well as noises introduced by measurement devices. In
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Fig. 1. A general quantum communication system. The transfer function
G(s) represents the channel, and H(s) represents an equalizing filter.

terms of the notation adopted in the previous section, we

have u0 = col(u0, 0), and b = col(b, w). The combined

input u = col(u,w) drives an annihilation-only (passive)

quantum system G(s), as described in the previous section,

to produce the output y = col(yu, yw), although for filtering

purposes, we are only interested in the output component yu
which corresponds to the input channel u.

The objective: In the classical filtering theory [8], the

equalizer is to compensate for signal distortions in the

output yu(t), by minimizing the equalization error e(t) =
û(t)−u(t) between classical signals û(t), u(t) in the mean-

square sense. The classical power spectrum density Pe,e(iω)
is usually L2-integrable and is related to the correlation

function of the error e(t) via the inverse Fourier transform,

Re,e(t) =
1

2π

∫ +∞

−∞
Pe,e(iω)e

iωtdω.

In this case, minimizing the mean-square error covariance

measure trRe,e(0) is equivalent to minimizing trPe,e(iω)
pointwise in ω. Alternatively, the optimal causal filter can

be sought to satisfy the Wiener-Hopf equation [8],

Ru,yu
(t) =

∫ +∞

0

h(t− τ)Ryu,yu
(τ)dτ, t > 0; (13)

here h(t) is the unilateral inverse Laplace transform of a

causal transfer function H(s). The equation (13) reflects

the projection property of classical least-square estimates,

E(e(t)yu(τ)
†) = 0 for −∞ < τ < t. The solution to

equation (13) is obtained using spectral factorization.

Analogous to the classical mean-square equalization, we

wish to obtain a quantum system H(s) whose output û
matches the input u optimally, in the sense that the equal-

ization error e(t) = û(t) − u(t) must have a minimum

covariance. Owing to the physical realizability requirement

reflected in the identity (7), quantum channels are not guar-

anteed to generate L2-integrable power spectrum densities.

For this reason, we will pose the problem directly as opti-

mization of the power spectrum density, to either minimize

trPe,e(iω) pointwise for every ω, or obtain a causal H(s)
by solving the corresponding spectral factorization problem.

Both approaches will be discussed in Section V.

Admissible equalizing filters: The key distinction of

the problem under consideration from classical counterparts

is that the system H(s) must be physically realizable as

a quantum system. This mandates imposing additional re-

quirements on the filter. Firstly, to ensure that the LTI filter

system obtained from the optimization problem (16) or from

spectral factorization can be made physically realizable, it

may need to be equipped with additional noise inputs z —

it was observed in [6], [14] that any LTI system can be

made physically realizable by adding noise. Without loss

of generality, we will assume that the added noise z is in

a Gaussian vacuum state, i.e., the corresponding mean and

covariance of z are

〈z(t)〉 = 0,

〈[

z(t)
z#(t)

] [

z†(t′)
zT (t′)

]〉

=

[

I 0
0 0

]

δ(t− t′).(14)

Secondly, to facilitate implementation of the resulting

quantum filter [11], we restrict attention to passive equalizer

systems. In this case, the requirement for physical realizabil-

ity of the filter leads to a formal constraint of the form (7)

on the transfer function H(s):

H(s)[H(−s∗)]† = I. (15)

Let us denote the set of passive physically realizable equal-

izers satisfying (15) as Hr. The pointwise optimization of

trPe,e(iω) in the class of physically realizable filters is thus

a constrained optimization problem,

min
H∈Hr

trPe,e(iω). (16)

The constraint (15) precludes the direct application of

standard filtering techniques to obtain an optimal quantum

Wiener equalizer. In the next section we outline a relaxation

technique which helps to overcome this problem.

IV. CONSTRAINT RELAXATION

Let us define the partitions of the transfer functions G(s)
and H(s) compatible with the partitions of u = col(u,w),
y = col(yu, yw), and col(yu, z), col(û, ẑ), respectively:

G(s) =

[

G11(s)G12(s)
G21(s)G22(s)

]

, H(s) =

[

H11(s)H12(s)
H21(s)H22(s)

]

.

(17)

With this notation, we have that

Pe,e(s)

= (H11(s)G11(s)− I)(I +ΣT
b )(G11(−s∗)†H11(−s∗)† − I)

+H11(s)G12(s)(I +ΣT
w)G12(−s∗)†H11(−s∗)†

+H12(s)H12(−s∗)†. (18)

Also, the constraint (15) is equivalent to

H11(s)H11(−s∗)† +H12(s)H12(−s∗)† = I, (19)

H11(s)H21(−s∗)† +H12(s)H22(−s∗)† = 0, (20)

H21(s)H21(−s∗)† +H22(s)H22(−s∗)† = I. (21)

From (18), we observe that the spectral density function

Pe,e(s) depends on the variables H11, H12 only. Therefore

one possible approach to solving the equalizer design prob-

lem is to employ a two-step procedure whose first step is

to optimize the equalization error with respect to H11(s),
H12(s), subject to the constraint (19), followed by the second

step during which the remaining transfer functions H21(s),
H22(s) are computed to fulfill the remaining physical real-

izability constraints (20), (21).

Of course, there is no guarantee that with H11(s), H12(s)
found during the first step, the remaining transfer functions



H21(s), H22(s) exist and satisfy the conditions (20), (21).

Nevertheless, this approach is attractive in that it allows us to

obtain tractable relaxations of the original quantum equalizer

design problem. Indeed, using (19), H12(s) can be eliminated

from the expression (18):

Pe,e(s) = (H11(s)G11(s)− I)(I +ΣT
b )

×(G11(−s∗)†H11(−s∗)† − I)

+H11(s)G12(s)(I +ΣT
w)G12(−s∗)†H11(−s∗)†

−H11(s)H11(−s∗)† + I. (22)

It also follows from (19) that

H11(iω)H11(iω)
† ≤ I ∀ω ∈ R1. (23)

This allows us to replace the original problem of finding

an optimal passive equalizer H(s) with the problem of

optimizing the equalization error in the class of causal

transfer functions H11(s) subject to the quadratic constraint

(23). We will give a precise meaning to this statement in the

next section, where we discuss two relaxed quantum Wiener

filter problem formulations.

V. TWO APPROACHES TO QUANTUM WIENER

EQUALIZATION

In this section we apply the relaxation technique discussed

in the previous section to two problems which demonstrate

features of the quantum Wiener filtering. Our aim is to

highlight new features of the problem of coherent Wiener

equalization owing to the physical realizability constraint

(15), rather than obtain a general solution to this problem.

All signals in this section are assumed to be scalar unless

specified otherwise.

A. Equalization via optimization of power spectrum density:

An optical beam splitter

In this section, we focus on the problem (16). The con-

straint relaxation proposed in the previous section allows

to replace this problem with the problem involving the

constraint (23). In the case of scalar signals u, yu and

û, Pee(s) and Σb are scalars, and this problems simplifies

significantly:

min
|H11(iω)|≤1

Pe,e(iω), (24)

Pe,e(iω) = (1 + Σb)|H11(iω)G11(iω)− 1|2

+|H11(iω)|2G12(iω)(I +ΣT
w)G12(iω)

†

−|H11(iω)|2 + 1. (25)

In (24), the minimum is taken over the set of causal transfer

functions H11(s) subject to the scalar version of the condi-

tion (23). Obviously, we have in this case

min
|H11(iω)|≤1

Pe,e(iω)≤ min
H∈Hr

Pe,e(iω); (26)

i.e., the problem (24) delivers a lower bound on the optimal

power spectrum density. The requirement for H11(s) to be

causal is also nontrivial — while the frequency pointwise

optimization is easy to perform over complex H11, the

PSfrag replacements
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Fig. 2. A beam splitter and a quantum equalizer system.

pointwise optimal H11,ω obtained this way must admit a

causal extension into the complex plane. In general, this

issue can be addressed numerically [1], using the standard

Matlab software [10]. Therefore in the remainder of this

section, we will be concerned with equalization of a static

quantum system for which the causality condition is satisfied

automatically. This simplified analysis aims to demonstrate

that the proposed relaxation can lead to physically realizable

equalizers which are optimal in the sense of (16).

As an example of a static quantum system consider a

quantum-mechanical beam splitter, which is a two-input two-

output quantum system; see Fig. 2. In Fig. 2, the input u
represents the signal we would like to split, and the second

input w is an auxiliary noise input. The beam splitter mixes

the signals u and w, its outputs and inputs are related via a

unitary transformation:
[

yu
yw

]

= G

[

u
w

]

, G(s) =

[ √
η

√
1− η

−√
1− η

√
η

]

; (27)

η ∈ (0, 1) is a real parameter known as transmittance. That

is, G(s) is static in this case, and

yu =
√
ηu+

√

1− ηw.

The equalization problem is to estimate the signal u from

the output yu of this device using a coherent equalizer, i.e., a

device which preserves the canonical commutation relations.

To demonstrate the application of a quantum Wiener filter

in this problem, suppose that the input noise b in (12) is

in Gaussian vacuum state, and Σb = 0, Πb = 0, whereas

the beamsplitter noise w is in a Gaussian thermal state, so

that Σw = σ2
w > 0, Πw = 0. With these assumptions, the

expression for the objective function in (25) becomes

Pe,e(iω) = (1− η)σ2
w |H11(iω)|2 − 2

√
ηReH11(iω) + 2.(28)

The constraint condition (23) reduces in this case to

|H11(iω)|2 ≤ 1. (29)

Since all coefficients in (28) are constants, the optimal

value and the optimal equalizer should also be constant.

The problem (24) is thus a regular constrained optimization

problem, which can be solved using the Lagrange multiplier

technique.

Proposition 1: 1. If σ2
w ≤

√
η

(1−η) , then the optimal equal-

izer which attains minimum in (16) is H(s) = I .

2. On the other hand, when σ2
w >

√
η

(1−η) , an optimal

equalizer is given by

H11(s) =

√
η

σ2
w(1− η)

, H12(s) =

√

1− η

σ4
w(1− η)2

,

H21(s) =−H12(s), H22(s) = H11(s). (30)
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Fig. 3. A cavity, beam splitters and an equalizer system.

Such an equalizer attenuates the input yu, and must

include an additional noise input z, to ensure that it is

physical realizable.

The corresponding expressions for the optimal error power

spectrum density are

min
H∈Hr

Pee =

{

σ2
w(1− η)− 2

√
η + 2, if σ2

w ≤
√
η

(1−η) ;

2− η
σ2(1−η) , if σ2

w >
√
η

(1−η) .

(31)

Comparing the power spectrum density of the error at the

input of the filter, P(yu−u),(yu−u)(iω), with Pe,e(iω) in (31),

we observe that P(yu−u),(yu−u)(iω) = Pe,e(iω) if σ2
w ≤√

η

(1−η) , and P(yu−u),(yu−u)(iω) > Pe,e(iω) if σ2
w >

√
η

(1−η) .

Thus, Proposition 1 shows that the requirement for physical

realizability restricts the capacity of an optimal coherent

equalizer to respond to noise in the input signal. It is still

possible to reduce the MSE by means of a coherent equalizer,

however this is only possible provided the covariance of

the thermal noise in the input signal is sufficiently large.

This situation differs strikingly from the classical Wiener

equalization theory.

B. The Wiener-Hopf technique for quantum equalization: An

equalizer for an optical cavity

Let us modify the system in Fig. 2 to include an optical

cavity and two additional beam splitters of transmittance

α and β; see Fig. 3. With these modification the system

becomes dynamical. In Fig. 3, v denotes an additional

thermal Gaussian noise input into the system, with zero mean

and covariance
〈[

v(t)
v∗(t)

] [

v∗(t′)
v(t′)

]〉

=

[

1 + σ2
v 0

0 σ2
v

]

δ(t− t′).

Correspondingly, the relation between the channel output

col(yu, yw) and its input col(u, v) is found from the relations

[

yu
yw

]

=

[ √
η

√
1− η

−√
1− η

√
η

] [

uout

w

]

,

[

uout

vout

]

= Ḡ(s)

[

u
v

]

,

Ḡ(s) =

[

Ḡ11(s) Ḡ12(s)
Ḡ21(s) Ḡ22(s)

]

=
√

αβ

[

Gc −
√
α′β′

√
α′Gc +

√
β′

−
√
β′Gc −

√
α′ −

√
α′β′Gc + 1

]

; (32)

Gc(s) denotes the transfer function of the optical cavity

Gc(s) =
s− γ

2 + iΩ

s+ γ
2 + iΩ

; (33)

γ, Ω are real constants, and α′ = 1−α
α

, β′ = 1−β
β

. Note that

Gc(s)[Gc(−s∗)]∗ = I .

After these modifications, the power spectrum density of

the equalization error in equation (22) is expressed as

Pe,e(s) = 2 + (ησ2
vḠ12(s)[Ḡ12(−s∗)]∗ + (1− η)σ2

w)

×H11(s)[H11(−s∗)]∗

−√
η
(

H11(s)Ḡ11(s) + [H11(−s∗)]∗[Ḡ11(−s∗)]∗
)

.

(34)

The auxiliary optimization problem considered in the previ-

ous sections is therefore to obtain a causal transfer function

H11(s) which optimizes (34) subject to the constraint (29).

Unlike the previous section, the system contains dynam-

ics and the corresponding optimal filter is expected to be

dynamical. Therefore, we cannot expect that the pointwise

optimization in (24) will produce a causal transfer function

H11(s). In the classical case, this issue is resolved using the

Wiener-Hopf spectral factorization method [8]. Therefore,

here we proceed as follows. First, we apply the Wiener-Hopf

spectral factorization method [8] to obtain a causal optimal

H11(s) that minimizes trPe,e(iω) for Pe,e(s) in (34); this

step does not involve the physical realizability constraints.

Next, we show that in fact the found H11(s) validates the

required constraint (29), provided the variance of the system

noise exceeds a certain threshold. Then we show that in this

case a complete physically realizable filter transfer function

H(s) which satisfies (19)–(21) can be constructed from the

found H11(s).

Since Pe,e(s) in (34) depends on H11(s) only, we can

minimize trPe,e(iω) by treating Pe,e(s) as a power spectrum

density of a classical system. Define

ζ =
1− η

η

σ2
w

αβ
, ρ =

α′ + β′ + ζ
σ2
v

2
√
α′β′ ≥ 1. (35)

Letting M(s) be the following causal transfer function,

M(s) =

√

2ησ2
v

√

αβ(1 − α)(1 − β)(ρ+ 1)

×
s+ γ

2

√

ρ−1
ρ+1 + iΩ

s+ γ
2 + iΩ

, (36)

we obtain the identity

M(s)[M(−s∗)]∗ = ησ2
vḠ12(s)[Ḡ12(−s∗)]∗ + (1− η)σ2

w .

Therefore,

Pe,e(s) = ((M(s)H11(s)−
√
ηQ(s))

× ((M(−s)∗H11(−s)∗ −√
η[Q(−s∗)]∗)

−ηQ(s)[Q(−s∗)]∗ + 2, (37)



where

Q(s),

[

Ḡ11(−s∗)

M(−s∗)

]∗

=
1−√

α′β′
√

2ησ2
v

√
α′β′(ρ+ 1)



1 +

γ
2

(√

ρ−1
ρ+1 + 1+

√
α′β′

1−
√
α′β′

)

s+ iΩ− γ
2

√

ρ−1
ρ+1



 .(38)

Now consider a classical filtering problem of minimizing

the MSE between the filter output û = H(s)yu, where

yu = M(s)u, and the signal ū =
√
ηQ(s)u. Let [Q(s)]+

denote the causal part of Q(s). According to the Wiener-

Hopf method [8], the causal solution to this problem is

H11(s) =

√
η

M(s)
[Q(s)]+. (39)

This filter ensures that the error u− ū and the filter input yu
are orthogonal. Since the expression for the power spectrum

density of the error in this problem is exactly equal to the

first term in (37), we conclude that the filter (39) minimizes

Pe,e(iω) in the class of causal transfer functions. This yields

the explicit expression for the optimal filter which is causal

by way of construction:

H11(s) =
(1−

√
α′β′)/

√
η

σ2
v(
√
α′ +

√
β′)2 + ζ

× s+ γ
2 + iΩ

s+ γ
2

√

ρ−1
ρ+1 + iΩ

. (40)

Proposition 2: Under the condition

σ2
v >

−ζ(α′ + β′) +
√

4ζ2α′β′ + (1−
√
α′β′)2

ηαβ
(α′ − β′)2

(α′ − β′)2
(41)

the transfer function H11(s) in (40) satisfies (29).

It can be shown using Proposition 2 that the following

constants are real under (41):

α11 =
1−

√
α′β′

2
√
ησ2

v(ρ+ 1)
√

(1− α)(1 − β)
,

α12 =
√

1− α2
11, β12 =

γ

2

√

ρ− 1

ρ+ 1
− α2

11.

Proposition 3: Suppose (41) holds. Then the optimal

causal equalizer for the system under consideration in this

section is given by the following transfer functions

H11(s) = α11

s+ γ
2 + iΩ

s+ γ
2

√

ρ−1
ρ+1 + iΩ

, (42)

H12(s) =
α12s+ β12 + iα12Ω

s+ γ
2

√

ρ−1
ρ+1 + iΩ

, (43)

H21(s) =−α12s− β12 + iα12Ω

s+ γ
2

√

ρ−1
ρ+1 + iΩ

, (44)

H22(s) = α11

s− γ
2 + iΩ

s+ γ
2

√

ρ−1
ρ+1 + iΩ

. (45)

As we see, the condition (41) plays a critical role in the

above analysis. The expression on the right-hand side of (41)

depends on σ2
w. If

ζ(α′ + β′) >

√

4ζ2α′β′ +
(1−

√
α′β′)2

ηαβ
(α′ − β′)2, (46)

then this expression is negative, and (41) holds trivially. It

can be shown that if σ2
w > |1−

√
α′β′|√

1−η
then (46) holds, and

hence (41) is trivially satisfied. Thus we have arrived at a

conclusion similar to that made in the previous section: If

the variance of the thermal noise in the system is sufficiently

large, then there exists a filter which attenuates the thermal

noise component of yu while injecting a small amount of

noise through the z channel.

VI. CONCLUSIONS

The paper has discussed a quantum counterpart of the clas-

sical Wiener filtering problem for equalization of quantum

systems. The requirement to obtain a physically realizable

passive causal equalizer imposes nonconvex constraints on

the filter transfer function. We have discussed one form

of relaxation of these constraints, and have shown, via

examples, that the relaxation does not preclude finding a

physically realizable coherent filter able to reduce the signal

distortion caused by the noisy quantum channel.
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