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Proprioceptive Robot Collision Detection through

Gaussian Process Regression

Alberto Dalla Libera1, Elisa Tosello1, Gianluigi Pillonetto1, Stefano Ghidoni1 and Ruggero Carli1

Abstract— This paper proposes a proprioceptive collision
detection algorithm based on Gaussian Regression. Compared
to sensor-based collision detection and other proprioceptive
algorithms, the proposed approach has minimal sensing re-
quirements, since only the currents and the joint configurations
are needed. The algorithm extends the standard Gaussian
Process models adopted in learning the robot inverse dynamics,
using a more rich set of input locations and an ad-hoc kernel
structure to model the complex and non-linear behaviors due
to frictions in quasi-static configurations. Tests performed on a
Universal Robots UR10 show the effectiveness of the proposed
algorithm to detect when a collision has occurred.

I. INTRODUCTION

Collaborative Robotics has attracted an increasing interest

over the last decade in the research community, mainly due

to the fact that the design of robots able to collaborate with

humans might have a great impact in several domains.

Human-robot collaboration is a challenging topic under

different points of view but, likely, the most critical aspects

are related to safety. Indeed, when robots and humans work

side-by-side, they need to share their workspace, and, in

these circumstances, robots should avoid dangerous and

unexpected collision with humans. Despite several motion

planning algorithms have been proposed [3] in order to

minimize the collision probability, it is impossible to reduce

the collision risk to zero. Clearly, in this context it is fun-

damental that robots are provided with robust strategies that

can promptly detect collisions. Moreover, once a collision

has been detected, the robot has to classify such collision, in

particular discriminating between intended and unintended

contacts, and it has to react accordingly.

In order to detect the interaction with the external en-

vironment, robots might be endowed with specific sensors,

like artificial skins or force-sensors. However, this approach

might have some limitations. Indeed artificial skins do not

provide information about the collision intensity [4], while

six axis force-sensors are expensive and highly sensitive to

environmental parameters like temperature and humidity.

A solution alternative to the use of additional sensors is

proprioceptive collision detection (CD) [5]. Proprioceptive

collision detection algorithms identify when an external force

is applied using only proprioceptive sensors, namely joint

torque sensors and current sensors, besides the joint coordi-

nates. We refer the interested reader to [5] for an overview
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of the main state of the art collision detection algorithms.

All the proposed approaches require the definition of a

monitoring signal s(t) and a threshold σCD . The algorithms

assume that a collision occurred when s exceeds σCD , see

[6],[7], [8] and [9]. It is worth remarking that these class

of solutions require an accurate knowledge of the robot

dynamics model, since they assume to know both the kinetics

and dynamics parameters. Typically the former parameters

are known, while the latter ones are estimated resorting to

Fisherian estimators [10].

In this paper, to detect if an interaction has occurred, we

propose a novel approach based on the Gaussian Process

Regression (GPR) framework. This approach has minimal

sensing requirements, since it needs only to measure the

joint coordinates and the motor currents. In this work we

extend the GPR algorithms based on semi-parametric priors

(i.e., composed by the sum of a parametric component and

a non-parametric component) developed to learn the robot

inverse dynamics [11], [12], [13]. Compared to the standard

approach, our algorithm can efficiently deal also with quasi-

static configurations, namely, when the robot is stuck or the

joints’ velocities are very low. Specifically, relying on an

enlarged set of input features and designing proper kernel

structure, our estimator can model the complex behaviors

due to static frictions and kinetic frictions at low velocities.

The paper is organized as follows: in Section II we briefly

review state of the art proprioceptive collision detection

algorithms based on external torques estimation. In Section

III we present our collision detection strategy, based on

Gaussian Regression. In Section IV we introduce standard

GPR techniques adopted in the learning of the robot inverse

dynamics, highlighting via a numerical example the limita-

tions of these approaches when used to detect collision in

quasi-static configurations. Then, in Section V we formally

describe our learning algorithm and in Section VI we show

some numerical results obtained using a UR10 robot.

II. CD VIA MONITORING EXTERNAL TORQUES

In this section we describe a state of the art solution

proposed to solve the CD problem, see [5]. When a collision

occurs, an external force Fext(t) is applied to the robot,

and consequently the joints are subject to a torque τext(t).
Consider an n joints manipulator and let q(t), q̇(t), q̈(t)
and τm(t) ∈ R

n, denote, respectively, the vectors of joints

positions, velocities, accelerations and motor torques at time

t; in the following, to keep the notation compact, we point

out explicitly the time dependence only when it is necessary.

http://arxiv.org/abs/1905.08689v1


The expression of τext is given by

τext = M (q) q̈ + C (q, q̇) q̇ + τg (q) + τǫ − τm, (1)

where M (q) ∈ R
n×n is the generalized inertia matrix,

C (q, q̇) ∈ R
n×n is the Coriolis matrix, τg (q) ∈ R

n models

the effects due to the gravitational force and τǫ ∈ R
n

describes the torques related to the unmodeled dynamic

behaviors, mainly frictions and elasticity of the links [14].

Collision detection through direct monitoring of τext
defines s(q, q̇, q̈, τm) = τ̂ext(q, q̇, q̈, τm), where τ̂ext is

the estimate of τext obtained from equation (1) considering

τǫ = 0; given measurements of q, q̇, q̈ and τm we have

τ̂ext = M (q) q̈ + C (q, q̇) q̇ + τg (q)− τm. (2)

Ideally we should have s(·) = 0 when τext = 0; in practice,
given the model inaccuracies and the measurement noise,
it happens that the monitoring signal is different from zero
even when no external forces are applied. Consequently the
introduction of a threshold σCD is necessary, and the binary
collision function fCD(·) is defined as

fCD(s) =

{

TRUE, if |s| ≥ σCD

FALSE, if |s| < σCD

,

where | · |, ≥ and < are element wise operators, and |s| ≥
σCD if the relation holds at least for one component. The

value of σCD is set by cross validation with the purpose

of limiting the number of false positives and false negatives.

Typically the identification of σCD is done observing the

evolution of s(·) obtained while the robot is moving with

τext = 0 for a time interval sufficiently large from the

statistical point of view, see for examples [5].

Finally observe that, in the computation of τ̂ext in (2), it is

assumed to know the model of the robotic arm, that is defined

by kinematic parameters and dynamics parameters. Typically

kinematic parameters are known while dynamics parameters

are estimated by resorting to some Fisherian approach [10].

III. GPR FOR PROPRIOCEPTIVE COLLISION DETECTION

In this paper, we propose a novel approach based on the

GPR framework to solve the CD problem. In particular a

GPR-based method is used to build the monitoring signal s.

In the following, instead of measuring directly the torque τm,

we assume to measure the current i of the motors generating

the torque τm applied to the joints; this is due to the fact

that in our experimental setup we have access to i and not

to τm. However, it is worth stressing that a current-based

approach has minimal requirements as far as the number of

sensors employed is concerned.

To consider the motor currents i instead of τm, we need to

include the mechanical equations of the motors in the robotic

arm model. Let θ(t), θ̇(t) and θ̈(t) be the angular position,

velocity and acceleration of the motors; then the mechanical

equations of the motors are

Jmθ̈ +Bmθ̇ −Kτ i = τL, (3)

where τL are the torques due to the load, and Jm, Bm

and Kτ ∈ R
n×n are diagonal matrices containing respec-

tively the rotor inertias, the motors damping coefficient and

the torques-current ratios. When the behaviors due to the

elasticity of the gears are negligible and τext = 0 it holds

θ̇ = Krq̇, θ̈ = Krq̈ and τL = K−1

r τm, with Kr ∈ R
n×n

equals to the diagonal matrix containing the gear reduction

ratios. Substituting these equations in (3), we can express

τm as function of q, q̇, q̈ and i, and equation (1) becomes:

Meq (q) q̈ + C (q, q̇) q̇ + τg (q) + τǫ +Beqq̇ = Keqi, (4)

where for compactness we defined Meq(q) = M(q) +
K2

rJm, Beq = K2

rBm and Keq = KτKr.

Instead of estimating τext directly from (1), we propose to

learn a GPR model that provides an estimate of i, denoted as

î, when τext is null, i.e., τext = 0; more specifically we train

a suitable GPR model for i, over a sufficiently rich dataset

containing only trajectories obtained with τext = 0. Then

the monitoring signal s is defined as the difference between

the measured current i and î. Clearly, if no collision has

occurred, i.e., τext is effectively null, then we expect î to be

close to i and, in turn, s to be small; viceversa if a collision

has happened, i.e, τext 6= 0, then î should be significantly

different from i and s should become sufficiently large to

detect the contact.

We stress the fact that in this paper we focus only on

the development of GPR models able to produce proper

monitoring signals while we do not discuss any strategy to

design the threshold σCD . However σCD might be set using

standard rules [5], like cross-validation.

IV. GPR FOR ROBOT INVERSE DYNAMICS

In this Section we briefly introduce the GPR framework

[15], focusing in the standard models used in the learning of

the inverse dynamics, [11],[12],[13].

Let y be a vector of measurements and let X =
{x1, . . . ,xN} be the set of the corresponding input loca-

tions, with xk ∈ R
p, the probabilistic model of GPR is

y =







y1
...

yN






=







f (x1)
...

f (xN )






+







e1
...

eN






= f(X) + e(X) (5)

where e is Gaussian i.i.d. noise with covariance σe and

f (xk) : R
p → R is an unknown function defined as a

Gaussian Process, namely f(X) ∼ N (mf (X),K(X,X)),
where mf (X) is the mean of the process and K(X,X) is

the corresponding covariance. Typically K(X,X) is named

kernel matrix and it can be defined through a kernel function

k(xi,xj), i.e. the K(X,X) entry in i-th row and j-th

column is equal to k(xi,xj). Under these assumptions the

posterior probability of f is Gaussian and then f̂ , the

maximum a posteriori estimation of f , is the mean of the f

posterior distribution.

A. GPR robot inverse dynamics

The robot inverse dynamics problem consists in learning

the function f that maps q, q̇ and q̈ in τm. Typically

GPR approaches consider each joint ℓ as stand-alone. Re-

ferring to the notation introduced in (5), for each joint ℓ
we introduce a GPR model yk = fℓ(xk) + ek, where



xk = [q(tk), q̇(tk), q̈(tk)], yk = τmℓ
(xk) and where the

ℓ subscript denotes that measurement is referred to the ℓ-
th link. Since in our setup we consider currents instead of

torques we have yk = iℓ (xk).
The most crucial aspect in GPR is related to the choice

of the prior distribution of fℓ(·), i.e. the selection of good

mfℓ(·) and kℓ(·, ·). The different priors adopted in Robotics

can be grouped in three families, in particular, parametric pri-

ors (PPs), non-parametric priors (NPPs) and semi-parametric

priors (SPPs).

1) Parametric priors: When equation (1) is given, it

is possible to derive an expression of mfℓ(·) and kℓ(·, ·)
which is inspired by the model. Indeed, in [14], it has been

shown that the dynamic model in (1) can be rewritten, when

neglecting the unmodeled effects, i.e., assuming τǫ = 0, as a

linear time-variant model. Formally, when τext = 0 it holds:

τm =







τm1

...

τmn






=







φd
1
(q, q̇, q̈)

...

φd
n (q, q̇, q̈)






wd = Φd (q, q̇, q̈)wd ,

(6)

where wd ∈ R
m denotes the vector casting together all the

dynamic parameters of the robot. The same property holds

also if we consider i instead of τm, i.e. equation (4) instead

of (1).

Then, considering fℓ(xk) = φd
ℓ (xk)wd with wd ∼

N(mwd
,Σwd

), we have

f ℓ(X) ∼ N
(

Φd
ℓ (X)wd,Φ

d
ℓ (X)Σwd

Φd
ℓ (X)

T
)

,

with Φd
ℓ (X) ∈ R

N×m obtained casting together the vectors

φd
ℓ (·) evaluated in the input locations of X . The kernel func-

tion of the process is kℓ(xi,xj) = φd
ℓ (xi)Σwd

φd
ℓ (xj)

T ,

and it is equivalent to a linear kernel. The mean function is

mfℓ(xk) = φd
ℓ (xk)mwd

.
A refinement of this model can be obtained including also

some terms modeling the frictions effects. The simplest and
most used model to describe the torque applied to the ℓ-th
joint by frictions, denoted as τfℓ , is given by

τfℓ(t) =

{

τmℓ
(t) if q̇ℓ(t) = 0 , τfℓ(t) ≤ Fsℓ

Fkℓ
sign(q̇ℓ(t)) + Fvℓ q̇ℓ(t) if |q̇ℓ(t)| > 0

,

(7)
where Fsℓ , Fkℓ

and Fvℓ are respectively the static friction
coefficient, the kinetic friction coefficient and the viscous
friction coefficient of the ℓ-th joint [16]. Notice that when q̇ℓ
is not null τfℓ is linear respect to Fkℓ

and Fvℓ and hence the
behaviors due to the kinetic frictions can be easily merged
in (6) leading to the augmented equation

τmℓ
(xk) =

[

φ
d
ℓ (xk) φ

f

ℓ (xk)
]

[

wd

wfℓ

]

:= φℓ(xk)wℓ (8)

where φ
f
ℓ (xk) = [sign(q̇ℓ) q̇ℓ] and wfℓ

= [Fkℓ
Fvℓ ]

T
.

2) Non-Parametric priors: When no prior knowledge
about the process is available, the most common choice is to
consider mfℓ(·) = 0 and define Kℓ(X,X) directly through
a kernel function kℓ(·, ·). The most used kernel in robotic
identification is the Radial Basis Kernel (RBK), defined as

kRBK(xixj) = λ exp

(

−
(xi − xj)

T Σ−1

RBK (xi − xj)

2

)

(9)

where ΣRBK is typically a diagonal matrix, whose diagonal

elements σRBK are referred to as length-scales.

3) Semi-Parametric priors: The semi-parametric ap-

proach models the function fℓ(·) as the sum of two in-

dependent contributions, a parametric component fPℓ
=

φd
ℓ (xk)wd and a non-parametric component fNPℓ

(·), for

example defined by an RBK i.e. fℓ(xk) = φd
ℓ (xk)wd +

fNPℓ
(xk). Typically, there are two ways to include the para-

metric component. (i) Assuming that wd is a deterministic

variable, eventually pre-trained adopting a parametric-based

estimator; in this case the mean and the kernel of fℓ(·) is

mfℓ(xk) = φd
ℓ (xk)wd and kℓ(xi,xj) = kRBK(xi,xj).

(ii) Assuming that wd is a random variable independent

from fNPℓ
(·), thus obtaining mfℓ(xk) = φd

ℓ (xk)mwd
and

kℓ(xi,xj) = φd
ℓ (xi)Σwφ

d
ℓ (xj)

T + kRBK(xi,xj).

B. Limitations of proprioceptive collision detection with

standard GPR approach

In this subsection we discuss a simple experiment that

highlights the limitations of these standard GPR estimators

when working in the quasi-static configurations. The exper-

iment, reported in Figure 1, consists in a succession of rest

phases (all the joints stuck and parallel to the ground) and

moving phases. In the moving phases only the first joint is

actuated, such that the values of q1 in the rest phase are

sequentially π
2

, 2.09, π
2

, 0.52 [rad].
In Figure 1, the blue line represents the monitoring signal

sSPS
obtained estimating the current using a standard semi-

parametric estimator. Notice that, while during the moving

phases the frequency of sSPS
is particularly high and it might

be easily canceled with a low pass filter, during the rest

phases sSPS
is significantly greater than zero for sufficiently

long intervals. Consequently a collision might be detected,

generating a false positive.

This fact is caused by the poor estimation performances of

the standard GPR estimators when the robot is in quasi-static

configurations (see results in Section VI-A). Indeed at low

velocities the forces due to frictions are more relevant and

particularly unpredictable [16]. As confirmed by equation

(8), when |q̇ℓ| < σv the model is highly non linear and

strongly dependent on different factors like the physical

properties of the materials. The threshold σv defines the

transition between dynamical and quasi-static configurations.

Its value can be validated via cross-correlation and in this

paper it has been set equal to 10−2. See [17] for details.

This experiment shows another interesting fact explaining

the reason why the non-parametric component is not able to

capture the behaviors due to τf when |q̇| < σv . Observe that

in the rest phases with q1 = π/2, despite the robot is in the

same configuration xq , the current i1 assumes three different

values. Referring to the GPR notation, the function f1(·)
attains different values in the same input location xq , and the

difference among these values is so significant that can not be

explained by only the presence of noise in the measurements.

Similar situation happens in linear classification, when two

classes are not linearly separable, and it denotes the need of

more input features.



Fig. 1: Cyclic actuation of the first link. SSPS
and SPP denote the

monitoring signals obtained, respectively, by a standard semi-parametric
estimator and the proposed approach.

V. PROPOSED LEARNING ALGORITHM

The proposed solution is based on the following ob-

servations. (i) Experimental results in Section VI-A show

that, when working in a dynamical configuration, a semi-

parametric kernel provides accurate estimates when describ-

ing the input locations by the standard features q, q̇, q̈. (ii)
When dealing with the quasi-static configuration, we need

to include additional features in the input space, in order to

avoid that the same input is mapped into different output.

(iii) We need to model the discontinuity due to the different

behaviors of static frictions and kinetic frictions, i.e., we need

to provide a unified framework capturing the behaviors in

both scenarios, dynamical and quasi-static.

Based on the above observations the learning algorithm we

propose models the function fℓ adopting a semi-parametric

model, where the parametric component fPℓ
includes also

the frictions effects and where the non-parametric component

fNPℓ
is given by the sum of two contributions; the first

one trying to compensate the model inaccuracies and the

second one capturing the discontinuous behaviors generated

by the frictions in the transition intervals between static and

dynamic frictions.

Before formally describing the model we consider, we

provide some more details about the second and third ob-

servation above.

A. Additional features

Notice, from Equation (7), that when the velocity is null,

important contributions are given by τm, that is a term

related to the action of the controller. Consequently in quasi-

static configurations it might be necessary to add to the GPR

inputs some features related to the control actions. We stress

the fact that, from a control point of view, we are operating

in a black box context since we do not have access to the low

level controller of the UR robot we used in our experiments.

In our learning algorithm, when dealing with the quasi-

static case, the input locations are described by the following

augmented features vector,

xa
k =

[

q(tk), q̇(tk), q̈(tk), eq(tk), ėq(tk), ic(tk)
]

(10)

where eq(tk) and ėq(tk) denote, respectively, the joint

position and velocity errors at time tk, while ic(tk) are

the currents required by the controllers of the motors at the

instant tk.

The rationale behind the choice of adopting this set of fea-

tures is the following: the variables eq and ėq allow to model

proportional and derivative contributions while the ic bring

information about non linear control actions (i.e. saturation)

and dynamic contribution (i.e. integral contribution).

B. Modeling of friction discontinuity through NPP

In our approach, to capture the discontinuity between static

frictions and kinematic frictions we add to our model a non-

parametric component. In the following, to keep compact

the description of our model, we exploit two properties of

kernels functions [15]. (i) The sum of kernels is a kernel.

(ii) Vertical rescaling: let k(·, ·) be the kernel function of the

Gaussian Process f(xk) and a(xk) a deterministic function.

Then a(xi)k(xi,xj)a(xj) is a valid kernel function and in

particular it is associated to the process a(xk)f(xk).
The non-parametric component fNPℓ

of our model is

given as the sum of two Gaussian Processes, fNPℓ;stc
(·) and

fNPℓ;kin
(·), where the first one is scaled by the function

aℓ(x
a
k) =

{

0 if |q̇kℓ
| ≥ σv

1 if |q̇kℓ
| < σv

.

It turns out that

fNPℓ
(xa

k) = aℓ(x
a
k)fNPℓ;stc

(xa
k) + fNPℓ;kin

(xk). (11)

The first component (that is a function of the augmented

input vector xa
k), acts only when the ℓ-th link is in quasi-

static configurations, with the specific task of capturing the

behaviors due to frictions at low velocity. Instead fNPℓ;kin

tries to compensate for the PP inaccuracies, and it is active on

both the dynamical and quasi-static configurations; for this

reason it depends only on q, q̇, q̈ and not on the additional

features eq, ėq, ic
1

C. Proposed Algorithm

The proposed learning algorithm is based on a semi-

parametric model described by the following expression

fℓ(x
a
k) = φ̄ℓ(xk)wℓ + aℓ(xk)fNPℓ;stc

(xa
k) + fNPℓ;kin

(xk),
(12)

where φ̄ℓ(·) is defined as φℓ(·), except that the contributions

of φ
f
ℓ (·) are nulled when |q̇ℓ| < σv . This choice is motivated

by the experimental evidence that shows how the linear

model is not accurate in quasi-static configurations.

In our implementation the information coming from the

parametric contribution is added considering wℓ as a deter-

ministic value, i.e. influencing only the mean of fℓ(·). As far

1Formally, in (11), fNPℓ;kin
should depend on x

a
k

. However, based on

the observation reported, we have made explicit the fact that the additional
features do not affect the value of fNPℓ;kin

which depends only on the

standard features xk = (q(tk), q̇(tk), q̈(tk)).



as the fNPℓ;stc
and fNPℓ;kin

components are concerned, we

defined them adopting RBK kernels with ARD.

VI. EXPERIMENTS

A Universal Robots UR102 is used for the experiments. It

is a collaborative industrial robot with 6-degrees of freedom.

The interface with the UR10 is based on ROS (Robot

Operating System, [18]), through the ur modern driver3.

Data are acquired with a sampling time of 8 · 10−3sec. The

data processing and the derivation of the physical model are

implemented in MATLAB, while the GPR in Python, in order

to exploit the PyTorch computational advantages during the

model optimization [19].

The normalized mean squared error (nMSE) between i

and î has been considered in order to evaluate the algorithms

accuracy,

nMSE(X) =

∑N

k=1
(iℓ(xk)− îℓ(xk))

2/N

V ar (iℓ(X∗))
, (13)

The algorithms tested are Pf , a PP-based estimator with

linear features modeling kinetic frictions, SPS , a SPP-based

estimator with standard input features and SPP , the proposed

approach.

A. Random exploration of the workspace

In this experiment we test the estimation performances of

the learning algorithms, stressing the generalization proper-

ties. We considered two data sets. The first is pointed by

D1, and it consist in a set of trajectories collected requiring

to the end-effector to reach 200 random points (for a total

of 80000 input locations) randomly distributed within an

hemisphere of the robot workspace. The other data set D2 is

composed by 22000 data points collected requiring the robot

to reach 50 random points inside the previous hemisphere

and to track a circle of radius 30[cm] at a tool speed of

30[mm/s]. The algorithms have been trained minimizing

the negative marginal log likelihood (MLL) over D1. Given

the number of samples, to minimize the negative MLL we

resorted to stochastic gradient descent [20], in particular

we adopted the ADAM optimizer [21]. Furthermore, once

the hyperparameters have been selected, we down-sampled

the training set to obtain DSDP , a subset of data points

with 5000 samples, used to derive the estimation; the set

composed by the remaining input locations is D1test
. The

performances over D1test
compare the estimators accuracy

in points that are close to DSDP , i.e. in points that are close

to the input locations used to derive the model. In contrast D2

is thought to stress the estimators generalization properties,

and might contains input locations that are far from the ones

in DSDP .

Results reported in Figure 2 show that when links are

in non static configurations, namely, when |q̇ℓ| > σv ,

performances of all the estimators are comparable. This is

related to the fact that in these configurations the parametric

contributions can capture a relevant part of the signal.

2www.universal-robots.com/UR10
3https://github.com/ThomasTimm/ur modern driver
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Fig. 2: Bar-plot of the nMSE in dynamical configurations.

Comparing the nMSE of SPS and Pf , we can appreciate

that the addition of the NP contribution in SPS allows to

improve the accuracy in points that are close to D1SDP
,

since SPS over-performs Pf in D1test
. However the NP

contribution tends to vanish when SPS is tested in D2.

In dynamical configurations the proposed approach be-

haves similarly to SPS . However notice that in joint 1 and

2 SPP significantly improves the Pf performances, even in

D2. This aspect suggests that the ad-hoc kernel structure

proposed in (11) entails advantages also in the dynamical

configurations.

The nMSEs in the static and quasi-static configurations are

reported in Figure 3. The bar-plot highlights that in these

configurations Pf does not capture relevant components

of the output signal, except for joint 2 and 3. Indeed in

link 2 and 3 when the robot is in static configurations the

gravitational contributions are predominant, and Pf is able

to capture them.

The nMSE index for SPS highlights how the NP contribu-

tion in SPS is extremely local, since it reduces considerably

the nMSE only over D1test
. Moreover, the SPS performance

over D2 suggests that the semi-parametric estimator with

standard inputs is subject to overfitting, give that its nMSE

is greater that the one of Pf .

The SPP estimator instead exhibits good performances in

static and quasi-static configurations over both the datasets,

suggesting that the additional features, together with the

ad-hoc kernel structure are crucial to model the complex

behaviors generated by static frictions.

B. Detection of human-robot interaction

In order to validate the CD algorithm proposed, we applied

SPP on a real test case: the detection of human-robot

interaction. We tested the algorithm both in dynamical and

quasi-static configurations. In the first part of the experiment

the end-effector of the robot is tracking a circle, while in the

last part it stays in the final configuration. A human user

applies an external force to the first robot joint four times,

two during the moving phase and two during the quasi-
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Fig. 3: Bar-plot of the nMSE in quasi-static configurations.

Fig. 4: Evolution of i1, î1, q̇1 and sSPP
when external forces are applied

to the fist link of the UR10. The gray bars indicates the interval in which
the interactions occurred.

static phase4. The SPP estimator is the same of Experiment

VI-A, derived starting from the DSDP data. The experiment

is described in Figure 4. The gray bar highlights the time

intervals in which the interactions occurred. The results show

that SPP can be exploited to define a good monitoring

signal. Indeed the prediction error sSPP
is significantly not

null only when the external forces are applied, allowing the

detection of the interactions, and at the same time avoiding

the possibility of incurring in false positives.

VII. CONCLUSIONS

In this paper we validated the use of GPR to solve

the proprioceptive collision detection problem, focusing on

the definition of a good monitoring signal. The proposed

approach has minimal requirements in terms of sensors,

since only joint coordinates and motor currents are needed.

The proposed monitoring signal corresponds to the estimate

of the currents due to external torques.In particular we

focused on the behaviors of the monitoring signal in static

4The experiment is visible at https://youtu.be/2jJS8ajXhEw

and quasi-static configurations, that are particularly relevant

in collaborative robotics. The proposed approach has been

tested in a UR10. The experimental results prove the validity

of these methods.
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