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Abstract— In this paper, we design a pricing framework for
online electric vehicle (EV) parking assignment and charge
scheduling. Here, users with electric vehicles want to park
and charge at electric-vehicle-supply-equipment (EVSEs) at
different locations and arrive/depart throughout the day. The
goal is to assign and schedule users to the available EVSEs
while maximizing user utility and minimizing operational
costs. Our formulation can accommodate multiple locations,
limited resources, operational costs, as well as variable
arrival patterns. With this formulation, the parking facility
management can optimize for behind-the-meter solar
integration and reduce costs due to procuring electricity
from the grid. We use an online pricing mechanism to
approximate the EVSE reservation problem’s solution and
we analyze the performance compared to the offline solution.
Our numerical simulation validates the performance of the
EVSE reservation system in a downtown area with multiple
parking locations equipped with EVSEs.

I. INTRODUCTION
Owners of electric vehicles (EVs) spend a large portion

of their average day at work and at home; however,
an overlooked third category also contributes to an EV
owner’s day. The average EV owner spends 1.5−4 hours
per day at locations such as shopping centers, travel stops,
and restaurants, meaning there is potential for EV charging
at these locations [1]. However, these miscellaneous loca-
tions have highly variable statistics such as arrival time, de-
parture time, and energy requirement that create challenges
for EV assignment and charge scheduling. In this paper, we
present an EV parking assignment and charge scheduling
framework that does not need accurate input statistics with
the purpose of increasing smart-charging opportunities at
various locations.

A number of past studies have proposed online mech-
anisms for assigning EVs to electric-vehicle-supply-
equipment (EVSEs) as well as scheduling EV charging
in geographically limited areas such as parking lots or
neighborhoods. Paper [2] presents an online mechanism
for EV charging with electricity as an expiring resource;
however, they allow cancellation of previously allocated
resources. Similarly, [3] presents an online algorithm for
EV charge scheduling with revocation, meaning that allo-
cations can be cancelled in order to serve new requests
with higher valuations. In [4], the authors present a budget
scaling online auction framework that allows users to
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update their bids while parked. Paper [5] uses a modified
consensus algorithm to share electricity between EVs while
considering electricity as a perishable and continuously
produced resource. Furthermore, [6] considers an intel-
ligent parking lot that maximizes the charge rate of all
EVs while taking into account time-varying electricity
prices. Paper [7] considers a workplace parking structure
and presents centralized assignment heuristics for EVs to
EVSEs. Papers [8], [9], [10], [11] propose alternative pric-
ing schemes for EV charging in various related settings.
In our previous work [12], posted pricing mechanisms
were examined for assigning EVs to EVSEs with the goal
of maximizing smart charging. However, all users of the
system were assumed to arrive in a small time interval
every morning instead of arriving in an online fashion
throughout the day.

With the exception of [7], [12], [13], most previous work
focuses on traditional single-output-single-cable (SOSC)
EVSEs which result in large fractions of potential charging
time spent idle. To increase smart-charging capabilities and
user service, we assume that the destinations are equipped
with single-output-multiple-cable (SOMC) EVSEs that can
be connected to multiple EVs but only charge one EV at
a time [13]. These SOMC EVSEs enable facility man-
agement to devise a smart charging plan each day, while
satisfying the charging needs of all EVs.

In this paper, we present a framework for the online
EVSE reservation problem that accounts for users arriving
and departing throughout the day. Our formulation can ac-
commodate many locations, limited resources, operational
costs, as well as variable arrival patterns. Additionally,
our framework does not revoke previous allocations. With
this problem formulation, the parking facility management
can optimize for behind-the-meter solar integration and
reduce costs due to procuring electricity from the grid.
We use an online pricing mechanism to approximate the
EVSE reservation problem’s solution and we analyze the
performance compared to the offline solution.

The remainder of the paper is organized as follows. Sec-
tion II presents the system structure and offline formulation
for the EVSE reservation problem. Section III presents the
online mechanism used to provide an approximate solution
to the EVSE reservation problem and discusses the online
mechanism’s performance guarantee. Section IV presents
numerical results to validate the performance of the online
mechanism.
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II. PROBLEM MODEL

A. EVSE Reservation System and Auction

In this section, we describe the attributes of the EVSE
reservation system as well as the users of the system. We
consider parking facilities at L different locations where
arriving EV owners can park and charge their vehicles. The
locations are dispersed and EV owners have preference to
park at locations close to the desired destination for their
visit. Moreover, at each location l ∈L there are Ml SOMC
EVSEs available. Since SOMC EVSEs allow EVs to be
plugged in but not receive charge, users do not have to
remove their vehicle until the end of their visit. Each of
the Ml SOMC EVSEs at location l are equipped with Cl
cables allowing MlCl EVs to be parked within the location
per time slot t = 1, . . . ,T . The EVSEs are constrained by
the power limitations of the hardware and are limited to a
maximum charge rate of El units of power.

In order to provide renewable energy for charging the
EVs, each parking location is equipped with a solar gen-
eration system. For each parking location l, the generated
solar is time varying and we denote it as sl(t) ∈ [0,Sl ]
where Sl is the maximum solar generation at location
l. To optimize for behind-the-meter integration, facility
management aims to use as much solar energy as possible
before purchasing energy from the local distribution grid.
We denote the price of energy purchased from the grid to
serve location l at time t as πl(t). Each parking location l
can procure up to Gl(t) units of energy at any time t (e.g.,
due to a transformer limit).

The visiting EV owners arrive and depart throughout the
day and request charge at various locations. There are N
total users participating in the EVSE auction each day and
each user n ∈N can be characterized by user ‘type’:

θn = {t−n , t+n ,hn,{ln},{vnl}} ∈Θ, (1)

where Θ is the type space of all possible users. The
parameters are defined as follows. Suppose user n wants to
charge her EV and submits her reservation request at time
tn. By submitting a reservation request, user n commits to
arriving at any of her desired locations {ln} at time t−n and
leaving at t+n . During this time period, she requests that
her EV receives hn units of energy. The last component of
θn is {vnl}, which represents the values user n obtains if
her EV is assigned to receive charging at location l. We
make the assumption users receive non-negative value by
charging their EVs, i.e., vnl ≥ 0.

B. Offline EVSE Reservation Problem

When making a request to park and charge, each user
n submits her user type θn. The EVSE reservation system
uses the information in θn to generate the set of feasible
assignments and charging schedules (we denote these as
options On) that fulfill the user’s demands. Each option
o ∈ On for user n, corresponds to a cable reservation and
a charging schedule at an EVSE. We let cml

no(t) denote the
cable reservation request in option o of user n at EVSE m
at location l. We restrict cml

no(t) to be either 0, meaning
no cable is requested at time t, or 1, meaning user n
wants a cable reservation at t in option o at EVSE m

at location l. Similarly, we denote eml
no(t) as the energy

schedule for user n in option o. The energy schedule,
eml

no(t), allows facility management to customize when each
EV will receive charge and when they will be idle at the
EVSE. We allow eml

no(t) to take different values (from a
discrete set) over the usage period t ∈ [t−n , t+n ], which allows
each option o ∈On to request different amounts of energy
at each time, as long as the user’s total demands are met.

With this notation, the generated options for users’
reservation requests (bids) can be expressed as:

Bn = {t−n , t+n ,{cml
no(t)},{eml

no(t)},{ln},{vnl}}. (2)

After generating each bid package, the reservation system
decides whether to accept it as well as selecting which
option should fulfill the request if accepted. The binary
variable xml

no is set to 1 if option o of user n is accepted
at EVSE m at location l and 0 otherwise. The reservation
system also computes a payment p̂ml

no for each user n to
pay if option o in their bid package is chosen. If a user is
not admitted into the EVSE reservation system, her utility
is set to zero and she parks at an auxiliary parking lot
without EVSEs.

The cable and energy demands at EVSE m at location
l are denoted yml

c (t) and yml
e (t), respectively and are given

by:

yml
c (t) = ∑

N ,On

cml
no(t)x

ml
no , (3)

yml
e (t) = ∑

N ,On

eml
no(t)x

ml
no . (4)

Additionally, each parking area l has to generate or pro-
cure the energy needed to satisfy all the EVSE’s charge
schedules. As such, we denote yl

g(t) as the total energy
procurement demand for location l. The total energy pro-
curement demand can be calculated as follows:

yl
g(t) = ∑

N ,On,Ml

eml
no(t)x

ml
no . (5)

Each location l has an operational cost function due
to the total amount of energy needed to satisfy all the
admitted EVs. For the energy procurement at location l,
we have the following operational cost function:

f l
g(y

l
g(t)) =

0 yl
g(t) ∈ [0,sl(t)]

πl(t)(yl
g(t)− sl(t)) yl

g(t) ∈
(
sl(t),sl(t)+Gl(t)]

+∞ yl
g(t)> sl(t)+Gl(t).

(6)

Equation (6) represents the cost to produce the energy
needed in the whole parking location at each time slot.
While the demand is less than the available solar, the
operational cost is zero. Once the demand exceeds the
available solar generation, energy is bought from the grid
until the transformer limit Gl(t) is reached. After this point,
no more energy can be procured and the operational cost
is set to infinity.

The goal of the EVSE reservation system is to assign
and schedule users to the available EVSEs to maximize
social welfare. If all the information of the N requests
within the time span [0,T ] is known in advance (assuming



truthful user valuations), we can write the following offline
social welfare maximization problem for assigning EVs to
EVSEs and determining their charging plan:

max
x ∑

N ,On,L ,Ml

vnlxml
no− ∑

T ,L

f l
g(y

l
g(t)) (7a)

subject to:

∑
On,L ,Ml

xml
no ≤ 1, ∀ n (7b)

xml
no ∈ {0,1}, ∀ n,o, l,m (7c)

yml
c (t)≤Cl , ∀ l,m, t (7d)

yml
e (t)≤ El , ∀ l,m, t (7e)
and (3), (4), (5).

Here, the objective (7a) is to maximize the total welfare of
all the users minus the operational costs. Constraint (7b)
ensures that at most one option is selected for each user.
Constraint (7c) is an integer constraint on the assignment
variable. Constraints (7d) and (7e) ensure that the total
allocation resource demands do not exceed capacities.
Equations (3)-(5) sum up the resource demand at each
EVSE m and location l. If the integrality constraint (7c) is
relaxed to xml

no ≥ 0 (constraint (7b) ensures xml
no ≤ 1), we can

find the Fenchel dual of (7a)-(7e). We set un and pml
c (t),

pml
e (t), pl

g(t) as the dual variables for constraint (7b) and
(3), (4), (5), respectively. In the following, the so-called
Fenchel conjugate of a function f (.) is defined as:

f ∗(p(t)) = sup
y(t)≥0

{
p(t)y(t)− f (y(t))

}
. (8)

The Fenchel dual of (7a)-(7e) can be written:

min
u,p ∑

N

un + ∑
T ,L

f l∗
g (pl

g(t)) (9a)

+ ∑
T ,L ,Ml

(
f ml∗
c (pml

c (t))+ f ml∗
e (pml

e (t))
)

subject to:

un ≥ vnl−∑
T

(
cml

no(t)pml
c (t) (9b)

+ eml
no(t)

(
pml

e (t)+ pl
g(t)
))

∀ n,o, l,m

un ≥ 0, ∀ n (9c)

pml
c (t), pml

e (t), pl
g(t)≥ 0, ∀ l,m, t, (9d)

where f ∗(p(t)) is the Fenchel conjugate for the limited
resources’ dual variables. The Fenchel conjugates for the
capacity constraints are as follows:

f ml∗
c (pml

c (t)) = pml
c (t)Cl , pml

c (t)≥ 0 (10)

f ml∗
e (pml

e (t)) = pml
e (t)El , pml

e (t)≥ 0. (11)

The Fenchel conjugate for the energy procurement opera-
tional cost function is as follows:

f l∗
g (pl

g(t)) = (12){
sl(t)pl

g(t), pl
g(t)< πl(t)

(sl(t)+Gl(t))pl
g(t)−Gl(t)πl(t) pl

g(t)≥ πl(t).

C. Admittance, Rejection, and Allocation Decisions

In this section, we discuss how the EVSE system deter-
mines whether to accept or reject as well as how to allocate
user n if accepted. The EVSE reservation system assigns
xml

no = 1 for some option o∈On if user n is accepted into the
reservation system. For each user, the KKT conditions for
constraint (9b) in the offline dual problem indicate whether
or not a user should be admitted into the system. In the
offline solution, un will be zero unless constraint (9b) is
tight for some m∈Ml , l ∈L and o∈On. The reservation
system solves the following equation to calculate user n’s
utility:

un = max
{

0, max
On,L ,Ml

{
vnl (13)

− ∑
t∈[t−n ,t+n ]

(
cml

no(t)pml
c (t)+ eml

no(t)(pml
e (t)+ pl

g(t))
)}}

.

If un returns zero, the utility of admitting user n into the
system is not large enough; therefore, user n is denied a
reservation and is sent to auxiliary parking. If un returns
a positive value, user n is admitted into the reservation
system with o ∈ On that maximizes equation (13).

In equation (13), pml
c (t), pml

e (t), and pl
g(t) are the

marginal prices per unit of limited resource at EVSE m
at location l. As such, the payment user n must pay if
admitted into the system with option o can be written:

p̂ml
no = ∑

t∈[t−n ,t+n ]

(
cml

no(t)pml
c (t)+ eml

no(t)(pml
e (t)+ pl

g(t))
)
.

(14)

Since the system is only admitting users with positive
utilities, the auction provides individual rationality for all
users n ∈N . Furthermore, the system is assigning each
user to the option that maximizes the user’s utility function
(valuation minus payment) with respect to the current
marginal prices.

The offline primal and dual formulations for the EVSE
reservation problem in (7a)-(7e) and (9a)-(9d) are estab-
lished assuming complete knowledge of all N users over
the entire time span. However, users submit reservations
at random times throughout the day, prohibiting an offline
approach. For example, when user n arrives, a new primal
variable xml

no and dual variable un must be assigned while
still meeting the constraints. The EVSE reservation system
must decide immediately whether to admit user n into the
parking structure. Furthermore, if user n is accepted, the
EVSE reservation system decides which option will fulfill
the request and calculates the user’s payment, which cannot
be revoked or modified later.

In the following, we discuss an online pricing solution
based on (7a)-(7e) and (9a)-(9d) in order to solve the EVSE
reservation problem and determine users’ payments in an
online fashion.

III. ONLINE PRICING MECHANISM

A. Payment Design

In the offline problem, the total demands y(t) for each
resource are known before solving. As such, the prices
are calculated as follows: if the demand y(t) is less than



the capacity of a resource, set the price p(t) equal to the
marginal operational cost f ′(y(t)). In this case, each user
will pay for cost of their allocation. For both the EVSE
cables and energy, since these resources do not have an
operational cost, the marginal prices p(t) are zero if the
demand is below capacity. If the demand of a resource
exceeds the capacity, the marginal prices act as filters to
reject users with low valuations until the filtered demand
matches the capacity.

However, the EVSE reservation problem requires an
online solution. In this case, traditional dynamic program-
ming based strategies that rely on input models fall short
for deriving the optimal marginal prices due to intractable
state-space size and potentially inaccurate statistics. Since
the demands for the limited resources are not known in
advance, the marginal prices must be calculated online.

In the remainder of this section, we describe how the
online EVSE reservation system calculates the optimal
marginal prices on EVSE cables, energy, and generation
based on a pricing heuristic, for which we provide per-
formance guarantees. Specifically, our EVSE reservation
system updates the prices p(t) heuristically as the amounts
of allocated resources y(t) evolve, but only based on past
observations. The pricing scheme has two major goals: (1)
to make sure that the marginal gain in welfare from an
allocation is greater than the operational cost incurred to
serve the allocation, and (2) to filter out low value users
early to ensure there are adequate resources for higher
value users later on.

The structure of the pricing functions we use is adopted
from [14], where the authors present a pricing framework
for data centers with limited computation resources and
server costs under an adverserial setting. For the EVSE
cables, the proposed marginal payment function is as
follows:

pml
c (yml

c (t)) =
( Lc

4∑L (Ml +
1
2 )

)
(15)

×
(4∑L (Ml +

1
2 )Uc

Lc

) yml
c (t)
Cl ,

where yml
c (t) is the current demand for the cables at EVSE

m at location l at time t. Furthermore, Lc and Uc are
respectively the lower and upper bounds on users’ value
per cable per unit of time, which are defined as:

Lc = min
N ,On,L ,Ml

vnl

2∑L (Ml +
1
2 )∑t∈[t−n ,t+n ] c

ml
no(t)

, (16a)

Uc = max
N ,On,L ,Ml ,T

vnl

cml
no(t)

, cml
no(t) 6= 0. (16b)

For the pricing function for EVSE energy units, we change
Cl to El in the exponent of equation (15) and calculate Le
and Ue using enl

no(t) in (16a) and (16b). Additionally, Lg and
Ug are the same as Le and Ue, respectively. When yml

c (t)= 0
we note that (15) outputs a price low enough that any
user will be accepted (subject to Lc). As yml

c (t) increases,
the price increases exponentially. When yml

c (t) is equal to
the capacity, the marginal price is high enough to reject
any user (because we assume Uc is known beforehand).
This ensures resource capacity constraints will always be
upheld.

For the piecewise linear operational cost to procure
energy in (6), we propose the following pricing function:

pl
g(y

l
g(t)) = πl(t)+

( Lg−πl(t)
4∑L (Ml +

1
2 )

)
× (17)

(4∑L (Ml +
1
2 )(Ug−πl(t))

Lg−πl(t)

) yl
g(t)

sl (t)+Gl (t) .

The marginal pricing function (17) for electricity pro-
curement is similar to the pricing function for the EVSE
cables and energy; however, the price of electricity πl(t) is
included in (17) to ensure each user’s payment is greater
than the electricity cost needed to charge their vehicle.

B. Online Auction Mechanism
In this section we describe the online EVSE reservation

algorithm titled ONLINEEVSERESERVATION presented in
Algorithm 1. When each user n arrives, the system first
generates the possible charge schedule options On that
fulfill her demands. The algorithm then decides whether
to accept or reject user n depending on user n’s potential
utility gain due to her valuation and the current resource
prices (line 7). If user n is admitted and allocated option
o? ∈ On at EVSE m? ∈Ml at location l?, she is charged
payment according to the total amount of cables, energy,
and generation allocated and the current marginal prices.
The algorithm updates the primal variables xml

no after each
acceptance and rejection. The total resource demands y(t)
are updated in line 12 if user n is accepted into the system.
Similarly, the marginal resource prices p(t) are updated
accordingly in line 13.

We compare the total social welfare resulting from the
online solution to the optimal offline solution. Specifically,
an online mechanism is said to be α-competitive when the
ratio of social welfare from the optimal offline solution
to the social welfare from the mechanism is bounded by
α . We extend the competitive ratio result from [14] in
Proposition 1. We note that the analysis used for this
competitive ratio assumes each user’s resource demands
cml

no(t) and enl
no(t) are much smaller than the capacity limits,

Cl and El , respectively. This ensures no user purchases too
large of a fraction of the total available resources.

Proposition 1: The marginal pricing function (17) is
α1-competitive in social welfare when selling limited re-
sources with the piecewise linear operational cost in (6)
where

α1 = 2 max
L ,T

{
ln
(4∑L (Ml +

1
2 )(Ug−πl(t))

Lg−πl(t)

)}
.

Proof: In [14], the authors show their pricing func-
tions are α-competitive in social welfare with respect to
the buying and selling of limited computation resources at
data centers. Specifically, the pricing functions, operational
cost functions, and Fenchel conjugates for the limited re-
sources need to satisfy the Differential Allocation-Payment
Relationship given by:(

pl
g(t)− f l′

g (y
l
g(t))

)
dyl

g(t)≥
1

α l
g(t)

f l∗′
g (pl

g(t))dpl
g(t) (18)

for all l ∈ L , t ∈ [0,T ]. The derivatives of the energy-
procurement operational cost in (6) and its Fenchel con-
jugate (12) are f l′

g (y
l
g(t)) and f l∗′

g (pl
g(t)), respectively.



Algorithm 1 ONLINEEVSERESERVATION

Input: L ,Ml ,Cl ,El ,Gl ,Sl ,πl ,Lc,e,g,Uc,e,g
Output: x, p

1: Define f l
g(y

l
g(t)) according to (6) at all locations.

2: Define the pricing functions p(y(t)) according to (15) and
(17) for cables, energy, and generation at all EVSEs and
locations.

3: Initialize xml
no = 0, yml(t) = 0, un = 0.

4: Initialize prices p(0) according to (15) and (17).
5: Repeat for all N users:
6: User n submits θn, generate feasible charging options Bn.
7: Update dual variable un according to (13).
8: if un > 0 then
9: (o?,m?, l?) = argmaxL ,Ml ,On

{
vnl

−∑t∈[t−n ,t+n ]

(
cml

no(t)pml
c (t)

+eml
no(t)(pml

e (t)+ pl
g(t))

)}
10: p̂m?l?

no? = ∑t∈[t−n ,t+n ]

(
cm?l?

no? (t)pm?l?
c (t)

+em?l?
no? (t)(pm?l?

e (t)+ pl?
g (t))

)
11: xm?l?

no? = 1 and xml
no = 0 for all (o, l,m) 6= (o?, l?,m?)

12: Update total demand y(t) for cables, energy, and genera-
tion according to (3)-(5).

13: Update marginal prices p(t) for cables, energy, and gen-
eration according to (15) and (17).

14: else
15: xml

no = 0, ∀ l, m, o.
16: end if
17: if ∃o?,m?, l? and xm?l?

no? = 1 then
18: Accept user n and allocate cables and energy in parking

location l? at EVSE m?.
19: Charge user n at p̂m?l?

no? .
20: else
21: Send user n to auxiliary parking.
22: end if

Taking the derivative of the proposed pricing function
(17) and setting f l′

g (y
l
g(t)) = πl(t) minimizes the LHS of

(18) and f l∗′
g (pl

g(t)) = sl(t)+Gl(t) maximizes the RHS.
As such, after inserting the derivative of (17) in (18),
we can show that the Differential Allocation-Payment
Relationship holds with equality when choosing α l

g(t) =

ln
(

4∑L (Ml+
1
2 )(Ug−πl(t))

Lg−πl(t)

)
. Because (18) holds for the pric-

ing function, operational cost function, and Fenchel con-
jugate, the remainder of the proof follows from Lemma 1
and Theorem 2 in [14].
We note that the proposed pricing function (17) relies on
accurate day-ahead forecasts of the solar generation sl(t)
for t = 1, . . . ,T at all locations l ∈L . If the daily forecasts
for solar generation are inaccurate, there are two potential
undesirable outcomes: 1) solar generation is overestimated
and resources are over-allocated resulting in infeasible
solutions, which our online solution should avoid at all
costs; and 2) solar generation is underestimated and prices
are set too high and the system rejects users that should
otherwise be accepted. We analyze the case where we have
a forecast of the solar generation each day in terms of a
confidence interval. Specifically, the solar forecast takes
the following form:

sl(t) ∈ [sl(t),sl(t)], ∀t = 1, . . . ,T, (19)

where sl(t) is the actual solar generation at time t and the
terms sl(t) and sl(t) are lower and upper bounds given

Fig. 1. Left: Bay Area electricity prices. Right: Solar generation profile.

by the forecast, respectively. To avoid possible infeasible
allocations associated with overestimation of solar avail-
ability, we analyze the performance of pricing function
(17) that conservatively uses the underestimate of the solar
generation, sl(t), in Proposition 2.

Proposition 2: The marginal pricing function (17) with
an underestimate of solar generation, sl(t), is α2-
competitive in social welfare when selling limited re-
sources with the operational cost in (6) where

α2 = 2 max
L ,T

{( sl(t)+Gl(t)
sl(t)+Gl(t)

)
×

ln
(4∑L (Ml +

1
2 )(Ug−πl(t))

Lg−πl(t)

)}
.

Proof: Similar to Proposition 1, we show the pricing
function, operational cost function, and Fenchel conjugate
for the limited resource satisfy the Differential Allocation-
Payment Relationship in (18) with underestimated solar
generation amounts sl(t). The derivatives of the energy-
procurement operational cost in (6) and its Fenchel con-
jugate (12) remain the same. Taking the derivative of the
proposed pricing function (17) with underestimated solar
sl(t) and setting f l′

g (y
l
g(t)) = πl(t) minimizes the LHS of

(18) and f l∗′
g (pl

g(t))= sl(t)+Gl(t) maximizes the RHS. As
such, after inserting the derivative of (17) in (18), we can
show that the Differential Allocation-Payment Relationship
holds when α l

g(t) =
( sl(t)+Gl(t)

sl(t)+Gl(t)

)
ln
(

4∑L (Ml+
1
2 )(Ug−πl(t))

Lg−πl(t)

)
.

Because (18) holds for the pricing function with under-
estimated solar generation, operational cost function, and
Fenchel conjugate, the remainder of the proof follows from
Lemma 1 and Theorem 2 in [14].

IV. EXPERIMENTAL EVALUATION

In this section, we present simulation results highlight-
ing the performance of the EVSE reservation system.
Electricity prices and solar generation data (see Figure 1)
were sourced from actual California ISO data in the Bay
Area [15],[16]. We simulated for a populated downtown
area with l = 9 different parking locations where users can
park and charge their EVs. The number of EVSEs and
cables available at each location are listed in Table I. All
nine locations in the downtown area make use of the same
solar generation system with maximum generation of 512
kWh per time unit. Similarly, the area can procure energy
from the grid, with a total procurement limit GL (t) = 512
kWh per time unit. We simulated with N = 1000 users
with various arrival and departure times throughout the day.



Location Ml Cl
Peak

Generation Price
Peak

Cable Price
Number of
EVs Served

1 4 4 0.247 7.4508 58
2 4 4 0.247 7.4508 67
3 8 4 0.730 7.4508 139
4 8 4 0.718 7.4508 131
5 2 4 0.247 7.4508 32
6 8 4 0.884 7.4508 128
7 2 4 0.247 7.4508 28
8 4 4 0.247 7.4508 74
9 2 4 0.247 7.4508 32

TABLE I
COLUMNS 2-3: EVSE AND CABLE COUNTS. COLUMNS 4-6: ONLINE

MECHANISM RESULTS.

Fig. 2. Social welfare comparison.

Each user arrives with three preferred parking locations
with three different valuations vnl . For the charge schedules
eml

no(t), each user was restricted to 0 or 1 kWh per time
slot for the duration of time in the parking location. The
maximum duration for a charge request was set to 8 hours
and users valuations were in the interval [$1.50,$7.50]
depending on the amount of desired energy.

In Figure 2 we compare the social welfare at each
of the nine parking locations from the EVSE reservation
system to the social welfare resulting from the case with no
assignment mechanism as well as an upper bound on the
optimal solution. For the no mechanism case, users arrive
to the downtown area and choose the available assignment
and charge schedule that maximizes their utility. For the
upper bound on the optimal solution, cable and energy
capacities at each EVSE were relaxed to prohibit any
users from being sent to the auxiliary parking resulting
in the maximum possible social welfare as long as each
user’s valuation was larger than the cost to serve them.
We can see that the EVSE reservation system outperforms
the no mechanism case by the largest amount in parking
locations 3, 4, and 6. These are the locations that were
most desired by the users; therefore, these locations had
the most congested resources and the auction mechanism
was able to filter out low value users.

V. CONCLUSION

In this paper, we presented a framework for the on-
line EVSE reservation problem. Our formulation can ac-
commodate multiple parking locations, limited resource
capacities, operational costs, as well as variable arrival

patterns. With this problem formulation, the parking facil-
ity management can optimize for behind-the-meter solar
integration and reduce costs due to procuring electricity
from the grid. We utilized an online auction mechanism
to approximate the EVSE reservation problem’s solution
and we analyzed the performance compared to the of-
fline solution. We provided a numerical simulation to
validate the performance of the EVSE reservation system
in a downtown district with multiple parking locations
equipped with EVSEs. In future work, we will analyze the
effects of varying levels of infrastructure investments for
various locations. Additionally, we will study other smart
charging benefits such as frequency regulation services or
participation in demand response for parking infrastructure
utilizing smart assignment mechanisms.
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