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Abstract

We consider the problem of learning a realization for a linear time-invariant (LTI) dynamical system
from input/output data. Given a single input/output trajectory, we provide finite time analysis for
learning the system’s Markov parameters, from which a balanced realization is obtained using the classical
Ho-Kalman algorithm. By proving a stability result for the Ho-Kalman algorithm and combining it with
the sample complexity results for Markov parameters, we show how much data is needed to learn a
balanced realization of the system up to a desired accuracy with high probability.

1 Introduction

Many modern control design techniques rely on the existence of a fairly accurate state-space model of the
plant to be controlled. Although in some cases a model can be obtained from first principles, there are
many situations in which a model should be learned from input/output data. Classical results in system
identification provide asymptotic convergence guarantees for learning models from data [19,29]. However,
finite sample complexity properties have been rarely discussed in system identification literature [31]; and
earlier results are conservative [25].

There is recent interest from the machine learning community in data-driven control and non-asymptotic
analysis. Putting aside the reinforcement learning literature and restricting our attention to linear state-space
models, the work in this area can be divided into two categories: (i) directly learning the control inputs to
optimize a control objective or analyzing the predictive power of the learned representation [6, 8, 14], (ii)
learning the parameters of the system model from limited data [2–4,13,21, 25]. For the former problem, the
focus has been on exploration/exploitation type formulations and regret analysis. Since the goal is to learn
how to control the system to achieve a specific task, the system is not necessarily fully learned. On the other
hand, the latter problem aims to learn a general purpose model that can be used in different control tasks,
for instance, by combining it with robust control techniques [3, 4, 27]. The focus for the latter work has been
to analyze data–accuracy trade-offs.

In this paper we focus on learning a realization for an LTI system from a single input/output trajectory.
This setting is significantly more challenging than earlier studies that assume that (multiple independent)
state trajectories are available [4, 25]. One of our main contributions is to derive sample complexity results in
learning the Markov parameters, to be precisely defined later, of the system using a least squares algorithm [10].
Markov parameters play a central role in system identification [19] and they can also be directly used in
control design when the system model itself is not available [12, 24, 26]. In Section 4, we show that using
few Markov parameter estimates and leveraging stability assumption, one can approximate system’s Hankel
operator with near optimal sample size. When only input/output data is available, it is well known that
the system matrices can be identified only up to a similarity transformation even in the noise-free case but
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Markov parameters are identifiable. Therefore, we focus on obtaining a realization. One classical technique to
derive a realization from the Markov parameters is the Ho-Kalman (a.k.a., eigensystem realization algorithm
– ERA) algorithm [15]. The Ho-Kalman algorithm constructs a balanced realization1 for the system from the
singular value decomposition of the Hankel matrix of the Markov parameters. By proving a stability result
for the Ho-Kalman algorithm and combining it with the sample complexity results, we show how much data
is needed to learn a balanced realization of the system up to a desired accuracy with high probability.

2 Problem Setup

We first introduce the basic notation. Spectral norm ∥ ⋅ ∥ returns the largest singular value of a matrix.
Multivariate normal distribution with mean µ and covariance matrix Σ is denoted by N (µ,Σ). X∗ denotes
the transpose of a matrix X. X† returns the Moore–Penrose inverse of the matrix X. Covariance matrix
of a random vector v is denoted by Σ(v). tr(⋅) returns the trace of a matrix. c,C, c′, c1, c2, . . . stands for
absolute constants.

Suppose we have an observable and controllable linear system characterized by the system matrices
A ∈ Rn×n,B ∈ Rn×p,C ∈ Rm×n,D ∈ Rm×p and this system evolves according to

xt+1 =Axt +But +wt, (2.1)
yt = Cxt +Dut + zt. (2.2)

Our goal is to learn the characteristics of this system and to provide finite sample bounds on the estimation
accuracy. Given a horizon T , we will learn the first T Markov parameters of the system. The first Markov
parameter is the matrix D, and the remaining parameters are the set of matrices {CAiB}T−2

i=0 . As it will be
discussed later on, by learning these parameters,

• we can provide bounds on how well yt can be estimated for a future time t,

• we can identify the state-space matrices A,B,C,D (up to a similarity transformation).

Problem setup: We assume that {ut,wt,zt}
∞
t=1 are vectors that are independent of each other with

distributions ut ∼ N (0, σ2
uIp), wt ∼ N (0, σ2

wIn), and zt ∼ N (0, σ2
zIm)2. ut is the input vector which is known

to us. wt and zt are the process and measurement noise vectors respectively. We also assume that the initial
condition of the hidden state is x1 = 0. Observe that Markov parameters can be found if we have access to
cross correlations E[ytu

∗
t−k]. In particular, we have the identities

E [
ytu

∗
t−k

σ2
u

] =

⎧⎪⎪
⎨
⎪⎪⎩

D if k = 0,

CAk−1B if k ≥ 1
.

Hence, if we had access to infinitely many independent (yt,ut−k) pairs, our task could be accomplished by a
simple averaging. In this work, we will show that, one can robustly learn these matrices from a small amount
of data generated from a single realization of the system trajectory. The challenge is efficiently using finite
and dependent data points to perform reliable estimation. Observe that, our problem is identical to learning
the concatenated matrix G defined as

G = [D, CB, CAB, . . . , CAT−2B] ∈ Rm×Tp.

Next section describes our input and output data. Based on this, we formulate a least-squares procedure that
estimates G. The estimate Ĝ will play a critical role in the identification of the system matrices.

1Balanced realizations give a representation of the system in a basis that orders the states in terms of their effect on the
input/output behavior. This is relevant for determining the system order and for model reduction [23].

2While we assume diagonal covariance throughout the paper, we believe our proof strategy can be adapted to arbitrary covariance
matrices.
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2.1 Least-Squares Procedure
To describe the estimation procedure, we start by explaining the data collection process. Given a single
input/output trajectory {yt,ut}

N̄
t=1, we generate N subsequences of length T , where N̄ = T +N − 1 and

N ≥ 1. To ease representation, we organize the data ut and the noise wt into length T chunks denoted by the
following vectors,

ūt = [u∗t u
∗
t−1 . . . u∗t−T+1]

∗
∈ RTp, (2.3)

w̄t = [w∗
t w

∗
t−1 . . . w∗

t−T+1]
∗
∈ RTn. (2.4)

In a similar fashion to G define the matrix,

F = [0 C CA . . . CAT−2
] ∈ Rm×Tn.

To establish an explicit connection to Markov parameters, yt can be expanded recursively until t − T + 1 to
relate the output to the input ūt and Markov parameter matrix G as follows,

yt = Cxt +Dut + zt,

= C(Axt−1 +But−1 +wt−1) +Dut + zt,

= CAT−1xt−T+1 +
T−1

∑
i=1

CAi−1But−i +
T−1

∑
i=1

CAi−1wt−i +Dut + zt,

=Gūt +Fw̄t + zt + et, (2.5)

where, et = CAT−1xt−T+1 corresponds to the error due to the effect of the state at time t − T + 1. With this
relation, we will use (ūt,yt)

N̄
t=T as inputs and outputs of our regression problem. We treat w̄t, zt, and et

as additive noise and attempt to estimate G from covariates ūt. Note that, the noise terms are zero-mean
including et since we assumed x1 = 0. With these in mind, we form the following least-squares problem,

Ĝ = arg min
X∈Rm×Tp

N̄

∑
t=T

∥yt −Xūt∥
2
`2 .

Defining our label matrix Y and input data matrix U as,

Y = [yT , yT+1, . . . , yN̄ ]
∗
∈ RN×m and U = [ūT , ūT+1, . . . , ūN̄ ]

∗
∈ RN×Tp, (2.6)

we obtain the minimization minX ∥Y −UX∗∥2
F . Hence, the least-squares solution Ĝ is given by

Ĝ = (U †Y )
∗, (2.7)

where U † = (U∗U)−1U∗ is the left pseudo-inverse of U . Ideally, we would like the estimation error ∥G − Ĝ∥2
F

to be small. Our main result bounds the norm of the error as a function of the sample size N and noise levels
σw and σz.

3 Results on Learning Markov Parameters

Let ρ(⋅) denote the spectral radius of a matrix which is the largest absolute value of its eigenvalues. Our results
in this section apply to stable systems where ρ(A) < 1. Additionally we need a related quantity involving A
which is the spectral norm to spectral radius ratio of its exponents defined as Φ(A) = supτ≥0

∥Aτ
∥

ρ(A)τ
. We will

assume Φ(A) <∞ which is a mild condition: For instance, if A is diagonalizable, Φ(A) is a function of its
eigenvector matrix and is finite. Another important parameter is the steady state covariance matrix of xt
which is given by

Γ∞ =
∞

∑
i=0

σ2
wA

i
(A∗

)
i
+ σ2

uA
iBB∗

(A∗
)
i.
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It is rather trivial to show that for all t ≥ 1, Σ(xt) ⪯ Γ∞. We will use Γ∞ to bound the error et due to the
unknown state at time t − T + 1. Following the definition of et, we have that ∥Σ(et)∥ ≤ ∥CAT−1∥2∥Γ∞∥. We
characterize the impact of et by its “effective standard deviation” σe that is obtained by scaling the bound on√

∥Σ(et)∥ by an additional factor Φ(A)
√
T /(1 − ρ(A)2T ) which yields,

σe = Φ(A)∥CAT−1
∥

¿
Á
ÁÀ T ∥Γ∞∥

1 − ρ(A)2T
. (3.1)

Our first result is a simplified version of Theorem 3.2 and captures the problem dependencies in terms of the
total standard deviations σz + σe + σw∥F∥ and the total dimensions m + p + n.

Theorem 3.1 Suppose ρ(A)T ≤ 0.99 and N ≥ N0 = cTq log2
(2Tq) log2

(2Nq) where q = p + n +m. Given
observations of a single trajectory until time N̄ = N + T − 1, with high probability3, the least-square estimator
of the Markov parameter matrix obeys

∥Ĝ −G∥ ≤
σz + σe + σw∥F∥

σu

√
N0

N
.

Remark: Our result is stated in terms of the spectral norm error ∥Ĝ −G∥. One can deduce the following
Frobenius norm bound by naively bounding σe, σz terms and swapping ∥F∥ term by ∥F∥F (following (A.2),
(A.3)). This yields, ∥Ĝ −G∥F ≤

(σz+σe)
√
m+σw∥F∥F
σu

√
N0

N
.

Our bound individually accounts for the the process noise sequence {wτ}
t
τ=t−T+1, measurement noise zt,

and the contribution of the unknown state xt−T+1. Setting σw and σz to 0, we end up with the unknown
state component σe. σe has a ∥CAT−1∥ multiplier inside hence larger T implies smaller σe. On the other
hand, larger T increases the size of the G matrix as its dimensions are m× Tp. This dependence is contained
inside the N0 term which grows proportional to Tp (ignoring log terms). Tp corresponds to the minimum
observation period since there are mTp unknowns and we get to observe m measurements at each timestamp.
Hence, ignoring logarithmic terms, our result requires N ≳ Tp and estimation error decays as

√
Tp/N . This

behavior is similar to what we would get from solving a linear regression problem with independent noise and
independent covariates [11]. This highlights the fact that our analysis successfully overcomes the dependencies
of covariates and noise terms.

Our main theorem is a slightly improved version of Theorem 3.1 and is stated below. Theorem 3.1 is
operational in the regime N ≳ T (p +m + n). In practical applications, hidden state dimension n can be
much larger than number of sensors m and input dimension p. On the other hand, the input data matrix U
becomes tall as soon as N ≥ Tp hence ideally (2.7) should work as soon as N ≳ Tp. Our main result shows
that reliable estimation is indeed possible in this more challenging regime. It also carefully quantifies the
contribution of each term to the overall estimation error.

Theorem 3.2 Suppose system is stable (i.e. ρ(A) < 1) and N ≥ cTp log2
(2Tp) log2

(2Np). We observe a
trajectory until time N̄ = N + T − 1. Then, with high probability, the least-square estimator of the Markov
parameter matrix obeys

∥Ĝ −G∥ ≤
Rw +Re +Rz

σu
√
N

, (3.2)

where Rw,Re,Rz are given by

Rz = 8σz
√
Tp +m,

Rw = σw∥F∥max{
√
Nw,Nw/

√
N},

Re = Cσe

√

(1 +
mT

N(1 − ρ(A)T )
)(Tp +m).

Here c,C > 0 are absolute constants and Nw = cTq log2
(2Tq) log2

(2Nq) where q = p + n.
3Precise statement on the probability of success is provided in the proof

4



One can obtain Theorem 3.1 from Theorem 3.2 as follows. When N ≥ N0 ≥ Nw: Rw satisfies Rw ≤

σw∥F ∥
√
Nw ≤ σw∥F ∥

√
N0. Similarly, when ρ(A)T is bounded away from 1 by a constant and N ≥ N0 ≥

O(Tm): Re satisfies Re ≤ 2Cσe
√
Tp +m ≤ σe

√
N0.

One advantage of Theorem 3.2 is that it works in the regime Tp ≲ N ≲ T (p + n +m). Additionally,
Theorem 3.2 provides tighter individual error bounds for the σz, σw, σe terms and explicitly characterizes the
dependence on ρ(A) inside the Re term.

Theorem 3.2 can be improved in a few directions. Some of the log factors that appear in our sample
size might be spurious. These terms are arising from a theorem borrowed from Krahmer et al. [18]; which
actually has a stronger implication than what we need in this work. We also believe (3.1) is overestimating
the correct dependence by a factor of

√
T .

3.1 Estimating the Output via Markov Parameters
The following lemma illustrates how learning Markov parameters helps us bound the prediction error.

Lemma 3.3 (Estimating yT ) Suppose x1 = 0 and zt ∼ N (0, σ2
zI), ut ∼ N (0, σ2

uI), wt ∼ N (0, σ2
wI) for

t ≥ 0 as described in Section 2. Assume, we have an estimate Ĝ of G that is independent of these variables
and we employ the yt estimator

ŷt = Ĝūt.

Then,
E[∥yt − ŷt∥

2
`2] ≤ σ

2
w∥F∥

2
F + σ

2
u∥G − Ĝ∥

2
F +mσ

2
z + ∥CAT−1

∥
2tr(Γ∞).

Proof Following from the input/output identity (2.5), the key observation is that for a fixed t, ūt, w̄t,zt,et
are all independent of each other and their prediction errors are uncorrelated. Since ūt ∼ N (0, σ2

uI),
E[∥(G − Ĝ)ū∥2

`2
] = σ2

u∥G − Ĝ∥2
F . Same argument applies to w̄ ∼ N (0, σ2

wI),zt ∼ N (0, σ2
zI) and et

which obeys E[∥et∥
2
`2
] = tr(Σ(et)). Observe that ith largest eigenvalue λi(Σ(et)) of Σ(et) is upper

bounded by ∥CAT−1∥2λi(Σ(xt−T+1)) via Min-Max principle [17] hence E[∥et∥
2
`2
] ≤ ∥CAT−1∥2tr(Σ(xt−T+1))

≤ ∥CAT−1∥2tr(Γ∞).

4 Markov Parameters to Hankel Matrix:
Low Order Approximation of Stable Systems

So far our attention has focused on estimating the impulse response G for a particular horizon T . Clearly, we
are also interested in understanding how well we learn the overall behavior of the system by learning a finite
impulse approximation. In this section, we will apply our earlier results to approximate the overall system by
using as few samples as possible. A useful idea towards this goal is taking advantage of the stability of the
system. The Markov parameters decay exponentially fast if the system is stable i.e. ρ(A) < 1. This means
that, most of the Markov parameters will be very small after a while and not learning them might not be a
big loss for learning the overall behavior. In particular, τ ’th Markov parameter obeys

∥CAτB∥ ≤ Φ(A)ρ(A)
τ
∥C∥∥B∥.

This implies that, the impact of the impulse response terms we don’t learn can be upper bounded. For
instance, the total spectral norm of the tail terms obey

∞

∑
τ=T−1

∥CAτB∥ ≤
∞

∑
τ=T−1

Φ(A)ρ(A)
τ
∥C∥∥B∥ ≤

Φ(A)∥C∥∥B∥ρ(A)T−1

1 − ρ(A)
. (4.1)

To proceed fix a finite horizon K that will later be allowed to go infinity. Represent the estimate Ĝ as
[D̂, Ĝ0, . . . ĜT−2] where Ĝi corresponds to the noisy estimate of CAiB. Now, let us consider the estimated
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and true order K Markov parameters

G(K) = [D̂, Ĝ0, . . . ĜT−2 0 . . . 0]

Ĝ(K) = [D, CB, CAB . . . CAK−2B].

Similarly we define the associated K ×K block Hankel matrices of size mK × pK as follows

Ĥ(K)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̂ Ĝ0 . . . ĜT−3 ĜT−2 0 . . . 0

Ĝ0 Ĝ1 . . . ĜT−2 0 0 . . . 0
⋮

ĜT−3 ĜT−2 . . . 0 0 0 . . . 0

ĜT−2 0 . . . 0 0 0 . . . 0
⋮

0 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H(K)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D CB . . . CAK−2B
CB CAB . . . CAK−1B

⋮

CAK−2B CB . . . CA2K−3B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.2)

The following theorem merges results of this section with a specific choice of T to give approximation bounds
for the infinite Markov operator G(∞) and Hankel operator H(∞). For notational simplicity, we shall assume
that there is no process noise.

Theorem 4.1 Suppose the spectral radius obeys ρ(A) < 1. Fix a number 1 > ε0 > 0 and suppose process noise
obeys σw = 0. Assume sample size N and estimation horizon T satisfies4

N ≥ cTp log2
(2Tp) log2N

T ≥
c0 + log(N/T + T (1 +m/p)) − log ε0

− log ρ(A)
. (4.3)

Then, given observations of a single trajectory until time N̄ = N + T − 1 and estimating first T Markov
parameters via least-squares estimator (2.7), with high probability, the following bounds hold on the infinite
impulse response and Hankel matrix of the system.

∥G(∞) − Ĝ(∞)∥ ≤ (8
σz
σu

+ ε0)

√
Tp +m

N

∥H(∞)
− Ĥ(∞)

∥ ≤ T (8
σz
σu

+ ε0)

√
Tp +m

N
.

In essence, the above theorem is a corollary of Theorem 3.2. However, it further simplifies the bounds
and also provides approximation to systems overall behavior (e.g. infinite Hankel matrix). In particular,
these bounds exploit stability of the system and allows us to treat the system as if it has a logarithmic
order. Observe that (4.3) only logarithmically depends on the critical problem variables such as precision
ε0 and spectral radius. In essence, the effective system order is dictated by the eigen-decay and equal to
T ∼ O(− 1

log(ρ(A))
) hence stability allows us to treat the system as if it has a logarithmically small order.

Ignoring logarithmic terms except ρ(A), using ε0, σz/σu = O(1) and picking

T = O(
−1

log(ρ(A))
) and N = O(δ−2

(Tp +m)),

guarantees

∥G(∞) − Ĝ(∞)∥ ≤ δ and ∥H(∞)
− Ĥ(∞)

∥ ≤ O(
−δ

log(ρ(A))
).

Remarkably, sample size is independent of the state dimension n and only linearly grows with p. Indeed, one
needs at least O(p) samples to estimate a single Markov parameter and we need only logarithmically more
than this minimum (i.e. N ≈

−O(p)
log(ρ(A))

) to estimate the infinite Hankel matrix.

4Exact form of the bounds depend on A,B,C and is provided in the proof.
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Algorithm 1 Ho-Kalman Algorithm to find a State-Space Realization.
1: procedure Ho-Kalman Minimum Realization
2: Inputs: Length T , Markov parameter matrix estimate Ĝ, system order n,

Hankel shape (T1, T2 + 1) with T1 + T2 + 1 = T .
3: Outputs: State-space realization Â, B̂, Ĉ.
4: Form the Hankel matrix Ĥ ∈ RmT1×p(T2+1) from Ĝ.
5: Ĥ− ∈ RmT1×pT2 ← first-pT2-columns-of(Ĥ).
6: L̂ ∈ RmT1×pT2 ← rank-n-approximation-of(Ĥ−).
7: U ,Σ,V = SVD(L̂).
8: Ô ∈ RmT1×n ← UΣ1/2.
9: Q̂ ∈ Rn×pT2 ←Σ1/2V ∗.

10: Ĉ ← first-m-rows-of(Ô).
11: B̂ ← first-p-columns-of(Q̂).
12: Ĥ+ ∈ RmT1×pT2 ← last-pT2-columns-of(Ĥ).
13: Â← Ô†Ĥ+Q̂†.
14: return Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n.
15: end procedure

5 Non-Asymptotic System Identification via Ho-Kalman

In this section, we first describe the Ho-Kalman algorithm [15] that generates A,B,C,D from the Markov
parameter matrix G. We also show that the algorithm is stable to perturbations in G and the output
of Ho-Kalman gracefully degrades as a function of ∥G − Ĝ∥. Combining this with Theorem 3.1 implies
guaranteed non-asymptotic identification of multi-input-multi-output systems from a single trajectory. We
remark that results of this section do not assume stability and applies to arbitrary, possibly unstable, systems.
We will use the following Hankel matrix definition to introduce the algorithms.

Definition 5.1 (Clipped Hankel matrix) Given a block matrix X = [X1, X2, . . . XT ] ∈ Rm×Tp and
integers T1, T2 satisfying T1 + T2 ≤ T , define the associated (T1, T2) Hankel matrix H =H(X) ∈ RT1m×T2p to
be the T1 × T2 block matrix with m × p size blocks where (i, j)th block is given by

H[i, j] =Xi+j .

Note that, H does not contain X1, which shall correspond to the D (or D̂) matrix for our purposes. This is
solely for notational convenience as the first Markov parameter in G is D; however A,B,C are identified
from the remaining Markov parameters of type CAiB.

5.1 System Identification Algorithm

Given a noisy estimate Ĝ of G, we wish to learn good system matrices Â, B̂, Ĉ, D̂ from Ĝ up to trivial
ambiguities. This will be achieved by using Algorithm 1 which admits the matrix Ĝ, system order n and
Hankel dimensions T1, T2 as inputs. Throughout this section, we make the following two assumptions to
ensure that the system we wish to learn is order-n and our system identification problem is well-conditioned.

• the system is observable and controllable; hence n > 0 is the order of the system.

• (T1, T2) Hankel matrix H(G) formed from G is rank-n. This can be ensured by choosing sufficiently
large T1, T2. In particular T1 ≥ n,T2 ≥ n is guaranteed to work by the first assumption above.

Learning state-space representations is a non-trivial, inherently non-convex problem. Observe that there are
multiple state-space realizations that yields the same system and Markov matrix G. In particular, for any
nonsingular matrix T ∈ Rn×n,

A′
= T −1AT , B′

= T −1B, C′
= CT ,

7



is a valid realization and yields the same system. Hence, similarity transformations of A,B,C generate a
class of solutions. Note that D is already estimated as part of G. Since D is a submatrix of G, we clearly
have

∥D − D̂∥ ≤ ∥G − Ĝ∥.

Hence, we focus our attention on learning A,B,C. Suppose we have access to the true Markov parameters
G and the corresponding (T1, T2 + 1) Hankel matrix H(G). In this case, H is a rank-n matrix and
(i, j)th block of H is equal to CAi+j−2B. Defining (extended) controllability and observability matrices
Q = [B, AB, . . . AT2B] and O = [C∗, (CA)∗, . . . (CAT1−1)∗]∗, we have H = OQ. However, it is not
clear how to find O,Q.

The Ho-Kalman algorithm accomplishes this task by finding a balanced realization and returning some
Â, B̂, Ĉ matrices from possibly noisy Markov parameter matrix Ĝ. Let the input to the algorithm be
Ĝ = [D̂, Ĝ0, . . . ĜT−2] where Ĝi corresponds to the noisy estimate of CAiB. We construct the (T1, T2 +1)
Hankel matrix Ĥ as described above so that (i, j)th block of Ĥ is equal to Ĝi+j−2. Let Ĥ− ∈ RmT1×pT2 be the
submatrix of Ĥ after discarding the rightmost mT1 × p block and L̂ be the best rank-n approximation of Ĥ−

obtained by setting its all but top n singular values to zero. Let Ĥ+ be the submatrix after discarding the
left-most mT1 × p block. Note that both L̂, Ĥ+ have size RmT1×pT2 . Take the singular value decomposition
(SVD) of the rank-n matrix L̂ as L̂ = UΣV ∗ (with Σ ∈ Rn×n) and write

L̂ = (UΣ1/2
)Σ1/2V ∗

= ÔQ̂.

If Ĝ was equal to the ground truth G, then Ô, Q̂ would correspond to the order T1 observability matrix
Ō = UΣ1/2 and the order T2 controllability matrix Q̄ = Σ1/2V ∗ of the actual balanced realization based on
noiseless SVD. Here, Ō, Q̄ matrices are not necessarily equal to O,Q, however they yield the same system.
Note that, the columns of Ô, Q̂ are the scaled versions of the left and right singular vectors of L̂ respectively.
The Ho-Kalman algorithm finds Â, B̂, Ĉ as follows.

• Ĉ is the first m × n submatrix of Ô.

• B̂ is the first n × p submatrix of Q̂.

• Â = Ô†Ĥ+Q̂†.
This procedure (Ho-Kalman) returns the true balanced realization of the system when Markov parameters are
known i.e. Ĝ =G. Our goal is to show that even with noisy Markov parameters, this procedure returns good
estimates of the true balanced realization. We remark that there are variations of this procedure; however
the core idea is the same and they are equivalent when the true Markov parameters are used as input. For
instance, when constructing Ĥ , one can attempt to improve the noise robustness of the algorithm by picking
balanced dimensions mT1 ≈ pT2.

5.2 Robustness of the Ho-Kalman Algorithm

Observe that Ĥ, Ĥ−, L̂, Ĥ+, Ô, Q̂ of Algorithm 1 are functions of the input matrix Ĝ. For the subsequent
discussion, we let

• H,H−,L,H+,O,Q be the matrices corresponding to ground truth G.

• Ĥ, Ĥ−, L̂, Ĥ+, Ô, Q̂ be the matrices corresponding to the estimate Ĝ.

Furthermore, let Ā, B̄, C̄ be the actual balanced realization associated with G and let Â, B̂, Ĉ be the
Ho-Kalman output associated with Ĝ. Note that L =H− since H− is already rank n. We now provide a
lemma relating the estimation error of G to that of L and H.

Lemma 5.2 H, Ĥ and L, L̂ satisfies the following perturbation bounds,

max{∥H+
− Ĥ+

∥, ∥H−
− Ĥ−

∥} ≤ ∥H − Ĥ∥ ≤
√

min{T1, T2 + 1}∥G − Ĝ∥, (5.1)

∥L − L̂∥ ≤ 2∥H−
− Ĥ−

∥ ≤ 2
√

min{T1, T2}∥G − Ĝ∥. (5.2)
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Let us denote the nth largest singular value of L via σmin(L). Note that σmin(L) is the smallest nonzero
singular value of L since rank(L) = n. A useful implication of Theorem 3.1 (in light of Lemma 5.2) is that if
σmin(L) is large enough, the true system order n can be non-asymptotically estimated from the noisy Markov
parameter estimates via singular value thresholding.

Our next result shows the robustness of the Ho-Kalman algorithm to possibly adversarial perturbations
on the Markov parameter matrix G.

Theorem 5.3 Suppose H and Ĥ be the Hankel matrices derived from G and Ĝ respectively per Definition
5.1. Let Ā, B̄, C̄ be the state-space realization corresponding to the output of Ho-Kalman with input G and
Â, B̂, Ĉ be the state-space realization corresponding to output of Ho-Kalman with input Ĝ. Suppose the system
A,B,C,D is observable and controllable and let O,Q and Ô, Q̂ be order-n controllability/observability
matrices associated with G and Ĝ respectively. Suppose σmin(L) > 0 and perturbation obeys

∥L − L̂∥ ≤ σmin(L)/2. (5.3)

Then, there exists a unitary matrix T ∈ Rn×n such that,

∥C̄ − ĈT ∥F ≤ ∥O − ÔT ∥F ≤

√

5n∥L − L̂∥, (5.4)

∥B̄ − T ∗B̂∥F ≤ ∥Q − T ∗Q̂∥F ≤

√

5n∥L − L̂∥. (5.5)

Furthermore, hidden state matrices Â, Ā satisfy

∥Ā − T ∗ÂT ∥F ≤
14

√
n

σmin(L)
(

¿
Á
ÁÀ ∥L − L̂∥

σmin(L)
(∥H+

∥ + ∥H+
− Ĥ+

∥) + ∥H+
− Ĥ+

∥). (5.6)

Above, ∥H+ − Ĥ+∥, ∥L− L̂∥ are perturbation terms that can be bounded in terms of ∥H − Ĥ∥ or ∥G − Ĝ∥

via Lemma 5.2. This result shows that Ho-Kalman solution is robust to noise up to trivial ambiguities.
Robustness is controlled by σmin(L) which typically corresponds to the weakest mode of the system. We
remark that for reasonably large T2 choice, we have σmin(L) ≈ σmin(H) as L =H− is obtained by discarding
the last block column of H which is exponentially small in T2.

Since the Ho-Kalman algorithm is based on SVD, having a good control over singular vectors is crucial for
the proof. We do this by utilizing the perturbation results from the recent literature [28]. While we believe
our result has the correct dependency, it is in terms of Frobenius norm rather than spectral. Having a better
spectral norm control over Ā, B̄, C̄ would be an ideal future improvement.

A corollary to this result can be stated in terms of σmin(L) and Hankel matrices H, Ĥ . The result below
follows from an application of Lemma 5.2.

Corollary 5.4 Consider the setup of Theorem 5.3 and suppose σmin(L) > 0 and

∥H − Ĥ∥ ≤ σmin(L)/4.

Then, there exists a unitary matrix T ∈ Rn×n such that,

max{∥C̄ − ĈT ∥F , ∥O − ÔT ∥F , ∥B̄ − T ∗B̂∥F , ∥Q − T ∗Q̂∥F } ≤ 5
√

n∥H − Ĥ∥. (5.7)

Furthermore, hidden state matrices Â, Ā satisfy

∥Ā − T ∗ÂT ∥F ≤
50

√

n∥H − Ĥ∥∥H∥

σ
3/2
min(L)

.

Recall from Lemma 5.2 that ∥H − Ĥ∥ ≤
√

min{T1, T2 + 1}∥G − Ĝ∥. Hence, combining Corollary 5.4 and
Theorem 3.1 provides non-asymptotic guarantees for end-to-end system identification procedure. Theorem
3.1 finds a good Markov parameter estimate Ĝ from a small amount of data and Corollary 5.4 translates this
Ĝ into a robust state-space realization Â, B̂, Ĉ, D̂.
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Figure 1: We consider the matrices that can directly be inferred from the Markov parameter matrix G.
These are D,CB which are the first two block submatrices of G, G itself, and H which is the Hankel
matrix that is constructed from blocks of G. These results are for T = 18 which implies G ∈ R2×54 and
H ∈ R18×27 as we picked T1 = T2 + 1 = 9.

6 Numerical Experiments

We considered a MIMO (multiple input, multiple output) system with m = 2 sensors, n = 5 hidden states and
input dimension p = 3. To assess the typical performance of the least-squares and the Ho-Kalman algorithms,
we consider random state-spaces as follows. We generate C,D with independent N (0,1/m) entries. We
generate B with independent N (0,1/n) entries. These variance choices are to ensure these matrices are
isometric in the sense that E[∥Mv∥2

`2
] = ∥v∥2

`2
for a given vector v and M ∈ {B,C,D}. Hence, the impact

of the standard deviations σu, σw, σz are properly normalized. The input variance is fixed at σu = 1 however
noise variances will be modified during the experiments.

The most critical component of an LTI system is the A matrix. We picked A to be a diagonal matrix with
its n eigenvalues (i.e. diagonal entries) are generated to be uniform random variables between [0,0.9]. The
upper bound 0.9 implies that we are working with stable matrices and the effect of unknown state vanishes
for large T .

Finally, we conduct experiments for different T values of T ∈ {6, 12, 18}. During Ho-Kalman procedure, we
create a Hankel matrix Ĥ of size mT /2× pT /2 and apply Algorithm 1. Due to random generation of problem
data, even for T = 6, the ground truth Hankel matrix H− ∈ R6×6 has rank n = 5 so that Ho-Kalman procedure
can indeed learn a good realization.

In our experimental setup, we pick a hyperparameter configuration of T,σw, σz and generate a single
rollout of the system until some time t∞. For each T ≤ N̄ ≤ t∞, we solve the system via (2.7) to obtain the
estimate of G and use Algorithm 1 to obtain a state-space realization Â, B̂, Ĉ, D̂. The x-axis displays N
(which is the amount of available data at time t = N̄) and the y-axis displays the estimation error. Each curve
in the figures is generated by averaging the outcomes of 20 independent realizations of single trajectories.
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Figure 2: Relative estimation errors for systems S, Ŝ for varying noise levels. Ŝ is obtained by the
Ho-Kalman procedure of Algorithm 1. Based on Theorem 5.3, we expect improved estimation accuracy
for larger N and smaller σw, σz; since the error in estimating the system matrices is directly controlled
by the error in the Markov parameter matrix G − Ĝ.

In Figure 1, we considered the problem of estimating the matrices D,CB,G,H when T = 18. D,CB are
the first two impulse responses. Estimating G and the associated Hankel matrix H helps verify our findings
in Theorem 3.2. We plotted curves for varying noise levels σw = σz ∈ {0,1/4,1/2,1}. The main conclusion is
that indeed estimation accuracy drastically improves as we observe the system for a longer period of time
and collect more data. Note that estimation errors on D and CB are in the same ballpark. These are
submatrices of G hence their associated spectral norm errors are strictly lower compared to ∥G − Ĝ∥. Per
Definition 5.1, H is constructed from the blocks of G and its spectral norm error is in lines with G. The
other observation is that estimation error decays gracefully as a function of the noise levels for all matrices of
interest. Since we picked a large T , the error due to unknown initial conditions (i.e. et) is fairly negligible.
Hence when σw = σz = 0, we quickly achieve near 0 estimation error as the impact of the et term is also small.

In Figure 2 we study the stability of the Ho-Kalman procedure which returns a realization up to a unitary
transformation as described in Theorem 5.3. Hence, rather than focusing on individual outputs Â, B̂, Ĉ
we directly study the LTI systems S = LTI-sys(A,B,C,D) and Ŝ = LTI-sys(Â, B̂, Ĉ, D̂). In particular, we
focus on the H∞ norm of the error S − Ŝ. During this process, we clipped the singular values of Â at 0.99 i.e.
if Â has a singular value larger than 0.99, we replace it by 0.99 in the SVD of Â which returns a new Â
whose singular vectors are same but singular values are clipped. This essentially corresponds to projecting
the estimated system on the set of stable systems. While we verified that ∥Â∥ > 0.99 rarely happens for
large N , clipping ensures that H∞ norm is always bounded and smooths out the results. Figure 2 illustrates
the normalized H∞ error ∥Ŝ−S∥H∞

∥S∥H∞
for varying σw = σz and T ∈ {6,12,18}. For zero-noise regime, T = 18
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outperforms the rest demonstrating the benefit of using a larger T to overcome the contribution of the σe
term. In the other regimes, all T choices perform fairly similar; however T = 6 appears to suffer less from
increasing noise levels σw, σz. Another observation is that for very small sample size N , T = 6 converges
faster than the others. This is supported by our Theorem 3.2 as T = 6 has less unknowns and the minimal N
is in the order of Tp, hence smaller T means faster estimation.

We remark that one might be interested in other metrics to assess the error such as Frobenius norm. While
not shown in the figures, we also verified that the Frobenius norm ∥G − Ĝ∥F (and the errors for CB,D,H
as well as ∥S − Ŝ∥H2) behaves in a similar fashion to spectral norm and H∞ norm.

7 Conclusions

In this paper, we analyzed the sample complexity of linear system identification from input/output data.
Our analysis neither requires multiple independent trajectories nor relies on splitting the trajectory into
non-overlapping intervals, therefore makes very efficient use of the available data from a single trajectory.
More crucially, it does not rely on state measurements and works with only the inputs and outputs. Based
on this analysis, we showed that one can approximate system’s Hankel operator using near optimal amount
of samples and shed light on the stability of finding a balanced realization.

There are many directions for future work. First, we are interested in combining our results with control
synthesis techniques based on Markov parameters. Second, it is shown empirically that minimizing the
rank or nuclear norm of the estimated Hankel matrix as a denoising step (see e.g., [9]) works better than
Ho-Kalman. It is of interest to analyze the stability of such optimization-based algorithms. Finally, it would
be interesting to see what type of recovery guarantees can be obtained if additional constraints, such as
subspace constraints, on the system matrices are known [7].
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A Proof of the Results on Learning Markov Parameters

We first describe the basic proof idea. Following equation (2.5), to further simplify the notation, define the
matrices

W = [w̄T , w̄T+1, . . . , w̄N̄ ]
∗
∈ RN×Tn, (A.1)

E = [eT , eT+1, . . . , eN̄ ]
∗
∈ RN×n,

Z = [zT , zT+1, . . . , zN̄ ]
∗
∈ RN×m.

With these variables, we have the system of equations

Y = UG∗
+E +Z +WF ∗.

Following (2.7), estimation error is given by

(Ĝ −G)
∗
= (U∗U)

−1U∗
(WF ∗

+Z +E). (A.2)

The spectral norm of the error can be bounded as

∥(Ĝ −G)
∗
∥ ≤ ∥(U∗U)

−1
∥(∥U∗W ∥∥F ∗

∥ + ∥U∗Z∥ + ∥U∗E∥). (A.3)

Each of these terms will be bounded individually. The bounds on ∥(U∗U)−1∥ and ∥U∗W ∥ will be obtained
by using the properties of random circulant matrices in Section C. ∥U∗Z∥ is arguably the simplest term due
to Z being an i.i.d. Gaussian matrix. It is bounded via Lemma A.1. Finally, ∥U∗E∥ term will be addressed
by employing a martingale based argument in Section D. We first prove Theorem 3.2 which is our main
theorem. It will be followed by the proof of Theorem 3.1.

A.1 Proof of Theorem 3.2

Proof The proof is obtained by combining estimates from the subsequent sections. Set Θ = log2
(2Tp) log2

(2Np)
to simplify the notation. Picking c ≥ (log 2)−4, our assumption of N ≥ cTpΘ implies N ≥ T and N ≥ (N̄ + 1)/2
(using N̄ = N +T −1). Consequently, log2

(2N̄p) ≤ 4log2
(2Np) and we have N ≥ (c/4)Tp log2

(2Tp) log2
(2N̄p).

This fact will be useful when we need to utilize results of Section C. We first address the Z component of the
error which is rather trivial to bound.

Lemma A.1 Let M ∈ Rm×n be a tall matrix (m ≥ n) with ∥M∥ ≤ η. Let G ∈ Rm×k be a matrix with
independent standard normal entries. Then, with probability at least 1 − 2 exp(−t2/2),

∥M∗G∥ ≤ η(
√

2(n + k) + t).

In particular, setting t =
√

2(n + k), we find ∥M∗G∥ ≤ η
√

8(n + k) with probability at least 1−2 exp(−(n+k)).

Proof Suppose M have singular value decomposition M = V1ΣV
∗

2 where V1 ∈ Rm×n. Observe that
Ḡ = V ∗

1 G ∈ Rn×k have i.i.d. N (0,1) entries. Also E[∥Ḡ∥] ≤
√
n +

√
k ≤

√
2(n + k). Applying Lipschitz

Gaussian concentration on spectral norm, with probability at least 1 − 2 exp(−t2/2),

∥M∗G∥ = ∥V2ΣḠ∥ = ∥ΣḠ∥ ≤ η(
√

2(n + k) + t).

The following corollary states the estimation error due to measurement noise (Z term).

Corollary A.2 Let U ∈ RN×Tp be the data matrix as in (2.6) and let Z ∈ RN×m be the measurement
noise matrix from (A.1). Suppose N ≥ cTpΘ for some absolute constant c > 0. With probability at least
1 − 2 exp(−(Tp +m)) − exp(−Θ),

∥U∗Z∥ ≤ 4σuσz
√
N(Tp +m).
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Proof Set η =
√

2Nσu. Using N̄ ≥ N , Lemma C.2 yields that

P(∥U∥ ≤ η) ≥ 1 − exp(−Θ). (A.4)

Hence, combining Lemmas C.2 and A.1, using the fact that Z,U are independent, and adjusting for Z’s
variance σz, we find the result.

Next, we apply Lemmas C.2 and C.3 to find that, for sufficiently large c > 0, whenever N ≥ cTpΘ,

∥(U∗U)
−1

∥ ≤ 2σ−2
u /N, ∥U∗W ∥ ≤

1

2
σuσw max{

√
NwN,Nw}, (A.5)

where Nw = cTq log2
(2Tq) log2

(2Nq) and q = p + n with probability at least 1 − 2 exp(−Θ). Finally, applying
Theorem D.1 with γ = ∥Γ∞∥Φ(A)

2
∥CAT−1

∥
2

1−ρ(A)2T
, with probability at least 1 − T (exp(−100Tp) + 2 exp(−100m)),

∥U∗E∥ ≤ c3σu

√

T max{N,
mT

1 − ρ(A)T
}max{Tp,m}γ.

Combining all of the estimates above via union bound and substituting θ, with probability at least,

1 − 2 exp(−(Tp +m)) − 3(2Np)− log(2Np) log2
(2Tp)

− T (exp(−100Tp) + 2 exp(−100m)),

the error term ∥G − Ĝ∥ of (A.3) is upper bounded by Rz+Re+Rw
σu
√
N

where

Rz = 8σz
√
Tp +m, (A.6)

Rw = σw∥F∥max{
√
Nw,Nw/

√
N}, (A.7)

Re = 2C

√

(1 +
mT

N(1 − ρ(A)T )
)(Tp +m)Tγ. (A.8)

Absorbing the ×2 multiplier of Re into C and observing Tγ = σ2
e , we conclude with the desired result.

A.2 Proof of Theorem 3.1
The proof uses the same strategy in Section A.1 with slight modifications. We will repeat the argument for
the sake of completeness. First of all, we utilize the same estimates based on Lemmas C.2 and C.3, namely
(A.5) and (A.4) (∥U∥ ≤

√
2Nσu) which hold with probability at least 1 − 3(2Np)− log(2Np) log2

(2Tp). Observe
that N ≥ N0 ≥ Nw = cT (p + n) log2

(2T (p + n)) log2
(2N(p + n)) hence, we have that

∥U∗W ∥ ≤
1

2
σuσw

√
NwN ≤

1

2
σuσw

√
N0N.

We use Lemma A.1 with t =
√

2Tq to obtain P(∥U∗Z∥ ≤ 4σuσz
√
TqN) ≥ 1 − 2 exp(−Tq).

Finally, to bound the contribution of E we again apply Theorem D.1. Since ρ(A)T ≤ 0.99, picking
sufficiently large c, we observe that

max{N,
mT

1 − ρ(A)T
} = N

Hence, using σe =
√
γT and applying Theorem D.1 yields that for some C > 0

∥U∗E∥ ≤ Cσu
√
TN(Tp +m)γ ≤ Cσuσe

√
NTq,

holds with probability at least 1 − T (exp(−100Tp) + 2 exp(−100m)). Union bounding over all these events
and following (A.3), with probability at least,

1 − 2 exp(−Tq) − 3(2Np)− log(2Np) log2
(2Tp)

− T (exp(−100Tq) + 2 exp(−100m)),
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we find the spectral norm estimation error of

∥Ĝ −G∥ ≤

1
2
σuσw∥F∥

√
N0N + 4σuσz

√
TqN +Cσuσe

√
TqN

(σ2
uN)/2

(A.9)

≤
σw∥F∥

√
N0 + 8σz

√
Tq + 2Cσe

√
Tq

σu
√
N

, (A.10)

which is the desired bound after ensuring max{8, 2C}2Tq ≤ N0 by picking the constant c (which leads N0) to
be sufficiently large.

A.3 Proof of Theorem 4.1

Proof Let us start with G(∞) estimate. First note that, the tail spectral norm is bounded via (4.1). Picking

the proposed T ≥ T1 = 1 −
log(2ε−10 (1−ρ(A))

−1Φ(A)∥C∥∥B∥
√

N
Tp+m )

log(ρ(A))
implies right hand side of (4.1) can be upper

bounded as

Φ(A)∥C∥∥B∥ρ(A)T−1

1 − ρ(A)
≤

1

2
ε0

√
Tp +m

N
⇐⇒ ρ(A)

−(T−1)
≥

Φ(A)∥C∥∥B∥
√

N
Tp+m

ε0(1 − ρ(A))
(A.11)

Next, we will bound the spectral difference of order T finite responses G and Ĝ. Let T ≥ − 1
log(ρ(A))

to ensure
ρ(A)T ≤ 1/2. Applying Theorem 3.2, we will show that individual error summands due to Rw,Re,Rz are
upper bounded. First, Theorem 3.2 is applicable due to the choice of N . Rw summand is zero as σw = 0.
Second, observe that, for some C > 0

Re

σu
√
N

≤
C

4
σe

√

(1 +
mT

N(1 − ρ(A)T )
)(Tp +m) ≤

σe
σu

C

4

√

1 +
m

p

√
Tp +m

N
.

where we used
√

1 + 2mT /N ≤
√

1 + m
p
. Since σw = 0, define,

Γ̄∞ =
Γ∞

σ2
u

=
∞

∑
i=0

AiBB∗
(A∗

)
i.

Note that

σe
σu

≤ 2Φ(A)∥CAT−1
∥

√

T ∥Γ̄∞∥ ≤ 2Φ(A)
2
∥C∥ρ(A)

T−1
√

T ∥Γ̄∞∥ (A.12)

≤ 2

√
p

p +m
ε0/C, (A.13)

which is guaranteed by T ≥ T2 = 1−
log(Cε−10 Φ(A)2∥C∥

√
T ∥Γ̄∞∥(1+m/p))

log(ρ(A))
and ensures Re

σu
√
N
≤ ε0

2

√
Tp+m
N

. Combining
with Rz bound of Theorem 3.2 and tail bound of (A.11), these yield

∥G(∞) − Ĝ(∞)∥ ≤ (8
σz
σu

+ ε0)

√
Tp +m

N
,

whenever N is stated as above and T obeys T ≥ max(− 1
log(ρ(A))

, T0) where

T0 ∶=
c0 + log(Φ(A)2∥C∥ε−1

0 ) + log(max{(1 − ρ(A))−1∥B∥
√

N
Tp+m

,
√
T ∥Γ̄∞∥(1 +m/p)})

− log(ρ(A))
≥ max(T1, T2).
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Treating A,B,C related variables in the numerator as constant terms (which are less insightful than the
log(ρ(A)) term for our purposes), we find the condition (4.3).

To proceed, we wish to show the result on Hankel matrices H(∞) and Ĥ(∞). We shall decompose the
H(∞) matrix asH(∞) =Hmain+Htail (same for Ĥ). Hmain, Ĥmain are the m×p blocks corresponding to the
first T Markov parameters and their estimates. Observe that Hmain lives on the upper-left T × T submatrix.
Furthermore, the set of non-zero blocks in each of its first T block-rows of size m × Tp is a submatrix of G.
For instance in (4.2), non-zero rows of Ĥ are all submatrices of Ĝ. Consequently, adding spectral norms of
nonzero rows and using the above bound on G estimate, we have that

∥Ĥmain −Hmain∥ ≤ T ∥G − Ĝ∥ ≤ T (8
σz
σu

+
ε0

2
)

√
Tp +m

N
,

where ε0/2 instead of ε0 is due to lack of tail terms. What remains is the Htail term. Note that Ĥtail = 0.
Htail matrix is composed of anti-diagonal blocks that start from T + 1 till infinity. The non-zero blocks of ith
anti-diagonal (i ≥ T + 1) are all equal to CAi−2B due to Hankel structure, hence its spectral norm is equal
to ∥CAi−2B∥. Consequently, the spectral norm of Htail can be obtained by adding the spectral norm of
non-zero anti-diagonal matrices which is given by (4.1) and is upper bounded by ε0/2 in (A.11). Hence,

∥Ĥ(∞)
−H(∞)

∥ ≤ ∥Ĥmain −Hmain∥ + ∥Ĥtail −Htail∥ ≤ T (8
σz
σu

+ ε0)

√
Tp +m

N
,

concluding the proof.

B Proof of the Ho-Kalman Stability

In this section, we provide a proof for the stability of the Ho-Kalman procedure. Since system is assumed
to be observable and controllable and T1, T2 are assumed to be sufficiently large, rank(L) = n throughout
this section. Recall that, given Markov parameter matrices G, Ĝ, the matrices H,H−,L,H+ (with L =H−

as H− is rank n) correspond to G and the matrices Ĥ, Ĥ−, L̂, Ĥ+ correspond to Ĝ. We will show that
Ho-Kalman state-space realizations corresponding to G and Ĝ are close to each other as a function of
∥G − Ĝ∥. We first provide a proof of Lemma 5.2.

B.1 Proof of Lemma 5.2

We wish to show that H − Ĥ and L − L̂ can be upper bounded in terms of G − Ĝ via (5.1). H− − Ĥ− is a
submatrix of H − Ĥ hence we have

∥H−
− Ĥ−

∥ ≤ ∥H − Ĥ∥.

Denote the ith block row of H by H[i]. Since H[i] (for all i) is a submatrix of the Markov parameter
matrix G, we have that ∥H[i] − Ĥ[i]∥ ≤ ∥G − Ĝ∥. Hence, the overall matrix H satisfies

∥H − Ĥ∥ =

XXXXXXXXXXXXXX

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H[1] − Ĥ[1]
⋮

H[T1] − Ĥ[T1]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXX

≤
√
T1 max

1≤i≤T1

∥H[i] − Ĥ[i]∥ ≤
√
T1∥G − Ĝ∥.

Similarly, columns of H are also submatrices of G. Repeating same argument for columns, yields

∥H − Ĥ∥ ≤
√
T2 + 1∥G − Ĝ∥.

Combining both, we find (5.1). The bound (5.2) is based on singular value perturbation. First, noticing that
rows/columns of H− are again copied from G and carrying out the same argument, we have that

∥H−
− Ĥ−

∥ ≤
√

min{T1, T2}∥G − Ĝ∥.
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Recall that L = H− and L̂ is the rank-n approximations of Ĥ−. Denoting ith singular value of Ĥ− by
σi(Ĥ

−), standard singular value perturbation bound yields

σn+1(Ĥ
−
) = ∥Ĥ−

− L̂∥ ≤ ∥Ĥ−
−H−

∥.

Consequently, using L =H−,

∥L − L̂∥ ≤ ∥H−
− Ĥ−

∥ + ∥Ĥ−
− L̂∥ ≤ 2∥H−

− Ĥ−
∥ ≤ 2

√
min{T1, T2}∥G − Ĝ∥.

B.2 Robustness of Singular Value Decomposition

The next theorem shows robustness of singular value decompositions of L and L̂ in terms of ∥L − L̂∥. It is
obtained by using Lemma 5.14 of [28] and provides simultaneous control over left and right singular vector
subspaces. This is essentially similar to results of Wedin and Davis-Kahan [5, 32] with the added advantage
of simultaneous control which we crucially need for our result.

Lemma B.1 Suppose σmin(L) ≥ 2∥L − L̂∥ where σmin(L) is the smallest nonzero singular value (i.e. nth
largest singular value) of L. Let rank n matrices L, L̂ have singular value decompositions UΣV ∗ and ÛΣ̂V̂ ∗.
There exists an n × n unitary matrix T so that

∥UΣ1/2
− ÛΣ̂

1/2
T ∥

2
F + ∥V Σ1/2

− V̂ Σ̂
1/2
T ∥

2
F ≤ 5n∥L − L̂∥.

Proof Direct application of Theorem 5.14 of [28] guarantees the existence of a unitary T such that

LHS = ∥UΣ1/2
− ÛΣ̂

1/2
T ∥

2
F + ∥V Σ1/2

− V̂ Σ̂
1/2
T ∥

2
F ≤

2
√

2 − 1

∥L − L̂∥2
F

σmin(L)
.

To proceed, using rank(L − L̂) ≤ 2n and σmin(L) ≥ 2∥L − L̂∥ ≥
√

2/n∥L − L̂∥F , we find

LHS ≤
√

2n
√

2 − 1
∥L − L̂∥F ≤

2n
√

2 − 1
∥L − L̂∥ ≤ 5n∥L − L̂∥.

Observe that our control over the subspace deviation improves as the perturbation ∥L − L̂∥ gets smaller. The
next lemma is a standard result on singular value deviation.

Lemma B.2 Suppose σmin(L) ≥ 2∥L − L̂∥. Then, ∥L̂∥ ≤ 2∥L∥ and σmin(L̂) ≥ σmin(L)/2.

Using these, we will prove the robustness of Ho-Kalman. The robustness will be up to a unitary
transformation similar to Lemma B.1.

B.3 Proof of Theorem 5.3

Proof Consider the SVD of L given by UΣV and SVD of L̂ given by ÛΣ̂V̂ where Σ, Σ̂ ∈ Rn×n (recall that
rank(L) = n since we assumed system is observable and controllable). Define the observability/controllability

matrices (O = UΣ1/2,Q = Σ1/2V ) associated to H and (Ô = ÛΣ̂
1/2
, Q̂ = Σ̂

1/2
V̂ ) associated to Ĥ. Lemma

B.1 automatically gives control over these as it states the existence of a unitary matrix T such that

∥O − ÔT ∥
2
F + ∥Q − T ∗Q̂∥

2
F ≤ 5n∥L − L̂∥.

Since C̄ is a submatrix of O and B̄ is a submatrix of Q, we immediately have the same upper bound on
(C̄, Ĉ) and (B̄, B̂) pairs.
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The remaining task is to show that Â and Ā are close. Let X = ÔT , Y = T ∗Q̂. Now, note that

∥Ā − T ∗ÂT ∥F = ∥O†H+Q†
− T ∗Ô†Ĥ+Q̂†T ∥F = ∥O†H+Q†

−X†Ĥ+Y †
∥F . (B.1)

Consequently, we can decompose the right hand side as

∥O†H+Q†
−X†Ĥ+Y †

∥F ≤∥(O†
−X†

)H+Q†
∥F + ∥X†

(H+
− Ĥ+

)Q†
∥F (B.2)

+ ∥X†Ĥ+
(Q†

−Y †
)∥F .

We treat the terms on the right hand side individually. First, pseudo-inverse satisfies the perturbation
bound [20,30]

∥O†
−X†

∥F ≤ ∥O −X∥F max{∥X†
∥
2, ∥O†

∥
2
} ≤

√

5n∥L − L̂∥max{∥X†
∥
2, ∥O†

∥
2
}.

We need to bound the right hand side. Luckily, Lemma B.2 trivially yields the control over the top singular
values of pseudo-inverses namely

max{∥X†
∥
2, ∥O†

∥
2
} = max{

1

σmin(L)
,

1

σmin(L̂)
} ≤

2

σmin(L)
.

Combining the last two bounds, we find

∥O†
−X†

∥F ≤
2
√

5n∥L − L̂∥

σmin(L)

The identical bounds hold for Q,Y . For the second term on the right hand side of (B.2), we shall use the
estimate

∥X†
(H+

− Ĥ+
)Q†

∥F ≤
√
n∥X†

(H+
− Ĥ+

)Q†
∥ ≤

2
√
n

σmin(L)
∥H+

− Ĥ+
∥.

Finally, we will use the standard triangle inequality to address the Ĥ+ term: ∥Ĥ+∥ ≤ ∥H+∥ + ∥H+ − Ĥ+∥.
Combining all of these, we obtain the following bounds

∥(O†
−X†

)H+Q†
∥F ≤ ∥O†

−X†
∥F ∥H+

∥∥Q†
∥ (B.3)

≤

√

20n∥L − L̂∥

σmin(L)

√
2

σmin(L)
∥H+

∥ (B.4)

≤
7
√

n∥L − L̂∥

σmin(L)3/2
∥H+

∥ (B.5)

∥X†Ĥ+
(Q†

−Y †
)∥F ≤ ∥X†

∥∥Ĥ+
∥∥Q†

−Y †
∥F (B.6)

≤
7
√

n∥L − L̂∥

σmin(L)3/2
(∥H+

∥ + ∥H+
− Ĥ+

∥) (B.7)

∥X†
(H+

− Ĥ+
)Q†

∥F ≤
2
√
n∥H+ − Ĥ+∥

σmin(L)
.

Combining these three individual bounds and substituting in (B.2), we find the overall bound

∥Ā − T ∗ÂT ∥F ≤
14

√
n

σmin(L)
(

¿
Á
ÁÀ ∥L − L̂∥

σmin(L)
(∥H+

∥ + ∥H+
− Ĥ+

∥) + ∥H+
− Ĥ+

∥).
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B.4 Proof of Corollary 5.4

Using Lemma 5.3, the condition ∥H − Ĥ∥ ≤ σmin(L)/4 implies the condition (5.3). Consequently, inequalities
(5.4) and (5.6) of Theorem 5.3 holds. (5.7) follows by using ∥L − L̂∥ ≤ 2∥H − Ĥ∥. The result on Ā is slightly
more intricate. First, since H+ is a submatrix of H

∥H+
− Ĥ+

∥ ≤ ∥H − Ĥ∥, ∥H+
∥ ≤ ∥H∥

Combining this with (5.2), the right hand side of (5.6) can be upper bounded by

RHS =
14

√
2
√
n

σmin(L)
(

¿
Á
ÁÀ∥H − Ĥ∥

σmin(L)
(∥H∥ + ∥H − Ĥ∥) + ∥H − Ĥ∥).

Next, L =H− hence 4∥H − Ĥ∥ ≤ σmin(L) ≤ ∥L∥ ≤ ∥H∥. Hence ∥H∥ + ∥H − Ĥ∥ ≤ (5/4)∥H∥. Finally,

∥H∥
√
σmin(L)

≥
√

∥H∥ ≥ 2
√

∥H − Ĥ∥.

Combining the last two observations, RHS can be upper bounded as

RHS =
14

√
2
√

n∥H − Ĥ∥

σmin(L)
(
∥H∥ + ∥H − Ĥ∥

√
σmin(L)

+

√

∥H − Ĥ∥) (B.8)

≤
14

√
2
√

n∥H − Ĥ∥

σmin(L)
(

5

4

∥H∥
√
σmin(L)

+

√

∥H − Ĥ∥) (B.9)

≤
14

√
2
√

n∥H − Ĥ∥

σmin(L)
(

5

4

∥H∥
√
σmin(L)

+
1

2

∥H∥
√
σmin(L)

) (B.10)

≤
(7/4)14

√
2
√

n∥H − Ĥ∥

σmin(L)

∥H∥
√
σmin(L)

, (B.11)

which is the advertised bound after noticing (7/4)14
√

2 ≤ 50.

C Restricted Isometry of Partial Circulant Matrices

To proceed, let us describe the goal of this section. First, we would like to show that U ∈ RN×Tp is well
conditioned when N ≳ O(Tp) to ensure least-squares is robust. Next, we would like to have an accurate upper
bound on the spectral norm of U∗W to control the impact of noise wt. In particular, we will show that

∥U∗W ∥ ≲ σuσw
√
NT (p + n).

Both of these goals will be achieved by embedding U and W into proper circulant matrices. The same
argument will apply to both scenarios. The key technical tool in our analysis will be the results of Krahmer
et al. [18] on restricted isometries of random circulant matrices.

The following theorem is a restatement of Theorem 4.1 of Krahmer et al [18]. We added a minor
modification to account for the regime restricted isometry constant is greater than 1. This result is proven in
Section E. This theorem shows that arbitrary submatrices of random circulant matrices are well conditioned.
It will play a crucial role in establishing the joint relation of the data matrix U and noise matrix W . Main
result of [18] characterizes a uniform bound on all submatrices; however we only need a single submatrix for
our results. Hence, some of the logarithmic factors below might actually be redundant for the bound we are
seeking.

21



Theorem C.1 Let C ∈ Rd×d be a circulant matrix where the first row is distributed as N (0,Id). Given s ≥ 1,
set m0 = c0s log2

(2s) log2
(2d) for some absolute constant c0 > 0. Pick an m × s submatrix S of C. With

probability at least 1 − (2d)− log(2d) log2
(2s), S satisfies

∥
1

m
S∗S − I∥ ≤ max{

√
m0

m
,
m0

m
}.

The next two sections address the minimum singular value of the U matrix and upper bounding the maximum
singular value of the U∗W matrix by utilizing Theorem C.1.

C.1 Conditioning of the Data Matrix

Lemma C.2 Let U ∈ RN×Tp be the input data matrix as described in Section 2.1. Suppose the sample
size obeys N ≥ cTp log2

(2Tp) log2
(2N̄p) for sufficiently large constant c > 0. Then, with probability at least

1 − (2N̄p)− log2
(2Tp) log(2N̄p),

2Nσ2
u ⪰ U

∗U ⪰ Nσ2
u/2.

Proof The proof will be accomplished by embedding U inside a proper circulant matrix. Let r(v) ∶ Rd → Rd

be the circulant shift operator which maps a vector v ∈ Rd to its single entry circular rotation to the right i.e.
r(v) = [vd v1 . . . vd−1] ∈ Rd. Let C ∈ RN̄p×N̄p be a circulant matrix where the first row (transposed) is given
by

c1 = [u∗N̄p u
∗

N̄p−1 . . . u∗2 u
∗
1]
∗.

The ith row of C is ci = ri−1(c1) for 1 ≤ i ≤ N̄p. Observe that C is a circulant matrix by construction. For
instance all of its diagonal entries are equal to uN̄p,1. Additionally, note that second row of C starts with the
last entry of u1 hence entries of ui do not necessarily lie next to each other. Focusing on the rightmost Tp
columns, let RTp be the operator that returns rightmost Tp entries of a vector. Our first observation is that

RTp(c1) = ūT = [u∗T u
∗
T−1 . . . u∗2 u

∗
1]
∗.

Secondly, observe that for each 0 ≤ i ≤ N − 1

RTp(c1+ip) =RTp(r
ip
(c1)) = [u∗T+i u

∗
T−1+i . . . u

∗
2+i u

∗
1+i]

∗
= ūT+i.

This implies that ūT+i is embedded inside right-most Tp columns and 1+ ip’th row of C. Similarly, the input
data matrix U ∈ RN×Tp is a submatrix of C with column indices (N̄ − T )p + 1 to N̄p and row indices 1 + ip
for 0 ≤ i ≤ N − 1. Applying Theorem C.1, setting N0 = cTp log2

(2Tp) log2
(2N̄p), and adjusting for variance

σ2
u, with probability at least 1 − (2N̄p)− log2

(2Tp) log(2N̄p), we have

2σ2
uI ⪰ N

−1U∗U ⪰
σ2
u

2
I Ô⇒ 2Nσ2

u ⪰ U
∗U ⪰ Nσ2

u/2,

whenever N ≥ N0.

C.2 Upper Bounding the Contribution of the Process Noise

Lemma C.3 Recall U ,W from (2.6) and (A.1) respectively. Let q = p+n and N0 = cTq log2
(2Tq) log2

(2N̄q)

where c > 0 is an absolute constant. With probability at least 1 − (2N̄q)− log2
(2Tq) log(2N̄q),

∥U∗W ∥ ≤ σwσumax{
√
N0N,N0}.
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Proof The proof is identical to that of Lemma C.2. Set q = p+n. First, we definemt = [σ−1
u u

∗
t σ

−1
w w

∗
t ]
∗ ∈ Rq

and m̄i = [m∗
i , m

∗
i−1, . . . m

∗
i−T+1]

∗ ∈ RTq. We also define the matrix M = [m̄T . . . m̄T+N−1]
∗ ∈ RN×Tq.

Observe that by construction, σ−1
u U , σ

−1
w W are submatrices of M . In particular, (σuσw)

−1U∗W is an
off-diagonal submatrix of M∗M of size Tp × Tn. This is due to the facts that i) σ−1

u U is a submatrix of M
characterized by the column indices

{(i − 1)q + j ∣ 1 ≤ i ≤ T, 1 ≤ j ≤ p},

and ii) σ−1
w W lies at the complementary columns. Observe that the spectral norm of (σuσw)−1U∗W can be

upper bounded as

(σuσw)
−1

∥U∗W ∥ ≤ ∥M∗M −NI∥. (C.1)

Proof Since (σuσw)
−1U∗W is an off-diagonal submatrix of M∗M , it is also a submatrix of M∗M − I.

Spectral norm of a submatrix is upper bounded by the norm of the original matrix hence the claim follows.

In a similar fashion to Lemma C.2, we complete M to be a full circulant matrix as follows. Let
r(v) ∶ Rd → Rd be the circulant shift operator as previously. Let C ∈ RN̄q×N̄q be a circulant matrix with first
row given by

c1 = [m∗

N̄q m
∗

N̄q−1 . . . m∗
2 m

∗
1]
∗.

The ith row of C is ci = ri−1(c1) for 1 ≤ i ≤ N̄q. Let RTq be the operator that returns rightmost Tq entries
of a vector. Our first observation is that

RTq(c1) = m̄T = [m∗
T m

∗
T−1 . . . m∗

2 m
∗
1]
∗.

Secondly, observe that for each 0 ≤ i ≤ N − 1

RTq(c1+iq) =RTq(r
iq
(c1)) = [m∗

T+i m
∗
T−1+i . . . m

∗
2+i m

∗
1+i]

∗
= m̄T+i.

This implies that m̄i’s are embedded inside the rows of RTq(C) in an equally spaced manner with spacing q
for T ≤ i ≤ T +N − 1 = N̄ . Hence, M is a N × Tq submatrix of C where the column indices are the last Tq
columns and the row indices are 1,1 + q, . . . ,1 + (N − 1)q.

With this observation, we are ready to apply Theorem C.1. Theorem C.1 states that for

N0 = cTq log2
(2Tq) log2

(2N̄q),

with probability at least 1 − (2N̄q)− log2
(2Tq) log(2N̄q),

∥
1

N
M∗M − I∥ ≤ max{

√
N0

N
,
N0

N
},

which in turn implies ∥U∗W ∥ ≤ σwσumax{
√
N0N,N0} via inequality (C.1).

D Bounding the Error due to the Unknown State

The goal of this section is bounding the estimation error due to the et = CAT−1xt−T+1 term. As described
in Section 2.1 and (A.1), we form the matrices E = [eT . . . eN̄ ]∗ and U = [ūT . . . ūN̄ ]∗. Our interest in
this section is bounding ∥U∗E∥. This term captures the impact of approximating the system with a finite
impulse response of length T . We will show that

∥U∗E∥ ≲ σu
√

(Tp +m)NT ∥Γ∞∥∥CAT−1∥2.

The main challenge in analyzing U∗E is the fact that {et}
N̄
t=T terms and {ūt}

N̄
t=T terms are dependent.

In fact et contains a uτ component inside for any τ ≤ t − T . The following theorem is our main result on
bounding this term which carefully addresses these dependencies.
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Theorem D.1 Suppose we are given U ,E, as described in Section 2.1 and (A.1). Define γ = ∥Γ∞∥Φ(A)
2
∥CAT−1

∥
2

1−ρ(A)2T

and suppose N ≥ T . Then, with probability at least 1 − T (exp(−100Tp) + 2 exp(−100m)),

∥U∗E∥ ≤ cσu

√

T max{N,
mT

1 − ρ(A)T
}max{Tp,m}γ.

Proof We first decompose U∗E = ∑
N̄
t=T ūte

∗
t into sum of T smaller products. Given 0 ≤ t < T , create

sequences St = {t+T, t+2T, . . . , t+NtT} where Nt is the largest integer satisfying t+NtT ≤ N̄ . Each sequence
has length Nt which is at least ⌊N/T ⌋ and at most ⌊N/T ⌋ + 1. With this, we form the matrices

Ut = [ūt+T , ūt+2T , . . . , ūt+NtT ]
∗, Et = [et+T , et+2T , . . . , et+NtT ]

∗. (D.1)

Then, U∗E can be decomposed as

U∗E =
T−1

∑
t=0

U∗
t Et Ô⇒ ∥U∗E∥ ≤

T−1

∑
t=0

∥U∗
t Et∥. (D.2)

Corollary D.3 provides a probabilistic spectral norm bound on each term of this decomposition on the right
hand side. In particular, applying Corollary D.3, substituting υ definition, and union bounding over T terms,
for all t, we obtain

∥U∗
t Et∥ ≤ cσu

√

max{N,
mT

1 − ρ(A)T
}max{p,m/T}γ,

with probability at least 1 − T (exp(−Tq) + 2 exp(−100m)). This gives the advertised bound on U∗E via
(D.2).

D.1 Upper Bounding the Components of the Unknown State Decomposition
Our goal in this section is providing an upper bound on the spectral norm of U∗

t Et which is described in
(D.1). The following lemma provides a bound that decays with 1/

√
Nt. The main tools in our analysis are the

probabilistic upper bound on the Et matrix developed in Section D.2 and martingale concentration bound
that was developed and utilized by the recent work of Simchowitz et al [25]. Below we state our bound in the
more practical setup m ≤ n to avoid redundant notation. In general, our bound scales with min{m,n}.

Theorem D.2 Define γ = ∥Γ∞∥Φ(A)
2
∥CAT−1

∥
2

1−ρ(A)2T
. U∗

t Et obeys

∥U∗
t Et∥ ≤ c0σu

√
τ max{Tp,m}Ntγ,

with probability at least 1 − exp(−100 max{Tp,m}) − 2 exp(−cτNt(1 − ρ(A)T ) + 3m) for τ ≥ 1.

Proof Given matrices Ut,Et, define the filtrations Fi = σ({uj ,wj}t+iTj=1 ) for 1 ≤ i ≤ Nt. According to this
definition ūt+iT is independent of Fi−1 and ūt+iT ∈ Fi. The reason is earliest input vector contained by ūt+iT
has index t+ 1+ (i− 1)T which is larger than t+ (i− 1)T . Additionally, observe that et+iT ∈ Fi−1 as et+iT is a
deterministic function of xt+1+(i−1)T which is a function of {uj ,wj}

t+(i−1)T
j=1 .

We would like to use the fact that, for each i, et+iT and ūt+iT are independent. LetXt = [xt+1 . . . xt+1+(Nt−1)T ]
∗

so that Et =Xt(CA
T−1)∗. In light of Lemma D.5, we will use a covering bound on the matrix

U∗
t Et = U

∗
t Xt(CA

T−1
)
∗.

Let C1 be a 1/4 `2-cover of the unit sphere STp−1 and C2 be a 1/4 `2-cover of the unit sphere in the row space
of C. There exists such covers satisfying log ∣C1∣ ≤ 3Tp and log ∣C2∣ ≤ 3 min{m,n} ≤ 3m. Pick vectors a,b from
C1,C2 respectively. Let Wi = a

∗ūt+iT and Zi = b∗et+iT . Observe that

Nt

∑
i=1

WiZi = a
∗
(U∗

t Et)b.
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We next show that ∑Nti=1WiZi is small with high probability. Applying Lemma D.6, we find that, for τ ≥ 2,
with probability at least 1 − 2 exp(−cτNt(1 − ρ(A)T )),

∥Etb∥
2
`2 =

Nt

∑
i=1

Z2
i ≤ τNtγ, (D.3)

where our definition of γ accounts for the ∥Γ∞∥ factor. We will use this bound to ensure Lemma D.4 is
applicable with high probability. Since ūt+iT has N (0, σ2

u) entries, applying Lemma D.4, we obtain

P({
Nt

∑
i=1

WiZi ≥ t}⋂{
Nt

∑
i=1

Z2
i ≤ τNtγ}) ≤ exp(−

t2

cτσ2
uNtγ

).

for some absolute constant c > 0. Picking t = 11σu
√
cτ max{Tp,m}Ntγ, we find

P({
Nt

∑
i=1

WiZi ≥ t}⋂{
Nt

∑
i=1

Z2
i ≤ cNtγ}) ≤ exp(−120 max{Tp,m}).

Defining variables Wi(a) for each a ∈ C1, and events E(a) = {∑
Nt
i=1Wi(a)Zi ≥ t}, applying a union bound, we

obtain,

P({ ⋃
a∈C1

E(a)}⋂{
Nt

∑
i=1

Z2
i ≤ cNtγ}) ≤ exp(−110 max{Tp,m}).

Combining this bound with (D.3), we find that, for a fixed b and for all a, with probability at least
1 − exp(−110 max{Tp,m}) − 2 exp(−cτNt(1 − ρ(A)T )), we have

a∗U∗
t Etb =

Nt

∑
i=1

WiZi ≤ c0σu
√
τ max{Tp,m}Ntγ, (D.4)

for some c0 > 0. Applying a union bound over all b ∈ C2, with probability at least 1− exp(−100 max{Tp,m})−

2 exp(−cτNt(1−ρ(A)T )+3m), we find that (D.4) holds for all a,b. Overall, we found that for all a,b pairs in
the 1/4 covers, a∗(U∗

t Et)b ≤ κ = c0σu
√
τ max{Tp,m}Ntγ. Applying Lemma D.5, this implies ∥U∗

t Et∥ ≤ 2κ.

The following corollary simplifies the result when N ≥ T which is the interesting regime for our purposes.

Corollary D.3 Assume N ≥ T . With probability at least 1−exp(−100Tp)−2 exp(−100m), we have ∥U∗
t Et∥ ≤

c′σu
√

max{N, mT
1−ρ(A)T

}max{p,m/T}γ for some constant c′ > 0.

Proof N ≥ T implies Nt ≥ ⌊N/T ⌋ ≥ N/(2T ). In Theorem D.2, pick τ = max{1, c1
mT

N(1−ρ(A)T )
} for c1 = 206/c.

The choice of τ guarantees the probability exponent cτNt(1−ρ(A)T )−3m ≥ 100m. To conclude, observe that
c0σu

√
τ max{Tp,m}Ntγ ≤ c

′σu
√

max{1, mT
N(1−ρ(A)T )

}max{p,m/T}Nγ for an absolute constant c′ > 0.

For completeness, we restate the subgaussian Martingale concentration lemma of Simchowitz et al. which is
Lemma 4.2 of [25].

Lemma D.4 Let {Ft}t≥1 be a filtration, {Zt,Wt}t≥1 be real valued processes adapted to Ft,Ft+1 respectively
(i.e. Zt ∈ Ft,Wt ∈ Ft+1). Suppose Wt ∣ Ft is a σ2-sub-gaussian random variable with mean zero. Then

P({
T

∑
t=1

ZtWt ≥ α}⋂{
T

∑
t=1

Z2
t ≤ β}) ≤ exp(−

α2

2σ2β
)

This lemma implies that ∑Tt=1ZtWt can essentially be treated as an inner product between a deterministic
sequence Zt and an i.i.d. subgaussian sequence Wt.

The following lemma is a slight modification of the standard covering arguments.
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Lemma D.5 (Covering bound) Given matrices A ∈ Rn1×N ,B ∈ RN×n2 , let M = AB. Let C1 be a 1/4-
cover of the unit sphere Sn1−1 and C2 be a 1/4-cover of the unit sphere in the row space of B (which is at
most min{N,n2} dimensional). Suppose for all a ∈ C1,b ∈ C2, we have that a∗Mb ≤ γ. Then, ∥M∥ ≤ 2γ.

Proof Pick unit length vectors x,y achieving x∗My = ∥M∥. Let S be the row space of B. Observe that
y ∈ S. Otherwise, its normalized projection on S, PS(y)/∥PS(y)∥`2 achieves a strictly better inner product
with x∗M . Pick 1/4 close neighbors a,b of x,y from the covers C1,C2. Then,

x∗My = a∗Mb + (x − a)∗Mb +x∗M(y − b) ≤ γ +x∗My/2,

where we used the maximality of x,y. This yields x∗My ≤ 2γ.

D.2 Bounding Inner Products with the Unknown State
In this section, we develop probabilistic upper bounds for the random variable Eta where a is a fixed vector
and Et is as defined in (D.1).

Lemma D.6 Let Et ∈ RNt×m be the matrix composed of the rows et+iT = CAT−1xt+1+iT . Define

γ =
Φ(A)2∥CAT−1∥2

1 − ρ(A)2T
.

Given a unit length vector a ∈ Rm, for all τ ≥ 2 and for some absolute constant c > 0, we have that

P(∥Eta∥
2
`2 ≥ τNt∥Γ∞∥γ) ≤ 2 exp(−cτNt(1 − ρ(A)

T
)).

Proof Let dt = xt −ATxt−T . By construction (i.e. due to the state-space recursion (2.2)), dt is independent
of xt−T . We can write xt+iT as

xt+iT =
i

∑
j=1

A(i−j)Tdt+jT +A
iTxt. (D.5)

We wish to understand the properties of the random variable ∥Eta∥
2
`2

which is same as,

sa =
Nt

∑
i=1

(a∗et+iT )
2
=
Nt−1

∑
i=0

((a∗CAT−1
)xt+1+iT )

2.

Denote ā = (CAT−1)∗a, aj = (AjT )∗ā, g0 = xt+1, and gi = dt+1+iT for Nt − 1 ≥ i ≥ 1, all of which are n
dimensional vectors. Using these change of variables and applying the expansion (D.5), the ith component of
the sum sa is given by

sa,i = (ā∗xt+1+iT )
2
= (ā∗

i

∑
j=0

A(i−j)Tgj)
2
= (

i

∑
j=0

a∗i−jgj)
2
= ∑

0≤j,k≤i

a∗i−jgja
∗
i−kgk. (D.6)

Observe that, summing over all sa,i for 0 ≤ i ≤ Nt − 1, the multiplicative coefficient of the gjg∗k pair is given
by the matrix,

Mj,k =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
Nt>i≥max{j,k}

ai−ja
∗
i−k if j ≠ k,

∑
Nt>i≥j

ai−ja
∗
i−j = ∑

Nt−1−j
i=0 aia

∗
i if j = k

(D.7)
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Next, we show that these Mj,k submatrices have bounded spectral, Frobenius and nuclear norms (nuclear
norm is the sum of the singular values of a matrix). This follows by writing each submatrix as a sum of rank
1 matrices and using the fact that spectral radius of A is strictly bounded from above by 1.

∥Mj,k∥ ≤ ∥Mj,k∥F ≤ ∥Mj,k∥⋆ ≤ ∑
i≥max{j,k}

∥ai−ja
∗
i−k∥⋆

= ∑
i≥max{j,k}

∥ai−ja
∗
i−k∥

≤ ∑
i≥max{j,k}

∥(A(i−j)T )∗āā∗A(i−k)T ∥

≤ ∑
i≥max{j,k}

∥ā∥2
`2∥A

(i−j)T
∥∥A(i−k)T ∥

≤
∞

∑
i=0

∥ā∥2
`2ρ(A)

∣j−k∣T ρ(A)
2iTΦ(A)

2

≤
Φ(A)2∥ā∥2

`2

1 − ρ(A)2T
ρ(A)

∣j−k∣T .

To further simplify, observe that ∥ā∥2
`2
≤ ∥CAT−1∥2 as ∥a∥`2 = 1. Setting

γ =
Φ(A)2∥CAT−1∥2

1 − ρ(A)2T
,

we have

∥Mj,k∥, ∥Mj,k∥F , ∥Mj,k∥⋆ ≤ γρ(A)
∣j−k∣T . (D.8)

Based on the submatricesMj,k, create theNtn×NtnmatrixM . Now we define the vector ḡ = [g∗0 g
∗
1 . . . g∗Nt−1]

∗.
Observe that, following (D.6) and (D.7), by construction,

sa = ḡ∗Mḡ = ∑
0≤j,k<Nt

g∗jMj,kgk. (D.9)

This puts sa in a form for which Hanson-Wright Theorem is applicable [1, 22]. To apply Hanson-Wright
Theorem, let us first bound the expectation of sa. Since {gi}

Nt−1
i=0 ’s are truncations of the state vector, we

have that Σ(gi) ⪯ Σ(xt+1+iT ) ⪯ Γ∞. Write gi = Σ(gi)
1/2hi for some hi ∼ N (0,In). Using independence of

hi,hj for i ≠ j and Σ(gi) ⪯ Γ∞, we have that

E[sa] =
Nt−1

∑
i=0

E[g∗iMi,igi] =
Nt−1

∑
i=0

E[h∗iΣ(gi)
1/2Mi,iΣ(gi)

1/2hi] (D.10)

=
Nt−1

∑
i=0

tr(Σ(gi)
1/2Mi,iΣ(gi)

1/2
) (D.11)

≤
Nt−1

∑
i=0

∥Σ(gi)∥tr(Mi,i) ≤
Nt−1

∑
i=0

∥Γ∞∥tr(Mi,i) (D.12)

≤ Nt∥Γ∞∥γ. (D.13)

In (D.11), we utilized the fact that for positive semidefinite matrices trace is equal to the nuclear norm and
then we used the fact that nuclear norm of the product obeys ∥XY ∥⋆ ≤ ∥X∥⋆∥Y ∥ [16]. Finally, we upper
bounded ∥Σ(gi)∥ by using the relation Σ(gi) ⪯ Γ∞. Bounded ∥Σ(gi)∥ also implies that the Gaussian vector
gi obeys the “concentration property” (Definition 2.1 of [1]) with K = O(

√
∥Γ∞∥) as Lipschitz functions of

Gaussians concentrate. Recalling (D.9), the Hanson-Wright Theorem of [1] states that

P(sa ≥ E[sa] + t) ≤ 2 exp(−cmin{
t2

∥Γ∞∥2∥M∥2
F

,
t

∥Γ∞∥∥M∥
}).
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To proceed, we upper bound ∥M∥F and ∥M∥. First, recall again that ∥Mi,j∥F ≤ γρ(A)∣i−j∣T . Adding these
over all i, j pairs, using (D.8) and the fact that there are at most 2Nt pairs with fixed difference ∣i− j∣ = τ , we
obtain

∥M∥
2
F =∑

i,j

∥Mi,j∥
2
F ≤ ∑

0≤i,j≤Nt−1

γ2ρ(A)
2∣i−j∣T

≤ 2Ntγ
2
Nt−1

∑
τ=0

ρ(A)
2τT

≤
2γ2Nt

1 − ρ(A)2T
.

To assess the spectral norm, we decomposeM into 2Nt − 1 block permutation matrices {M (i)}
Nt−1
i=−Nt+1. M

(0)

is the main diagonal of M , and M (i) is the ith off-diagonal that contains only the submatrices Mj,k with
fixed difference j − k = i. By construction ∥M (i)∥ ≤ γρ(A)∣i∣T as each nonzero submatrix satisfies the same
spectral norm bound. Hence using (D.8),

∥M∥ ≤
Nt−1

∑
i=−Nt+1

∥M (i)
∥ ≤ γ(

2

1 − ρ(A)T
− 1) ≤

2γ

1 − ρ(A)T
.

With these, setting t = τNt∥Γ∞∥γ and using (D.13) and bounds on ∥M∥F , ∥M∥, for τ ≥ 1 and using
K = O(

√
∥Γ∞∥), and applying Theorem 2.3 of [1], we find the concentration bound

P(sa ≥ (τ + 1)Nt∥Γ∞∥γ) ≤ 2 exp(−2cτ min{
(Nt∥Γ∞∥γ)2

∥Γ∞∥2 2γ2Nt
1−ρ(A)2T

,
Nt∥Γ∞∥γ

∥Γ∞∥
2γ

1−ρ(A)T

}) (D.14)

≤ 2 exp(−cτ min{Nt(1 − ρ(A)
2T

),Nt(1 − ρ(A)
T
)}) (D.15)

= 2 exp(−cτNt(1 − ρ(A)
T
)), (D.16)

which is the desired result after 1 + τ ↔ τ substitution and using the initial assumption of τ ≥ 2.

E Proof of Theorem C.1

This proof is a slight modification of the proof of Theorem 4.1 of Krahmer et al. [18] and we will directly
borrow their notation and estimates. First, we restate their Theorem 3.1.

Theorem E.1 Let A be a set of matrices and let ξ be a random vector whose entries ξj are standard normal.
Let dF , d2→2 be the Frobenius and spectral norm distance metrics respectively. Set

E = γ2(A, ∥ ⋅ ∥)(γ2(A, ∥ ⋅ ∥) + dF (A)) + dF (A)d2→2(A), (E.1)

V = d2→2(A)(γ2(A, ∥ ⋅ ∥) + dF (A)), and U = d2
2→2(A). (E.2)

Then, for some absolute constants c1, c2 > 0 and for all t > 0,

P(sup
A∈A

∣∥Aξ∥2
`2 − E ∥Aξ∥2

`2 ∣ ≥ c1E + t) ≤ exp(−c2 min{
t2

V 2
,
t

U
}).

Theorem E is a variation of Theorem 4.1 of [18]. In light of Theorem E.1, we simply need to adapt the
estimates developed during the proof of Theorem 4.1 of [18] for our purposes. We are interested in a fixed
submatrix of size m × s compared to all s-column submatrices for fixed m-rows. This makes our set A a
subset of their set and also makes their estimates an upper bound on our estimates. Following arguments
of [18], for some constant c3 > 0, we have

dF (A) = 1, d2→2(A) ≤
√
s/m, γ2(A, ∥ ⋅ ∥) ≤ c3

√
s/m log(2s) log(2d).

To proceed, we will apply Theorem E.1. This will be done in two scenarios depending on whether isometry
constant obeys δ ≤ 1 or not. Recall that m0 = c0s log2

(2s) log2
(2d). Below, we pick c0 sufficiently large to

compensate for c1, c2, c3.
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m ≥ m0 case: We have that γ2(A, ∥ ⋅ ∥) ≤ c3
√
s/m log(2s) log(2d) ≤ 1 so that E ≤

√
s/m + 2γ2(A, ∥ ⋅ ∥) ≤

3c3
√
s/m log(2s) log(2d). Similarly, V ≤ 2

√
s/m and U ≤ s/m. In this case, picking large c0, observe that

c1E ≤
√
m0/(4m). With this, we can pick t =

√
m0/(4m) to guarantee c1E + t ≤

√
m0/m. We have that

t2/V 2 ≥ m0/(16s), t/U ≥ t2/U ≥ m0/(4s). Picking c0 ≥ 16/c2, we conclude with the desired probability
exp(− log2

(2d) log2
(2s)).

m <m0 case: In this case, we have

γ2(A, ∥ ⋅ ∥) + dF (A) ≤ c′
√
s/m log(2s) log(2d),

where c′ = c3 +
√
c0. Hence, we find

E ≤ c′c3(s/m) log(2s)2 log(2d)2
+
√
s/m.

Observe that, we can ensure i) c1
√
s/m ≤

√
m0/m/4 ≤ m0/(4m) and ii) c1c′c3(s/m) log(2s)2 log(2d)2 ≤

m0/(4m) for sufficiently large constant c0. The latter one follows from the fact that c′ grows proportional to
√
c0 whereas m0 grows proportional to c0. With this, we can pick t =m0/(2m) which guarantees c1E + t ≤ m0

m
.

To find the probability, we again pick c0 to be sufficiently large to guarantee that i) c2t/U ≥ c2(m0/(2m))/(s/m) ≥

log2
(2s) log2

(2d) and ii)

t2/V 2
≥

(m0/m)2

4(s/m)(c′
√
s/m log(2s) log(2d))2

=
c20s

2 log4
(2s) log4

(2d)

4s2(c′)2 log2
(2s) log2

(2d)

=
c20 log2

(2s) log2
(2d)

4(c3 +
√
c0)2

≥ log2
(2s) log2

(2d)/c2,

which concludes the proof by yielding exp(− log2
(2d) log2

(2s)) probability of success.
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