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Abstract— We address the Desynchronization problem of
achieving an equally spaced transmission schedule in a co-
operative fashion. This problem arises in a shared medium
communication and is of importance to achieve a fair multiple
access schedule at the Medium Access Control (MAC) layer in
the context of Wireless Sensor Networks (WSNs). In this paper,
we investigate the convergence rate of different optimization
algorithms and the potential benefits of addressing the problem
as a solution of a set of linear equations. Initial results suggest
that the Gauss-Seidel method can yield a faster convergence
than previously proposed methods that employ a version of
the Nesterov’s method. Our approach also poses an interesting
path for future research given the benefits of using other more
advanced methods to solve systems of linear equations. Through
simulations, we provide evidence to support future research on
optimizing the parameter selection and also on categorizing
the conditions under which one solution might be better in
detriment of another.

Index Terms— Distributed control; Communication net-
works; Optimization algorithms

I. INTRODUCTION

Desynchronization among different agents in a network
plays a role in various tasks including data aggregation, duty
cycling and cooperative communications. In the context of
Wireless Sensor Networks (WSNs), a key aspect to achieve
a fair Time Division Multiple Access (TDMA) scheduling is
the definition of distributed algorithms that perform desyn-
chronization at the Medium Access Control (MAC) layer.
The problem lies in how to devise a distributed algorithm
that can evenly spread the communicating time slots among
the nodes [1], [2], [3], [4], [5].

Although there are centralized solutions to the desyn-
chronization problem that rely on a coordination channel,
a central node or a global clock (for example making use of
GPS) [2], in this paper attention is focused on decentralized
solutions. In the literature, it is common to accept algorithms
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where nodes hop between channels of the physical layer
so as to avoid channels with excessive interference. The
approach implemented in the Time-Synchronized Channel
Hoping (TSCH) [2] protocol has been established as state-
of-the-art in the IEEE 802.15.4e-2012 standard [6].

A large body of research [1], [2], [4], [7], [8], [9], [10],
[11], [12], [13] exists regarding distributed desynchronization
algorithms that can enable a decentralized WSN MAC-layer
coordination. These algorithms are inspired by biological
agents modeled as Pulse-Coupled Oscillators (PCOs) and
each node acts as a timing mechanism with a periodic pulsing
that is adjusted based on the timings of pulses received from
other nodes.

Distributed desynchronization algorithms using the PCOs
model are based on the seminal work by Mirollo and Strogatz
[14] to model the PCO dynamics and often present different
characteristics that are of relevance to WSNs: limited lis-
tening [1], [15], [16] that enables power saving in wireless
transceivers; algorithms capable of dealing with multi-hop
networks and hidden nodes [1], [8], [13]; scalability to a
large number of nodes [4], [12]; and, fast convergence to
steady-state [9], [10], [11], [16].

Prior to the work in [17], the convergence speed of the
desynchronization algorithm was not theoretically studied
and was provided by means of simulations or empirical mea-
sures. The state-of-the-art at that time included lower bounds
[11], [15] and order-of-convergence estimates [1], [4], [15].
In [17], worst-case convergence rates are established and
the algorithm was applied to the case of multichannel. In
addition, the PCO-based desynchronization is shown to be
identical to a gradient descent algorithm with a minor modi-
fication. Building on that result, a fast-converging algorithm
is provided using the Nesterov method due to its worst-
case convergence rate. However, that bound represents the
worst performance over all differentiable functions g and
not necessarily a good fit for the problem at hand. Here we
exploit the basis framework developed in [17] to investigate
the use of iterative algorithms for solving linear equations
as an alternative approach to address the desynchronization
problem. In the process, we are able to characterize both the
convergence rate of the novel approach and the ones using
gradient-descent-like methods.

The idea presented in this paper is to use a standard
algorithm for distributed solution of linear equations to gain
in performance when compared to the NESTEROV method.
The approach discussed herein is to introduce the Gauss-
Seidel algorithm and apply it to solving the linear equation
∇g(φ) = 0, inspired by the approach used in [18] for the



PageRank problem.
The main contributions of this paper are:
• We provide convergence rates for different types of

gradient-descent-based methods by leveraging its anal-
ysis as dynamical systems.

• We study the convergence properties of the Gauss-
Seidel iteration when applied to the linear equation
defining the optimal solution to desynchronization.

Notation : The transpose and the spectral radius of a
matrix A are denoted by Aᵀ and ρ(A), respectively. We let
1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimension
vector of ones and zeros, and In denotes the identity matrix
of dimension n. Dimensions are omitted when no confusion
arises. The vector ei denotes the canonical vector whose
components equal zero, except component i that equals one.
The notation diag(v) is a diagonal matrix with its diagonal
equal to the vector v. The Euclidean norm for vector x is
represented as ‖x‖2 :=

√
xᵀx.

II. REVIEW OF PCO-BASED DESYNCHRONIZATION

A PCO-based desynchronization algorithm assumes a ring
network where each agent broadcasts periodically a fire
message or a pulse. Such dynamics is modeled by a phase
variable θi(t) for each node i ∈ {1, · · · , n} which is defined
[1], [15]

θi(t) =
t

T
+ φi(t) mod 1, (1)

where φi ∈ [0, 1] is the so called phase offset of node i and
mod represents the modulo arithmetics. The idea behind
(1) is to consider the phase going from zero to one along
a circle. Every node i broadcasts a pulse when its phase
reaches the unity (i.e., every T time units) and then resets
it to zero. When the nodes listen to other nodes pulses,
they adjust their φ variable according to an update equation
based on the PCO dynamics [14]. The algorithm DESYNC
[1] assumes an ordered initial state 0 ≤ θ1(0) ≤ · · · ≤ θn(0)
which is kept assuming perfect beacon reception. The phase
is updated based on the node phase neighbors θi−1 and θi+1

after receiving the beacon from node i− 1

θ
′

i(ti−1) = (1−α)θi(ti−1)+α
θi−1(ti−1) + θi+1(ti−1)

2
(2)

where ti−1 is the time instant at which fire message from
node i−1 was received by node i and assuming we consider
the nodes to be placed on a circle such that node 1 and n are
neighbors. The jump-phase parameter α ∈ (0, 1) translates
how much node i changes its phase in response to the phase
of its neighbors.

The algorithm DESYNC implementing the update equation
(2) has the following interesting features: each node updates
its phase exactly once during each updating cycle; there is
no need for any of the nodes to know n; requires limited
listening as only two neighbors are used. The update in (2)
has also been shown to converge to the state of desynchrony
at time t̄, meaning that for, all t ≥ t̄, the time between
consecutive beacons becomes T/n apart from a small ε error.

The work in [17] introduced a slight modification to the
DESYNC algorithm that is summarized in the following
assumption, which uses the superscript k to denote the update
cycle of the variable and drops the time dependency.

Assumption 1 (update variation [17]): In DESYNC, node
n updates its phase at update cycle k using θ

(k−1)
n−1 instead

of θ(k)n−1.
Assumption 1 allows to combine (1) and (2) into

φ
(k)
1 = (1− α)φ

(k−1)
1 +

α

2

(
φ
(k−1)
2 + φ(k−1)

n − 1
)

φ
(k)
i = (1− α)φ

(k−1)
i +

α

2

(
φ
(k−1)
i−1 + φ

(k−1)
i+1

)
, 2 ≤ i ≤ n− 1

φ(k)n = (1− α)φ(k−1)
n +

α

2

(
φ
(k−1)
n−1 + φ

(k−1)
1 + 1

)
(3)

where φ(k) = (φ
(k)
1 , φ

(k)
2 , · · · , φ(k)n ) ∈ Rn is a vector

containing all the phases and d = (1, 0, · · · , 0,−1) ∈ Rn.
The format in (3) is similar to a consensus system ([19],
[20]) with an input bias. That fact enables the use of standard
tools to analyze those systems and provide convergence rate
results. It can be further converted into an optimization in
the result that follows.

Proposition 2 (Desynchronization as optimization [17]):
Let φ(k) denote the phases of all nodes at updating cycle k.
If Assumption 1 holds, then DESYNC (3) can be viewed as
the steepest descent method applied to

minimize
φ

g(φ) :=
1

2
‖Dφ− v1n + en‖22 (4)

where v = 1/n, 1n is the vector of ones, en =
(0, 0, · · · , 0, 1), and

D =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . . . . .
...

0 · · · 0 0 −1 1
1 · · · 0 0 0 −1

 .
Specifically, the updates in (3) can be written as

φ(k) = φ(k−1) − α

2
∇g(φ(k−1)).

In [17], the authors propose using the Nesterov’s fast gra-
dient algorithm as a means to get a fast convergent algorithm.
The worst-case convergence rate for Nesterov’s method to
produce a solution φ̄ that satisfies g(φ̄) − g(φ?) ≤ ε,
where φ? minimizes g, is O(1/

√
ε) whereas for the steepest

descent method can only achieve a convergence rate O(1/ε).
Since there are multiple solutions to the desynchronization
problem, x? can be taken as the state separated by 1/n with
the first entry equal to x

(k)
1 when computing the error at

time k. We omit the dependence of time of x? since for
analysis purposes it suffices to know that any phase vector
with entries distanced by 1/n is a minimizer of g or a fixed-
point of any of the optimization algorithms. The objective of
this paper is to present results showing that considering other
types of solutions to the optimization problem in Proposition
2 achieves a higher performance.



III. DESYNCHRONIZATION AS AN OPTIMIZATION
PROBLEM

In the previous section a brief review of the PCO-based
DESYNC algorithm was presented and how it has been shown
that under Assumption 1 it is equivalent to the steepest
descent algorithm. In this section, using the optimization
problem format for the DESYNC, other algorithms are in-
vestigated and their correspondent theoretical convergence
rates are given.

We introduce the compact notation[
A B
C D

]
(5)

to represent the dynamical system

x(k+1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

with state vector x(k) ∈ Rm, output vector y(k) ∈ Rn and
input vector u(k) ∈ Rn.

In [21], it is shown how different optimization algorithms
can be casted as dynamical systems in the form of (5) that
we summarize in the next proposition.

Proposition 3 (Optimization algorithms as linear systems):
Given the problem

minimize
x

g(x)

for a differentiable function g, the Gradient descent, Heavy-
ball and Nesterov methods defined as:

GRADIENT : x(k+1) = x(k) − β∇g(x(k))

HEAVY-BALL :
x(k+1) = x(k) − β∇g(x(k))

+ γ(x(k) − x(k−1))

NESTEROV :
x(k+1) = ξ(k) − β∇g(ξ(k))

ξ(k) = (1 + γ)x(k) − γx(k−1)

can be expressed in the format (5) as:

GRADIENT :

[
In −βIn
In 0n

]
(6a)

HEAVY-BALL :

 (1 + γ)In −γIn −βIn
In 0n 0n
In 0n 0n

 (6b)

NESTEROV :

 (1 + γ)In −γIn −βIn
In 0n 0n

(1 + γ)In −γIn 0n

 (6c)

where u(k) = ∇g(y(k)).
Expressing an optimization algorithm as a dynamical

system facilitates establishing its convergence rate. The defi-
nition used for the rate of convergence is the positive constant
λ < 1 such that x(k) − x? ≤ λk(x(0) − x?). This result is
given in the next theorem.

Theorem 4 (Convergence Rate and Stability): The
optimization methods of GRADIENT descent, HEAVY-BALL
and NESTEROV applied to the desynchronization problem
in (4) converge if and only if :

GRADIENT : α ∈ (0, 1) with rate

λG = max{|1− α

2
minλi|, |1−

α

2
maxλi|}

HEAVY-BALL : λH < 1

λH =

{
1
2 |1 + γ − βλi|+ 1

2

√
∆, if ∆ ≥ 0

√
γ, otherwise.

where ∆ = (1 + γ)2(1− βλi)2 − 4γ

NESTEROV : λN < 1

λN =

{
1
2 |(1 + γ)(1− βλi)|+ 1

2

√
∆, if ∆ ≥ 0√

γ(1− βλi), otherwise.

where ∆ = (1 + γ)2(1− βλi)2 − 4γ(1− βλi)
with convergence rates λG, λH , and λN , respectively,

Proof: Proposition 3 allow us to write each of the
optimization algorithms into the format in (5). Since problem
(4) is quadratic, its gradient is linear and given by

∇g(φ) = DᵀDφ+Dᵀen.

Replacing u(k) = ∇g(y(k)) and using the fact that x? = Ax?

and y? = Cx?, one can write the error system as

x(k+1) − x? = (A+BQC)(x(k) − x?)

where Q = DᵀD = ∇2g(φ). Thus, one can study the
convergence properties of all three algorithms by studying
the eigenvalues of T := A+BQC, following standard linear
systems theory.

The analysis of the spectra of T can be simplified due to
the following relationship

T =

[
U 0n
0n U

]
(A+BΛC)

[
U 0n
0n U

]ᵀ
where we used the eigenvalue decomposition Q = UΛUᵀ,
where U is orthogonal and Λ = diag(λ1, λ2, · · · , λn). Thus,
by similarity, the eigenvalues of T are the eigenvalues of all
matrices

Ti = A1 +B1λiC1, i = 1, · · · , n

where A1, B1 and C1 correspond to the matrices A, B
and C in (6a), (6b) and (6c) with n = 1, respectively. The
implication being that to prove stability and to determine the
convergence rate, it suffices to determine the eigenvalues of
the Ti.

GRADIENT: For the case of the gradient method, Ti =
1 − βλi. Because Q is a circulant matrix, its eigenvalues
are given by λi = 2 − 2 cos( 2π(i−1)

n ) and clearly λ1 = 0
which makes T1 = 1. Solving the inequality |1 − α(1 −
cos( 2π(i−1)

n ))| < 1 (since β = α/2) gives that α ∈ (0, 1).



The convergence rate is given by the eigenvalue of Ti with
the largest magnitude, i.e.,

λG = max |1− α

2
λi|

= max{|1− α

2
minλi|, |1−

α

2
maxλi|}

HEAVY-BALL: For this method, the matrices Ti are the
following

Ti =

[
1 + γ − βλi −γ

1 0

]
and the algorithm converges provided that all eigenvalues
except the one associated with λ1 = 0 are smaller than one
in magnitude, or equivalently, that the following convergence
rate can be made smaller than one

λH = max{|ν1|, |ν2|}

=

{
1
2 |1 + γ − βλi|+ 1

2

√
∆, if ∆ ≥ 0

√
γ, otherwise.

where ∆ = (1 + γ − βλi)2 − 4γ. The above comes directly
from the characteristic polynomial of Ti

ν2 − (1 + γ − βλi)ν + γ = 0.

A suboptimal choice is to select β = 1
maxλi

and solve for
γ.

NESTEROV: For this method, the matrices Ti are the
following

Ti =

[
(1 + γ)(1− βλi) −γ(1− βλ)

1 0

]
and similarly to the HEAVY-BALL method,

λN = max{|ν1|, |ν2|}

=

{
1
2 |(1 + γ)(1− βλi)|+ 1

2

√
∆, if ∆ ≥ 0√

γ(1− βλi), otherwise.

where ∆ = (1 + γ)2(1 − βλi)2 − 4γ(1 − βλi). The above
comes directly from the characteristic polynomial of Ti

ν2 − (1 + γ)(1− βλi)ν + γ(1− βλi) = 0.

The previous theorem used a dynamical systems approach
to establish convergence results similar to those in [17].
However, this approach enabled us to explicitly compute
the rate of convergence for different optimization algorithms
depending solely on the eigenvalues of Q (that are known in
closed-form) and the chosen parameters β and γ.

IV. DESYNCHRONIZATION USING GAUSS-SEIDEL
ITERATIONS

In this section, we present preliminary results regarding the
solution to the problem (4) but using the approach of iterative
algorithms for systems of linear equations. We describe the
Gauss-Seidel algorithm and apply it to solving the linear
equation ∇g(φ) = 0.

For a general system Ax = b, with A = L + D + U
decomposed in lower, diagonal and upper matrices, the
Gauss-Seidel method has the following update rule:

x(k + 1) = (L+D)−1(b− Ux(k))

which, by taking advantage of the triangular form of L +
D, and the formulation of the desynchronization problem
becomes

φ
(k+1)
1 =

1

2

(
1− φ(k)2 − φ(k)n

)
φ
(k+1)
i =

1

2

(
−φ(k+1)

i−1 − φ(k)i+1

)
, 2 ≤ i ≤ n− 1

φ(k)n =
1

2

(
−1− φ(k+1)

1 − φ(k+1)
n−1

) (7)

which requires communication with the immediate neighbors
akin the original problem and exploits the inherent sequential
behavior of the DESYNC algorithm to have nodes using the
most updated values for the phases. The next theorem asserts
the exponential rate of convergence for (7).

Theorem 5 (Convergence Rate of Gauss-Seidel): The it-
erative method (7) asymptotically converges to a desynchro-
nization state with exponential convergence rate λGS , i.e.,

φ(k+1) − φ? ≤ λk+1
GS (φ(0) − φ?) (8)

where
λGS = |λ2(TGS)|

and

TGS =

n−1∑
j=0

(
1

2

)j+1

EjEᵀ, (9)

E =

[
0ᵀn−1 0
In−1 0n−1

]
+ ene

ᵀ
1 (10)

with |λn(TGS)| ≤ |λn−1(TGS)| ≤ · · · ≤ |λ1(TGS)|.
Proof: The inequality in (8) comes directly from seeing

the Gauss-Seidel algorithm as a linear time-invariant system
with transition matrix TGS := −(D + L)−1U .

The first step in the proof is noting that matrix TGS for
the DESYNC problem has the form:

TGS = (2In − E)−1Eᵀ

=
1

2
(In −

1

2
E)−1Eᵀ

(11)

with the strictly lower triangular matrix E defined in (10).
We remark that

(In +N)−1 = In +

n−1∑
k=1

(−1)kNk

for a general strictly lower triangular matrix N . Using the
above equality and after some algebraic manipulations, (11)
simplifies to (9).

The second step is to show stability by proving ρ(TGS) ≤
1. Matrix TGS is row stochastic since its elements are



trivially nonnegative and

TGS1n =

n−1∑
j=0

(
1

2

)j+1

Ej

 (1n +Dᵀen)

=
1

2
(1n +Dᵀen) +

1

22


0
2

1n−3

3

+
1

23

 02
2

1n−3



+
1

24

 03
2

1n−4

+ · · ·+ 1

2n

[
0n−1

2

]
= 1n.

By noticing that the first row is equal to two times the nth
minus the n− 1th rows, the following equality is true

UTGS =

[
0 0ᵀn−1

0n−1 T subGS

]
where

U =

[
1 0ᵀn−3 1 −2

0n−1 In−1

]
and the matrix T subGS is a submatrix of TGS obtained by
removing the first row and column. Since the matrix U
implements elementary row operations, it has no effect on the
spectra of TGS , meaning that λi(TGS) = λi(UTGS),∀1 ≤
i ≤ n. In particular, from the format of UTGS , it follows
that

{λi(TGS), 1 ≤ i ≤ n} = {λi(T subGS ), 1 ≤ i ≤ n− 1} ∪ {0}

Similarly, T subGS remains row stochastic and its support graph
is strongly connected since the last row and columns are
full (meaning that the correspondent node would have edges
to and from all the remaining nodes in the graph). As a
consequence, λ1(T subGS ) = 1 and |λ2(T subGS )| < 1 by the
Perron-Frobenius Theorem and the conclusion about the
convergence rate follows.

V. SIMULATION RESULTS

The main objective of this section is to compare the use of
the Nesterov optimization against the Gauss-Seidel iteration,
GS using the results in Theorems 4 and 5. In all simulations,
the initial state φ(0) = 1n/n meaning that all nodes start at
the same phase.

Figure 1 compares the evolution of the convergence rates
for GRADIENT with β = 1

4 (which is equivalent to the
PCO-based DESYNC when β = α

2 as demonstrated in [17]),
GAUSS-SEIDEL, NESTEROV and HEAVY-BALL for the fixed
parameters β = 1

4 , γ = 1
2 . The main observation is that the

optimization methods improve performance and so does the
use of an iterative algorithm for solving linear equations.
As expected all algorithms have a convergence rate that
approaches the unity as the number of nodes in the network
grows.

An important remark is that the version of the Nesterov
method proposed in [17] has time-varying parameters (in
particular γ = k−1

k+2 ) that might contribute to increase the
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Fig. 1. The convergence rate λ2 for the different algorithms depending on
the number of nodes n.
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Fig. 2. Logarithmic evolution of the error norm for the PCO-based,
Nesterov and Gauss-Seidel algorithms.

speed of convergence. In order to compare the method
proposed in [17], a simulation of a n = 5 node network was
conducted and the logarithm of the error norm is presented
is Figure 2.

Figure 2 shows that the Gauss-Seidel iteration achieves
a faster convergence at a fixed rate in comparison with the
algorithm in [17]. Both methods present a clear advantage
when compared to the PCO-based method with parameter
α = 0.2. Additional simulations were conducted to assess
the potential advantage of the Nesterov method with a time-
varying parameter. A network of n = 20 nodes was also
simulated and the results are depicted in Figure 3.

The main observation from the evolution of the error in
Figures 2 and 3 is that as n increases, the behavior of
the error norm changes. For small networks, the Gauss-
Seidel method outperforms the Nesterov algorithm. When
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Fig. 3. Logarithmic evolution of the error norm for the PCO-based,
Nesterov and Gauss-Seidel algorithms for the 20 node network.

increasing n, the error decreases faster using the Gauss-
Seidel up to a small tolerance and then the Nesterov method
becomes faster. The observed oscillations tend to fade for
larger n as observed in simulations for larger networks. This
trend suggest that we are still missing a complete description
of the convergence properties of the optimization algorithms
and iterative solutions for linear equations.

VI. DISCUSSION AND FUTURE WORK

In this paper, the desynchronization problem was ad-
dressed in the format of an optimization problem. In this
formulation, it is possible to apply different distributed
optimization algorithms and also, given the quadratic ob-
jective function, to use an iterative algorithm to solve linear
equations to find the solution of zero gradient.

The analysis of the convergence rate is carried out by
writing the optimization algorithms as Linear Time-Invariant
(LTI) systems and analyzing the correspondent transition
matrix. The Gauss-Seidel is shown to be convergent for the
desynchronization problem and its convergence rate as the
second largest eigenvalue in magnitude of a row stochastic
matrix.

The theoretical results and simulations presented in this
paper suggest that further research is needed to optimize
the convergence rate of all the methods and to possibly
categorize under which assumptions it is beneficial to use one
in detriment of another. Moreover, the contribution of using
iterative solvers for linear equations suggests that one should
consider other algorithms that may bring additional gains
in performance. These questions are of utmost importance
since both the optimization options and the iterative solvers
for linear equations present faster convergence rates than
the PCO-based algorithm that constitutes the state-of-the-
art. A last direction of future work is to use the methods
proposed herein to address the multi-channel case of the
desynchronization problem.
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