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Statistical Privacy in Distributed Average Consensus on Bounded
Real Inputs

Nirupam Gupta, Jonathan Katz and Nikhil Chopra

Abstract—This paper proposes a privacy protocol for dis-
tributed average consensus algorithms on bounded real-valued
inputs that guarantees statistical privacy of honest agents’ inputs
against colluding (passive adversarial) agents, if the set of collud-
ing agents is not a vertex cut in the underlying communication
network. This implies that privacy of agents’ inputs is preserved
against t number of arbitrary colluding agents if the connectivity
of the communication network is at least (t+1). A similar privacy
protocol has been proposed for the case of bounded integral
inputs in our previous paper [1]. However, many applications
of distributed consensus concerning distributed control or state
estimation deal with real-valued inputs. Thus, in this paper we
propose an extension of the privacy protocol in [1], for bounded
real-valued agents’ inputs, where bounds are known apriori to
all the agents.

I. INTRODUCTION

Distributed average consensus algorithms (for eg. [2], [3])
can be used in a peer-to-peer network by agents to reach a
consensus value, equal to the average of all the agents’ inputs.
Some of the applications of distributed average consensus
include sensor fusion [4], solving economic-dispatch problem
in smart grids [5], and peer-to-peer online voting.

Typical distributed average consensus algorithms require the
agents to share their inputs (and intermediate states) with their
neighbors [2], [3]. This infringes the privacy of agents’ inputs,
which is undesirable as certain agents in the network may be
passive adversarial1 and non-trustworthy [6], [7], [8], [9], [10],
[11].

If the agents’ inputs are integers (bounded), privacy in
distributed average consensus can be achieved by relying on
(information-theoretic) distributed secure multi-party compu-
tation protocols [12] or homomorphic encryption-based av-
erage consensus [10], [13]. In this paper, we are interested
in real-valued inputs with known bound, as several appli-
cations of distributed average consensus such as distributed
Kalman filtering [4], formation control [14] and distributed
learning [15]—deal with real-valued agents’ inputs.

Several proposals [6], [8], [9] achieve differential privacy
by having agents obscure their intermediate states (or values)
by adding locally generated noise in a particular synchronous
distributed average consensus protocol. Adding such local
noises induces a loss in accuracy [9], [16] and there is an
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1Passive adversarial agents follow the prescribed protocol unlike active
adversarial agents, but can use their information to gather information about
the inputs of other agents in the network.

inherent trade-off between privacy and the achievable accuracy
(agents are only able to compute an approximation to the
exact average value). Schemes in [8], [7] iteratively cancel the
noise added over time to preserve the accuracy of the average
of all inputs. In the proposed privacy protocol, the random
values added by agents to hide their inputs are correlated over
space (in context of communication network) than over time,
and collectively add up to zero, hence preserving the average
value of the inputs. Note that differential privacy guarantees
inevitably change if the agents’ inputs are bounded by a value
known to all the agents. In this paper, we are interested in
statistical privacy guarantee specifically for the case when
inputs have a known bound.

Scheme in [17] proposes re-designing of network link
weights to limit the observability of agents’ inputs but every
agent’s input gets known to its neighbors. The scheme of
Gupta et al. [18] assumes a centralized (thus, not distributed),
trusted authority that distributes information to all agents each
time they wish to run the consensus algorithm.

We note that some of the above solutions [6], [7], [8],
[9] require synchronous execution of the agents, whereas our
privacy protocol is asynchronous (refer Section III). Moreover,
this is the first paper, to the best of authors’ knowledge, to
propose a privacy protocol for distributed average consensus
on bounded real-value inputs where bounds are apriori known.
It is important to note that prior knowledge of inputs’ bounds
makes the privacy problem more challenging and renders the
existing claims on differential privacy invalid.

A. Summary of Contribution

We develop on our previous works [1], [11] to propose
a privacy protocol that guarantees statistical privacy of hon-
est (non-adversarial) agents’ inputs against colluding passive
adversarial agents in any distributed average consensus over
bounded (bounds known to all agents) real-valued inputs.
In [11] we proposed a general approach for achieving privacy
in distributed average consensus protocols for both real-valued
and integral inputs. However, the privacy guarantee in [11] is
weaker and uses relative entropy (KL-divergence) instead of
the more standard statistical distance for privacy analysis. It is
to be noted that the privacy approach in [1], [11] for integral
inputs is quite similar to the one proposed by Emmanuel et
al. [19]. However, [19] only considers a complete network
topology which is relaxed in our work. Moreover, we focus
on real-valued inputs and thus, the privacy scheme in [19]
is not readily applicable. The privacy scheme in [19] has
been extended for privacy in distributed optimization by [20]
for real-valued agents’ costs (equivalent to ‘inputs’ in our
case). However, the privacy analysis in [20] does not provide
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any formal quantification on privacy guaranteed, and is not
applicable to the case when the inputs are bounded with
bounds being known apriori to all the agents.

Our proposed protocol constitutes of two phases:
1) In the first phase, each agent share correlated random

values with its neighbors and computes a new, “effective
input” based on its original input and the random values.

2) In the second phase, the agents run any (non-private)
distributed average consensus protocol (for eg. [2]) to
compute the sum of their effective inputs.

By design, the first phase ensures that the average of the
agents’ effective inputs is equal to the average of their original
inputs (under a particular mathematical operator). Therefore,
the two-phase approach does not affect the accuracy of the
average value of the inputs. Furthermore, the privacy holds in
our approach—in a formal statistical sense and under certain
conditions, as discussed below—regardless of the average
consensus protocol used in the second phase. To prove this we
consider the worst-case scenario where all the effective inputs
of the honest agents are revealed to the colluding semi-honest
parties in the second phase.

The notion of privacy is the same as that used for the case of
integral inputs in our earlier work [1], which had been adopted
from the literature on secure multi-party computation [21].
Informally, the guarantee is that the entire view of the collud-
ing agents throughout the execution of our protocol can be
simulated by those agents given (1) their original inputs and
(2) the average of the original inputs of the honest agents (or,
equivalently, the average of the original inputs of all the agents
in the network). This holds regardless of the true inputs of the
honest agents. As a consequence, this means that the colluding
adversarial agents learn nothing about the collective inputs
of the honest agents from an execution of the protocol other
than the average of the honest agents’ inputs, and this holds
regardless of any prior knowledge the adversarial agents may
have about the inputs of (some of) the honest agents, or the
distribution of those inputs. We prove that our protocol satisfies
this notion of privacy as long as the set of colluding adversarial
agents is not a vertex cut in underlying the communication
network.

II. NOTATION AND PRELIMINARIES

We let R denote the set of non-negative real numbers and
frac(x) ∈ [0, 1) denote the fractional part of x ∈ R. For any
interval [a, b] ∈ R, [a, b]n denotes the set of n-dimensional
vectors with element taking values in [a, b]. We rely on the
following basic properties

frac(x+ y) = frac (frac(x) + frac(y))

frac(−x) = 1− frac(x), x 6= 0

If x is an n-dimensional vector, then xi denotes its ith
element and

∑
i xi simply denotes the sum of all its elements.

We use 1n to denote the n-dimensional vector all of whose
elements is 1.

We consider communication networks represented by sim-
ple, undirected graphs. That is, the communication links in a
network of n agents is modeled via a graph G = {V, E} where

the nodes V , {1, . . . , n} denote the agents, and there is an
edge {i, j} ∈ E iff there is a direct communication channel
between agents i and j. We let Ni denote the set of neighbors
of an agent i ∈ V , i.e., j ∈ Ni if and only if {i, j} ∈ E . (Note
that i 6∈ Ni since G is a simple graph.)

We say two agents i, j are connected if there is a path
from i to j; since we consider undirected graphs, this notion
is symmetric. We let pi,j denote an arbitrary path between
i and j, when one exists. A graph G is connected if every
distinct pair of nodes is connected; note that a single-node
graph is connected.

Definition 1: (Vertex cut) A set of nodes Vcut ⊂ V is a
vertex cut of a graph G = {V, E} if removing the nodes in S
(and the edges incident to those nodes) renders the resulting
graph unconnected. Then, we say that Vcut cuts V \ Vcut.

A graph is k-connected if the smallest vertex cut of the
graph contains k nodes.

Let G = {V, E} be a graph. The subgraph induced by V ′ ⊂
V is the graph G′ = {V ′, E ′} where E ′ ⊂ E is the set of edges
entirely within V ′ (i.e., E ′ = {{i, j} ∈ E | i, j ∈ V ′}). We say
a graph G = {V, E} has c connected components if its vertex
set V can be partitioned into disjoint sets V1, . . . ,Vc such that
(1) G has no edges between Vi and Vj for i 6= j and (2) for
all i, the subgraph induced by Vi is connected. Clearly, if G
is connected then it has one connected component.

For a graph G = {V, E}, we define its incidence matrix
∇ ∈ {−1, 0, 1}|V|×|E| (see [22]) to be the matrix with |V|
rows and |E| columns in which

∇i, e =

 1 if e = {i, j} and i < j
−1 if e = {i, j} and i > j
0 otherwise.

Note that 1Tn · ∇ = 0. We use ∇∗,e to denote the column of
∇ corresponding to the edge e ∈ E .

We rely on the following result [22, Theorem 8.3.1]:
Lemma 1: Let G be an n-node graph with incidence matrix

∇. Then rank(∇) = n−c, where c is the number of connected
components of G.

A. Problem Formulation

We consider a network of n agents where the communica-
tion network between agents is represented by an undirected,
simple, connected graph G = {V, E}; that is, agents i and j
have a direct communication link between them iff {i, j} ∈ E .
The communication channel between two nodes/agents is
assumed to be both private and authentic; equivalently, in
our adversarial model we do not consider an adversary who
can eavesdrop on communications between honest agents, or
tamper with their communication2.

Each agent i holds a (private) input si. By scaling ap-
propriately3, we can assume without loss of generality that
si ∈ [0, 1/n), where n is the number of agents in the network.
We let s = [s1, . . . , sn]T ∈ [0, 1/n)n. A distributed average

2Alternately, private and authentic communication can be ensured using
standard cryptographic techniques.

3Suppose each agent holds a finite real-valued input xi ∈ [0, q), q ∈ R+,
then si = xi/nq ∈ [0, 1/n).
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consensus algorithm is an interactive protocol allowing the
agents in the network to each compute the average of the
agents’ inputs, i.e., after execution of the protocol each agent
outputs the value s̄ = 1

n ·
∑

i si. The value of n is assumed
known to all the agents.

We are interested in distributed average consensus algo-
rithms that ensure privacy against an attacker who controls
some fraction of the agents in the network. We let C ⊂ V
denote the set of passive adversarial, and let H = V \ C
denote the remaining honest agents. As stated earlier, we
assume the adversarial agents are passive and thus run the
prescribed protocol. Privacy requires that the entire view of the
adversarial agents—i.e., the inputs of the adversarial agents as
well as their internal states and all the protocol messages they
received throughout execution of the protocol—does not leak
(significant) information about the original inputs of the honest
agents. Note that, by definition, the set of adversarial agents
learns s̄ (assuming at least one agent is adversarial) from the
sum of the inputs of the honest agents can be computed, and
so our privacy definition requires that the adversarial agents
do not learn anything more than this.

Before giving our formal definition of privacy, we introduce
some notation. Let sC denote a set of inputs held by the agents
in C, and sH a set of inputs held by the agents in H. Fixing
some protocol, we let ViewC(s) be a random variable denoting
the view of the agents in C in an execution of the protocol
when the agents all begin holding inputs s. Then:

Definition 2: A distributed average consensus protocol is
(perfectly) C-private if for all s, s′ ∈ [0, 1/n)n such that sC =
s′C and

∑
i∈H si =

∑
i∈H s

′
i, the distributions of ViewC(s)

and ViewC(s
′) are identical.

We remark that this definition makes sense even if |C| =
n−1, though in that case the definition is vacuous since sH =∑

i∈H si and so revealing the sum of the honest agents’ inputs
reveals the (single) honest agent’s input!

An alternate, perhaps more natural, way to define privacy is
to require that for any distribution S (known to the attacker)
over the honest agents’ inputs, the distribution of the honest
agents’ inputs conditioned on the attacker’s view is identical
to the distribution of the honest agents’ inputs conditioned on
their sum. It is not hard to see that this is equivalent to the
above definition.

III. PRIVATE DISTRIBUTED AVERAGE CONSENSUS

As described previously, our protocol has a two-phase
structure. In the first phase, each agent i computes an “effective
input” s̃i based on its original input si and random values
it sends to its neighbors; this is done while ensuring that
frac(

∑
i s̃i) is equal to

∑
i si (see below). In the second

phase, the agents use any (correct) distributed average con-
sensus protocol Π to compute

∑
i s̃i, take its fractional part,

and then divide by n. This (as will be shown) gives the correct
average 1

n ·
∑

i si.
We prove privacy of our algorithm by making a “worst-

case” assumption about Π, namely, that it simply reveals all
the agents’ inputs to all the agents. Such an algorithm is, of
course, not at all private; for our purposes, however, this does

not violate privacy because Π is run on the agents’ effective
inputs {s̃i} rather than their true inputs {si}. Therefore,
the privacy result holds regardless of the distributed average
consensus protocol Π. From now on, then, we let the view
of the adversarial agents consist of the original inputs of the
adversarial agents, their internal states and all the protocol
messages they receive throughout execution of the first phase
of our protocol, and the vector s̃ = [s̃1, . . . , s̃n]T of all agents’
effective inputs at the end of the first phase. Our definition of
privacy (cf. Definition 2) remains unchanged.

The first phase of our protocol proceeds as follows:

1) Each agent i ∈ V chooses independent, uniform values
rij ∈ [0, 1) for all j ∈ Ni, and sends rij to agent j.

2) Each agent i ∈ V computes a mask

ai = frac

∑
j∈Ni

(rji − rij)

 , (1)

where ai ∈ [0, 1).
3) Each agent i ∈ V computes effective input

s̃i = frac(si + ai). (2)

Note that

frac

(∑
i

s̃i

)
= frac

(∑
i

si + frac

(∑
i

ai

))
As G is undirected, therefore

frac

(∑
i

ai

)
= frac

∑
i

∑
j∈Ni

(rji − rij)

 = 0

Thus, frac (
∑

i s̃i) =
∑

i si, since
∑

i si < 1 as si ∈
[0, 1/n), ∀i. Hence, correctness of our overall algorithm (i.e.,
including the second phase) follows.

Note that any two neighboring agents i and j choose values
rij and rji, respectively, independently. Agents i and j then
transmit these values rij and rji, respectively to each other in
an independent manner as well4. Therefore, Step 1 does not
require synchronicity between any two agents. Steps 2 and
3 are performed locally, and therefore synchronicity between
agents is out of question. Once an agent completes the first-
phase, it floods the network with this information regardless
of whether any other agent has completed the first-phase or
not. As every agent has prior knowledge of the total number
of agents, the agents reach an agreement on the completion
of the first-phase when G is connected. Hence, the first-phase
is asynchronous and this implies that the proposed protocol is
asynchronous if the distributed average consensus protocol in
the second-phase is asynchronous.
In the second-phase, the agents can use an asynchronous
distributed average consensus protocol, such as the randomized
gossip algorithm [3], to compute the average value of {ns̃i},
which equal to

∑
i s̃i.

4Agent i transmits rij regardless of whether it has received rji or not.
Same applies for agent j.
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A. Privacy Analysis

We show here that C-privacy holds if C is not a vertex
cut of G under the assumptions on agents’ inputs, network
topology and communication links mentioned in Section II-A.

For an edge e = {i, j} in the graph with i < j, define

be = frac(rji − rij).

Let b = [be1 , . . .] be the collection of such values for all the
edges in G. If we let a = [a1, . . . , an]T denote the masks used
by the agents, then we have

a = frac(∇ · b).

Since the rij are uniform and independent in [0, 1), it is easy
to see that the values {be}e∈E are uniform and independent
in [0, 1) as well5. Thus, a is uniformly distributed over the
vectors in the span of the columns of ∇, which we denote
by L(∇), with coefficients in [0, 1). The following is easy to
prove using the fact that rank(∇) = n−1 when G is connected
(cf. Lemma 1):

Lemma 2: If G is connected then a is uniformly dis-
tributed over all points in [0, 1)n subject to the constraint that
frac(

∑
i ai) = 0.

(A full proof of Lemma 2 is given in Appendix A.)
Since s̃i = frac(si + ai), we have
Lemma 3: If G is connected, then the effective inputs s̃ are

uniformly distributed in [0, 1)n subject to the constraint that
frac (

∑
i s̃i) =

∑
i si.

The proof of Lemma 3 is given in Appendix B.
The above implies privacy for the case when C = ∅, i.e.,

when there are no adversarial agents. In that case, the view of
any agent consists only of the effective inputs s̃, and Lemma 3
shows that the distribution of those values depends only on the
sum of the agents’ true inputs. Below, we extend this line of
argument to the case of nonempty C.

Fix some set C of passive adversarial agents, and recall that
H = V \ C. Let EC denote the set of edges incident to C, and
let EH = E \ EC be the edges incident only to honest agents.
Note that now the view of adversarial agents’ view contains
(information that allows it to compute) {be}e∈EC in addition
to the honest agents’ effective inputs {s̃i}i∈H.

The key observation enabling a proof of privacy is that the
values {be}e∈EH are uniform and independent in [0, 1)|H| even
conditioned on the values of {be}e∈EC . Thus, owing to Lemma
2, as long as C is not a vertex cut of G, an argument as earlier
implies that the masks {ai}i∈H are uniformly distributed
in [0, 1)|H| subject to frac(

∑
i∈H ai) = frac(−

∑
i∈C ai)

(even conditioned on knowledge of the values {be}e∈EC ), and
hence the effective inputs {s̃i}i∈H are uniformly distributed
in [0, 1)|H| subject to

frac

(∑
i∈H

s̃i

)
= frac

(∑
i∈V

si −
∑
i∈C

s̃i

)
(again, even conditioned on knowledge of the {be}e∈EC ).
Since the right-hand side of the above equation can be

5If x and y are two independent random variables in [0, 1) with at least
one of them being uniformly distributed, then z = frac(x+ y) is uniformly
distributed in [0, 1).

computed from the effective inputs of the adversarial agents,
the {be}e∈EC , and the sum of the honest agents’ inputs, this
implies:

Theorem 1: If C is not a vertex cut of G, then our proposed
distributed average consensus protocol is perfectly C-private.

A formal proof of this theorem is given in Appendix C.
As a corollary, we have
Corollary 1: If G is (t+ 1)-connected, then for any C with

|C| ≤ t our proposed distributed average consensus protocol
is perfectly C-private.

In case the passive adversarial agents do form a vertex cut,
in that case the proposed privacy protocol guarantees privacy
of each set of honest agents that is not cut by C, in the sense
as formally defined6. Alternately, for a set of honest agents
H′ ⊂ H that is not cut by C the adversarial agents can deduce
anything about their collective inputs {si}i∈H′ other than their
sum

∑
i∈H′ si. (refer [1])

IV. ILLUSTRATION

To demonstrate our proposed distributed average consensus
protocol we consider a simple network of 3 agents with V =
{1, 2, 3} and E = {{1, 2}, {1, 3}, {2, 3}}, as shown in Fig.
1. Let s1 = 0.1, s2 = 0.2 and s3 = 0.15.

Fig. 1. Arrows (in blue) show the flow of information over an edge.

In first phase, the agents execute the following steps
1) As shown in Fig. 1, all pair of adjacent agents i and

j exchange the respective values of rij and rji (chosen
independently and uniformly in [0, 1)) with each other.
Consider a particular instance where: r12 = 0.1, r21 =
0.5, r23 = 0.7, r32 = 0.4, r31 = 0.3 and r13 = 0.8.

2) The agents compute their respective masks,

a1 = frac ((r21 − r12) + (r31 − r13)) = 0.9

Similarly, a2 = 0.3 and a3 = 0.8. (One can verify that
frac(a1 + a2 + a3) = 0.)

3) The agents compute their respective effective inputs,

s̃1 = frac(s1 + a1) = frac(0.1 + 0.9) = 0.0

6C does not cut a set of agents if that set of agents that is connected in the
residual graph after removing C and EC .
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Similarly, s̃2 = 0.5 and s̃3 = 0.95.
After the first phase, each agent uses a (non-private) dis-

tributed average consensus protocol Π (an instance shown in
Fig. 1) in the second phase to compute (1/3)

∑
i s̃i (it can be

easily to verified that frac(
∑

i s̃i) =
∑

i si = 0.45).
Let C = {3} and so, EC = {{1, 3}, {2, 3}}. It is easy to see

that C does not cut the graph G and therefore, for any pair of
inputs s1 ∈ [0, 1/3) and s2 ∈ [0, 1/3) that satisfy s1 +s2 = .3
the joint distribution of s̃1 and s̃2 is uniform over [0, 1)2 such
that frac(s̃1 + s̃2) = 0.5 (cf. Lemma 3).

V. CONCLUSION

In this paper, we propose a general approach (distributed
and asynchronous) to ensure privacy of honest agents in any
distributed average consensus protocol. The inputs of the
agents are assumed to be finite real-values. The proposed
approach guarantees (perfect) privacy of honest agents against
passive adversarial agents if the set of adversarial agents is not
a vertex cut of the underlying communication network. The
only information that adversarial agents can get on the inputs
of honest agents is their sum (or average).

It is not difficult to see that the privacy protocol proposed
in this paper be used for privacy in distributed computation
of any function h : Rn → R, over agents inputs {si}, of the
following form

h(s1, . . . , sn) = g

(∑
i

hi(si)

)
.

Here, hi : R → R, ∀i and g : R → R. We assume that
the functions hi, ∀i are injective (one-to-one), thus privacy of
hi(si) is equivalent to the privacy of si. Also, it is reasonable
to assume that hi(si) is finite if si is finite. For now, let
hi(si) ∈ [0, 1/n),∀i.

Each agent first computes the effective function values
h̃i(si) = frac(hi(si)+ai) and then uses any (non-private) dis-
tributed average consensus on these effective function values
to compute

∑
i h̃i(si). Then, frac

(∑
i h̃i(si)

)
=
∑

i hi(si)

as
∑

i ai = 0. Thus, each agent correctly computes the desired
function value as

g

(
frac

(∑
i

h̃i(si)

))
= g

(∑
i

hi(si)

)
= h(s1, . . . , sn).
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APPENDIX

A. Proof of Lemma 2

The proof is obvious for n = 1. From now on, n > 1 and
G is assumed connected.

Keep in mind that each {be}e∈E is independent and uni-
formly distributed in [0, 1). (As for any e = {i, j} ∈ E , the
values rij and rji are independent and uniform in [0, 1).)

Consider a subset E ′ of E with n− 1 edges such that G′ =
{V, E ′} is connected (such E ′ is guaranteed to exist as G is
connected). Therefore, all the n−1 columns of ∇′ (incidence
matrix of G′) are linearly independent. This implies that all
the points in the span (coefficients belonging to [0, 1)) of the
columns of ∇′, given by

L(∇′) =
(
frac(∇′ · b) | b ∈ [0, 1)n−1

)
,

are equally probable as b is uniformly distributed in
[0, 1)n−1(note that this claim holds because all the elements
of ∇′ belong to {−1, 0, 1}). Alternately,

a′ = frac(∇′ · b) = frac

(∑
e∈E′
∇′∗,e · be

)
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is uniformly distributed over [0, 1)n−1. Furthermore, combin-
ing the above with the fact that 1Tn · ∇′ = 0 implies that
a′ ∈ L(∇′) ⇐⇒ frac(1Tna

′) = 0 (for all a′ ∈ [0, 1)n).
In case E ′ = E ( or E has only n − 1 edges), the proof

concludes here. Otherwise, choose an edge e′ from the set of
remaining edges E ′\E . Now, ∇′∗,e′ can be obtained by linearly
combining the columns of ∇′ as following

∇′∗,e′ =
∑
e∈E′

µe∇′∗,e (3)

as G′ is connected7, where µe ∈ {−1, 0, 1} for all e ∈ E ′ .
Define a new set of edges E ′′ = E ′ ∪ {e′}. From (3), each

point a′′ of L(∇′′) (span of the columns of the incidence
matrix ∇′′ of G′′ = {V, E ′′}) is given as

a′′ = frac

(∑
e∈E′
∇′∗,e · be +∇′∗,e′be′

)

= frac

(∑
e∈E′
∇′∗,e · (be + µebe′)

)

As the values {be}e∈E′ are independent and uniform in [0, 1),
this implies {frac(be + µebe′)}e∈E′ is uniformly distributed
over all the values in [0, 1)n−1. Hence, a′′ is uniformly
distributed over L(∇′) (and L(∇′′) is same as L(∇)).

Same as before, if E ′′ = E , the proof concludes. Otherwise,
repeat the above procedure by considering another edge from
E \ E ′′, which leads to the same conclusion. This iterative
process of including edges stops when all the edges of E have
been considered. Ultimately, we reach the conclusion that to
express a is uniformly distributed in L(∇′). (Axiomatically,
this also implies that L(∇) is same as L(∇′) .)

Hence, a is uniform in [0, 1)n subject to the constraint that
frac(1Tna) = 0 (or frac(

∑
i ai) = 0), as any point a ∈

L(∇′) ⇐⇒ frac(1Tna) = 0.

B. Proof of Lemma 3

Let S̃, S and A represent the random vectors of the agents’
effective inputs, true inputs and masks, respectively. G is
assumed connected. For a random variable (or vector) S, fS(s)
denotes its probability density at s.

As s̃i = frac(si + ai) and si, ai are independent, we have

fS̃ (s̃|S = s) = fA (A = frac(s̃− s))

If frac(
∑

i s̃i) =
∑

i si then frac(s̃ − s) belongs to L(∇).
Thus, from Lemma 2,

fS̃ (s̃|S = s) = 1

for all the values s̃ in [0, 1)n that satisfy frac(1Tn s̃) = 0, when
G is connected.

7It follows easily from the fact that there exists a path in G′ between the
terminal nodes of the edge e′ as G′ is connected.

C. Proof of Theorem 1

Let GH = {H, EH} be the graph of honest agents (and
edges incident to only honest agents) and ∇H be its incidence
matrix. For a random variable (or vector) S, fS(s) denotes its
probability density at s.

The view of adversarial agents in C consists of honest
agents’ effective inputs s̃H after the first phase of our protocol
(considering the “worst-case” scenario where agents’ can
acquire all the inputs through their internal states in Π) and
the values {be}e∈EC . Therefore,

ViewC(s) = {s̃H, {be}e∈EC}

given the inputs s ∈ [0, 1/n)n.
Thus, we prove that the joint probability distribution of s̃H

and {be}e∈EC is the same for any two sets of true inputs s, s′,
that satisfy sC = s′C and

∑
i∈V si =

∑
i∈V s

′
i, when GH is

connected.
We have,

ai = frac

(
frac

(∑
e∈EH

∇i,ebe

)
+ frac

(∑
e∈EC

∇i,ebe

))
The values {frac(

∑
e∈EH ∇i,ebe)}i∈H lie in

the span of ∇H, denoted by L(∇H). Therefore,
{frac(

∑
e∈EH ∇i,ebe)}i∈H is uniformly distributed over

[0, 1)|H| subject to frac(
∑

i∈H(
∑

e∈EH ∇i,ebe)) = 0 when
GH is connected (cf. Lemma 2).
Thus, it is clear that the masks {ai}i∈H are uniformly
distributed in [0, 1)|H| subject to
frac(

∑
i∈H ai) = frac(−

∑
i∈C ai) when GH is connected

(given the values of {be}e∈EC ).
Note that random variables {be}e∈EH are uniformly and
independently distributed in [0, 1), given the values of
{be}e∈EC , and ai = frac(

∑
e∈EC ∇i,ebe) for every i ∈ C.

Thus using Lemma 3 above implies, (S̃H denotes the random
vector of honest agents’ effective inputs s̃H)

fS̃H
(s̃H|sH, {be}e∈EC ) = 1 (4)

for all the values s̃H in [0, 1)|H| that satisfy

frac
∑
i∈H

s̃i = frac

(∑
i∈V

si −
∑
i∈C

s̃i

)
when GH is connected.

Combining (4) with the fact that the random variables
{be}e∈E are independent to the true inputs s implies

fViewC(s) ({s̃H, {be}e∈EC}) ≡ fViewC(s′) ({s̃H, {be}e∈EC})

for all s, s′ ∈ [0, 1/n)n such that sC = s′C and
∑

i∈V si =∑
i∈V s

′
i when GH is connected.
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