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Identification of Switched
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Abstract

The paper introduces a novel methodology for the identification of
coefficients of switched autoregressive linear models. We consider the
case when the system’s outputs are contaminated by possibly large val-
ues of measurement noise. It is assumed that only partial information
on the probability distribution of the noise is available. Given input-
output data, we aim at identifying switched system coefficients and
parameters of the distribution of the noise which are compatible with
the collected data. System dynamics are estimated through expected
values computation and by exploiting the strong law of large num-
bers. We demonstrate the efficiency of the proposed approach with
several academic examples. The method is shown to be extremely
effective in the situations where a large number of measurements is
available; cases in which previous approaches based on polynomial or
mixed-integer optimization cannot be applied due to very large com-
putational burden.
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1 Introduction

The interest in the study of hybrid systems has been persistently growing in
the last years, due to their capability of describing real-world processes in
which continuous and discrete time dynamics coexist and interact. Besides
classical automotive and chemical processes, emerging applications include
computer vision, biological systems, and communication networks.

Moreover, hybrid systems can be used to efficiently approximate nonlinear
dynamics, with broad application, ranging from civil structures to robotics
and systems biology, that entail extracting information from high volume
data streams [13], [18]. In the case of high dimentional data, nonlinear order
reduction or low dimensional sparse representations techniques [9], [5], [16],
are very effective in handling static data, but most do not exploit dynamical
information of the data.

In the literature, several results have been obtained for the analysis and
control of hybrid systems, formally characterizing important properties such
as stability or reachability, and proposing different control designs [10]. In
parallel, researchers rapidly realized that first-principle models may be hard
to derive especially with the increase of diverse application fields. This
sparked interest on the problem of identifying hybrid (switched) models start-
ing from experimental data; see for instance the tutorial paper [14] and the
survey [3].

It should be immediately pointed out that this identification problem is
not a simple one, since the simultaneous presence of continuous and discrete
state variables gives it a combinatorial nature. The situation becomes further
complicated in the presence of unknown-but-bounded noise. In this case the
problem is in general NP-hard. Several approaches have been proposed to
address this difficulty, see e.g. [8]. The paper [15] reformulates the problem
as a mixed-integer program. These techniques proved to be very effective in
situations involving relatively small noise levels or moderate dimensions, but
they do not appear to scale well, and their performance deteriorates as the
noise level or problem size increase.

Of particular interest are recent approaches based on convex optimization:
in [1] some relaxation based on sparsity are proposed, while [12] develops a
moment based approach to identify the switched autoregressive exogenous
system, and [6] adapts it toward Markovian jump systems identification.
These methods are surely more robust, and represent the choice of reference
for medium-size problems and medium values of noise, and have found ap-



plications in several contexts, ranging from segmentation problems arising in
computer vision to biomedical systems.

However, the methods still rely on the solution of rather large optimiza-
tion problems. Even if the convex nature of these problems allows to limit
the complexity growth, there are several situations for which their applica-
tion becomes critical. For instance, identification problems cases that involve
quite high noise levels and/or large number of measurements.

An enlightening example, which serves as a practical motivation for our
developments, arises in healthcare applications: the availability of activity
tracking devices allows to gather a large amount of information of the physi-
cal activity of an individual. Physical activity is a dynamic behavior, which
in principle can be modeled as a dynamical system [7]. Moreover, its charac-
teristics may significantly change depending on the time of the day, position,
etc. This motivated the approach of modeling it as a switching system [2].

In this paper, we focus on cases involving a very large number of sample
points, possibly affected by large levels of noise. In this situation, polyno-
mial/moments based approaches become ineffective, and different method-
ologies need to be devised. The approach we propose builds upon the same
premises as [12]: the starting point is the algebraic procedure due to Ma
and Vidal [11], where it has been shown for noiseless processes, it is possi-
ble to identify the different subsystems in a switching system by recurring
to a Generalized Principal Component Analysis (GPCA). In particular, we
infer the parameters of each subsystem from the null space of a matrix Vn(r)
constructed from the input-output data r via a nonlinear embedding (the
Veronese map).

The approach was extended to the cases in presence of process noise in
[12], showing how the entries of this matrix depend polynomially on the
unknown noise terms. Then, the problem was formulated in an unknown-
but-bounded setting, looking for an admissible noise sequence rendering the
matrix Vn(r) rank deficient. This problem was then relaxed using polynomial
optimization methods.

In this work, we follow the same line of reasoning, but then take a some-
what different route. First, we consider random noise, and we assume that
some information on the noise is available. Then, instead of relaxing the
problem, we exploit the availability of a large number of measurements to
make recurse to law-of-large-numbers type of reasoning. This allows us to
devise an algorithm characterized by an extremely low complexity in terms
of required operations. The ensuing optimization problem involves only the



computation of the singular vector associated with the minimum singular
value of a matrix that can be efficiently computed and whose size does not
depend on the number of measurements.

1.1 Paper Organization

The paper is structured as follows: after this introduction, there is a brief
notation section. Section 2 includes the problem statement. In Section 3,
algebraic reformulation of switched autoregressive (SAR) linear system iden-
tification problem for noiseless data is reviewed. The problem of identifying
SAR system in the presence of noise is surveyed in Section 4. In Section 5,
the algorithm for estimating unknown noise parameters is described. Numer-
ical results are shown in Section 6. Finally, Section 7 concludes the paper
highlighting some possible future research directions.

1.2 Notation

Given a scalar random variable X , we denote by md its dth moment, which
may be computed according to the following integral

md = E[xd] =

∫
∞

−∞

xd f(x) dx (1)

where E[·] refers to expectation, and f(x) is the probability density function
of X . Additionally, the variance of X is indicated by s2. For instance, if
X has a normal distribution with zero mean and variance s2, i.e. f(x) =

1

s
√
2π

e−x2/2s2 , its moments are given by

md = E[xd] =

{
0 if d is odd

sd (d− 1)!! if d is even
(2)

where !! denotes double factorial (n!! is the product of all numbers from n to
1 that have the same parity as n).

2 Problem Statement

In this section, a complete description of the problem is addressed. In addi-
tion, the required assumptions are defined to solve the problem.



2.1 System Model

We consider SAR systems of the form

xk =
na∑

j=1

ajσ(k) xk−j +
nc∑

j=1

cjσ(k) uk−j (3)

where xk ∈ R is the output at time k and uk ∈ R is input at time k. The
variable σ(k) ∈ {1, ..., n} denotes the sub-system active at time k, where n

is the total number of sub-systems. Furthermore, ajσ(k) and cjσ(k) denote
unknown coefficients corresponding to mode σ(k). Time k takes values over
the non-negative integers.

In practice, output is always contaminated by noise; i.e. we assume that
we observe

yk = xk + ηk (4)

where ηk, denotes measurement noise.
The following assumptions are made on the system model and noise.

Assumption 1 Throughout this paper it is assumed that:

• Upper bounds on na and nc are available.

• Upper bound on the number of subsystems n is available.

• Noise ηk at time k is independent from ηl for k 6= l, and identically dis-
tributed with probability density f(η|θ); where θ is a (low dimensional)
vector of unknown parameters.

• Input sequence uk applied to the system is known and bounded.

• There exists a finite constant L so that |xk| ≤ L for all positive integers
k.

2.2 Problem Definition

The main objective of this paper is to develop algorithms that are able to
identify the coefficients of a SAR model from noisy observations. More pre-
cisely, we aim at solving the following problem:



Problem 1 Given Assumption 1, an input sequence uk, k = −nc+1, . . . , N−
1 and noisy output measurements yk, k = −na + 1, . . . , N , determine coef-
ficients of the SAR model ai,j, i = 1, 2, . . . , na, j = 1, 2, . . . , n, ci,j, i =
1, 2, . . . , nc, j = 1, 2, . . . , n, and the noise distribution parameters θ.

3 Noiseless Case: A Review

As a motivation for the approach presented in this paper, we review and
slightly reformulate earlier results on an algebraic reformulation of the SAR
identification problem for the case where no noise is present. We refer the
reader to [19] for details on this algebraic approach to switched system iden-
tification.

3.1 Hybrid Decoupling Constraint

We start by noting that equation (3) is equivalent to

bTσ(k) rk = 0 (5)

where we introduced the (known) regressor at time k

rk = [xk, xk−1, · · · , xk−na
, uk−1, · · · , uk−nc

]T

and the vector of unknown coefficients at time k

bσ(k) =

[−1, a1σ(k), · · · , anaσ(k), c1σ(k), · · · , cncσ(k)]
T .

Hence, independently of which of the n submodels is active at time k, we
have

Pn(rk) =
n∏

i=1

bTi rk = cTnνn(rk) = 0, (6)

where the vector of parameters corresponding to the i-th submodel is denoted
by bi ∈ R

na+nc+1, and νn() is Veronese map of degree n [4]

νn([x1, · · · , xs]
T ) = [· · · , xn1

1 xn2

2 · · ·xns

s , · · · ]T



which contains all monomials of order n in lexicographical order, and cn is
a vector whose entries are polynomial functions of unknown parameters bi
(see [20] for explicit definition). The Veronese map above is also known as
polynomial embedding in machine learning [20].

Equation (6) holds for all k, and these equalities can be expressed in
matrix form

Vn(r)cn =
[
νn(r1)

T , · · · , νn(rN)
T
]T

cn = 0 (7)

where r, without the subscript, denotes the set of all regressor vectors.
Clearly, we are able to identify cn (and hence the system’s parameters) if
and only if Vn(r) is rank deficient. In that case, the vector cn can be found
by computing the nullspace of Vn.

3.2 A Reformulation of the Hybrid Decoupling Con-

straint

Note that the number of rows of the Veronese matrix Vn is equal to the
number of measurements available for the regressor; i.e., in the notation
of our paper, the number of rows is N . Therefore, a reformulation of the
results in the previous section is needed to be able to address the problem of
identification from very large data sets.

As mentioned in the previous section, in the absence of noise, the SAR
system identification is equivalent to finding a vector cn satisfying

cTnνn(rk) = 0 for all k = 1, 2, . . .N.

This is in turn equivalent to finding cn so that

1

N

N∑

k=1

cTnνn(rk)ν
T
n (rk)cn = 0

As a result, for the noiseless case, identifying the coefficients of the sub-
models is equivalent to finding the singular vector cn associated with the
minimum singular value of the matrix

MN =
1

N

N∑

k=1

νn(rk)ν
T
n (rk)

.
=

1

N

N∑

k=1

Mk (8)



Note that, by using this equivalent condition, we only need to consider ma-
trices of size

(
n+na+nc

n

)
. In other words, the size of this matrix does not

depend on the number of measurements. This is especially important when
considering very large data sets.

4 SAR system Identification in the Presence

of Noise

Now, we address the case where the measurements of output of the switched
autoregressive system are corrupted by noise. As a first step, we consider
the case where the distribution of the noise is known, so its moments md are
available.

As seen in the previous section, identifying the parameters of the SAR
model is equivalent to finding a vector in the null space of the matrix MN .
Under mild conditions, the null space of the matrix above has dimension one
if and only if the data is compatible with the assumed model. However, if
noise is present, xk is not known; therefore, this matrix cannot be computed.
In this section, we use available information on the statistics of the noise to
compute approximations of the matrix MN , consequently approximations of
vectors in its null space.

4.1 On the Powers of xk

Since we do not have access to the values of the output xk to estimate the
values of the quantities in equation (8), we need to relate the powers of xk

to the measurements and available information of the noise.
Note that xk is a (unknown) deterministic quantity. Therefore

xh
k = E[xh

k ] (9)

Since xk = yk − ηk we have

xh
k = E[xh

k ] = E[(yk − ηk)
h] ∀k = 1, 2, · · · , N (10)

Assume, for simplicity the distribution of the noise is symmetric with respect
to the origin. As a result, all odd moments are zero (in particular, the noise is
zero mean, i.e. m1 = 0). This assumption is made to simplify the calculations



below and the approach can be immediately extended to the non-symmetric
case.

We concentrate on computing the expected value of powers of xk recur-
sively and in a closed form. First, we give an example of how to compute
the expected value of powers of xk for powers h = 1, 2. For h = 1, we have

xk = E[xk] = E[yk − ηk] = E[yk]−m1 = E[yk] (11)

while, for h = 2, we can write

x2
k = E[x2

k] = E[(yk − ηk)
2] = E[y2k]− 2E[ykηk] + E[η2k]. (12)

Note that E[y2k] can be estimated from collected data, and E[η2k] is equal to
second moment of noise (m2), which is assumed to be known. To estimate
the value of E[ykηk], consider the following

E[ykηk] = E[(xk + ηk)ηk] = E[xkηk] + E[η2k]. (13)

The quantities xk and ηk are mutually independent and, therefore, E[xkηk] =
E[xk]E[ηk], with E[ηk] = m1 = 0. As a consequence, we have

E[ykηk] = E[η2k] (14)

and finally the value of equation (12) is

E[x2
k] = E[y2k]− 2E[η2k] + E[η2k] = E[y2k]− E[η2k] (15)

= E[y2k]−m2

The reasoning above can be generalized to any power of xk. More pre-
cisely, we have the following result whose proof is an immediate consequence
of the derivations so far.

Lemma 1 The expected value of the powers of xk satisfies

E[xh
k ] = E[(yk − ηk)

h] = E[yhk ]−
h∑

d=1

(
h

d

)
E[xh−d

k ]E[ηdk]

= E[yhk ]−
h∑

d=1

(
h

d

)
E[xh−d

k ]md

∀k = 1, 2, · · · , N. (16)



Mk = νn(rk) ν
T
n (rk) =



x4
k x3

k xk−1 x3
k uk−1 x2

k x
2
k−1 x2

k xk−1 uk−1 x2
k u

2
k−1

∗ x2
k x

2
k−1 x2

k xk−1 uk−1 xk x
3
k−1 xk x

2
k−1 uk−1 xk xk−1 u

2
k−1

∗ ∗ x2
k u

2
k−1 xk x

2
k−1 uk−1 xk xk−1 u

2
k−1 xk u

3
k−1

∗ ∗ ∗ x4
k−1 x3

k−1 uk−1 x2
k−1 u

2
k−1

∗ ∗ ∗ ∗ x2
k−1 u

2
k−1 xk−1 u

3
k−1

∗ ∗ ∗ ∗ ∗ u4
k−1




Mk =




E[y4
k
]−6m2 (E[y2

k
]−m2)−m4 (E[y3

k
]−3m2 E[yk])E[yk−1] (E[y3

k
]−3m2 E[yk])uk−1

∗ (E[y2
k
]−m2) (E[y2

k−1
]−m2) (E[y2

k
]−m2)E[yk−1] uk−1

∗ ∗ (E[y2
k
]−m2) u2

k−1

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

· · ·

· · ·

(E[y2
k
]−m2) (E[y2

k−1
]−m2) (E[y2

k
]−m2)E[yk−1]uk−1 (E[y2

k
]−m2) u2

k−1

(E[y3
k−1

]−3m2 E[yk−1])E[yk] (E[y2
k−1

]−m2)E[yk]uk−1 E[yk]E[yk−1]u
2

k−1

(E[y2
k−1

]−m2)E[yk]uk−1 E[yk]E[yk−1] u
2

k−1
E[yk]u

3

k−1

E[y4
k−1

]−6m2 (y2k−1
−m2)−m4 (E[y3

k−1
]−3m2 E[yk−1])uk−1 (E[y2

k−1
]−m2)u2

k−1

∗ (E[y2
k−1

]−m2) u2

k−1
E[yk−1]u

3

k−1

∗ ∗ u4

k−1




Figure 1: Example of construction of Mk

4.2 On the Structure of Mk

We derive some of the properties of the matrices Mk now. An immediate
consequence of the results in the previous section is the following.

Lemma 2 Assume that the noise distribution, some parameters of the noise,
and the input signal are given and fixed. Let monn(·) denote a function that
returns a vector with all monomials up to order n of its argument. Then
there exists an affine function M(·) so that

Mk = E{M [monn(yk, . . . , yk−na
)]}

= M{E[monn(yk, . . . , yk−na
)]}.

It should be noted that the random variables yk and yl are mutually
independent for k 6= l, so the function above can further be represented as a
multilinear function of the moments of yk.



4.3 An Example of Construction of Mk

To better illustrate the approach used in this paper, we provide an example
of how to construct the matrix Mk required for identification. To this end,
consider the problem of identifying a SAR system with n = 2 subsystems of
the form

subsystem 1 : xk = a1 xk−1 + b1 uk−1

subsystem 2 : xk = a2 xk−1 + b2 uk−1

(17)

from noisy measurements

yk = xk + ηk (18)

where ηk has a symmetric distribution. We can rewrite the system as in
equation (6). In particular, the vector c2 as a function of the parameters of
the subsystems, assumes the form

c2 = [1,−(a1 + a2),−(b1 + b2), a1a2, a1b2 + b1a2, b1b2]
T .

The regressor vector rk at time k

rk =
[
xk xk−1 uk−1

]T

gives rise to the following Veronese vector

νn(rk) = rk ⊗ rk =




x2
k

xk xk−1

xk uk−1

x2
k−1

xk−1 uk−1

u2
k−1




(19)

whose size is l × 1, with l =
(
n+na+nc

n

)
=

(
2+1+1

2

)
= 6. From rk and νn(rk),

we can compute matrix Mk, which is given in Figure 1. Then, as we have
the values of noisy output yk, we compute expected value of powers of xk in
terms of expected value of powers of yk and moments of measurement noise.
Following the results of Lemma 1, we obtain the second matrix in Figure 1.
For system of equation (17), Mk is given by the two expression in Figure 1.



4.4 Identification Algorithm

As mentioned before, to identify the parameters of the SAR system, we need
to be able to estimate the matrix MN in equation (8). It turns out that it
can be done by using the available noisy measurements. More precisely, we
have the following result.

Theorem 1 Let M(·) and monn(·) be the functions defined in Lemma 2.
Define

M̂N
.
=

1

N

N∑

k=1

M [monn(yk, . . . , yk−na
)]

Then, as N → ∞,

M̂N −MN → 0 a.s.

Sketch of proof: See Appendix.
As a result, the empirical average computed using the noisy measurements

(where expected values of monomials are replaced by the measured monomial
values) converges to the desired matrix in equation (8). Therefore we propose
the following algorithm for identification of a SAR system.

Algorithm 1: Let na, nc, n and some parameters of the noise be given.

Step 1. Compute matrix

M̂N =
1

N

N∑

k=1

M [monn(yk, . . . , yk−na
)]

Step 2. Let cn be the singular vector associated with the minimum singular

value of M̂N .

Step 3. Determine the coefficients of the subsystems from the vector cn.

In order to perform Step 3 in Algorithm 1, we adopt polynomial dif-
ferention algorithm for mixtures of hyperplanes, introduced by Vidal [21,
pp. 69–70].



5 Estimating Unknown Noise Parameters

We now address the case where the distribution of the noise is not completely
known. As mentioned in Assumption 1, the distribition of the noise is known
except for a few parameters θ. For simplicity of exposition, lets consider the
case where the noise has a normal distribution with zero mean and unknown
variance s2. The reasoning extends to any noise distribution with a small
number of unknown parameters.

In such a case, the objective is to simultaneously estimate system parame-
ters and the variance of noise. We start by noting that computing MN using
the true value of the variance results in a rank deficient matrix. Moreover,

given collected data yk and uk, the matrix M̂N is a continuous function of the
moments of noise and, hence, a known continuous function of the standard
deviation s. Given previous convergence results, the true value of s will make

M̂N to have a very small minimum singular value (especially for large values
of N). For this reason, estimation of s can be performed by minimizing the
minimum singular value of matrix above over the allowable values of s. More
precisely, we propose the following algorithm

Algorithm 2: Let na, nc, n, some parameters of the noise and smax be given.

Step 1. Compute matrix

M̂N =
1

N

N∑

k=1

M [mon(yk, . . . , yk−na
)]

as a function of the noise parameter s.

Step 2. Find the value s∗ ∈ [0, smax] that minimizes the minimum singular

value of M̂N .

Step 3. Let cn be associated singular vector.

Step 4. Determine the coefficients of the subsystems from the vector cn.

Note that the nonconvex optimization of Step 2 can be solved via an
easily implementable line-search. However, the solution s∗ might not be
unique; i.e., there might exist several values of s that lead to a minimum
singular value very close to zero. In practice, our experience has been that,



for sufficiently large N , the above algorithm provides both a good estimate
of the systems coefficients, and noise parameters; especially if we take s∗ to

be the smallest value of s for which the minimum singular value of M̂N is
below a given threshold ǫ.

Table 1: Identifying polynomial coefficients for different values of noise vari-
ance and different system run.

system Value 1 Value 2 Value 3 Value 4 Value 5

# 1 −(a1 + a2) -(b1 + b2) a1 a2 a1 b2 + b1 a2

true parameters 1 0.2 0 -0.15 -0.8

identification 1 1 0.2002 0.0001 -0.1503 -0.7989
identification 2 1 0.2002 0.0011 -0.1510 -0.7974
identification 3 1 0.1977 0.0046 -0.1548 -0.7997
identification 4 1 0.2120 0.0003 -0.1485 -0.8006

system Value 6 Value 7 Value 8 Value 9

# b1 b2 γ s2 estimation of s2

true parameters -1 - - -

identification 1 -0.9996 0.2410 0.1 0.1000
identification 2 -1.0004 0.5187 0.5 0.4980
identification 3 -0.9966 0.6494 1 1.0010
identification 4 -1.0017 0.8516 2 1.9950

6 Numerical Results

In the following examples, we address the problem of identifying a two-modes
switched system of the form of equation (17), whose true coefficients are a1 =
0.3, b1 = 1, a2 = −0.5, and b2 = −1. Measurement noise is assumed to be
zero-mean with Normal distribution. In the numerical examples presented,
N = 106 input-output data is given. True and identified coefficients for
different variances of noise, are presented in Table 1. Variance of noise and
noise to output ratio for each experiment are also shown in this table. The



provided noise to output ratio (γ) is defined as

γ =
max |η|
max |y| (20)

Results are as expected even for high values of noise in comparison to
output. As it is illustrated in Table 1, the identified parameters are very close
to true values which demonstrates the convergence of proposed algorithm
even for small signal to noise ratio. Moreover, the algorithm requires a very
small computational effort. For the case of 106 measurements and using an
off-the-shelf core i5 laptop with 8 Gigs of RAM, the running time is between
7 to 8 seconds, which shows the effectiveness of approach for very large data
sets.

The second norm of error between true coefficients of system and esti-
mated coefficients, ‖cn − ĉn‖2 , as a function of number of measurements, N ,
is depicted in Figure 2 for different values of noise variance. As it can be seen
from Figure 2, the error decreases as the number of measurements increases.
Rate of convergence is fast, despite the fact that, in some of the experiments,
a large amount of noise is used. It should be noted that these results are
for one experiment, and given that this is a realization of a random process,
error is not always decreasing. For all values of noise variance, error will
eventually decrease and the estimated values of coefficients converge to the
true values.

Now that we have identified the coefficients of polynomial, it is time to
identify each subsystems’ coefficients. For the above mentioned example,
Table 2 shows the values of subsystems coefficients for different experiments
related to different values of noise variance. As we see in this table the value
of coefficients are very close to the true values, even when the noise variance
is high with noise magnitude in average around 85% of the signal magnitude.

The estimation of noise variance based on the structure of matrix Mk

is shown in Table 1 as well. The estimates of noise variance are very close
to the true values of variance. By knowing the structure of matrix Mk ,
the dependence of every entry on the moments of noise, and the relation
in between these moments and the unknown variance (see Section 1.2), we
are able to estimate the noise parameter (in this case, noise variance). This
illustrates the capability of the proposed algorithm to estimate both system
and noise parameters even for large values of noise.

Two examples of the process of estimating the unknown variance of noise
are shown in Fig. 3; where Fig. 3(a) is for the case of given data contaminated
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Figure 2: Estimation error of system coefficients

with noise of variance 1, and Fig. 3(b) is for data with measurement noise
of variance 2. By taking s∗ as the smallest local minimum, the estimated
variance for both cases in Fig. 3(a) and Fig. 3(b) is very close to the true
values.

7 conclusion and future work

In this paper we have proposed a methodology to identify the coefficients
of switched autoregressive processes and unknown noise parameters, starting
from partial information of the noise and given input-output data of switched
system. The approach is shown to be particularly efficient in the case of
large amount of data, situation that makes it possible to exploit law-of-large-
numbers type of results. The approach requires the computation of singular
value decomposition of a specially constructed input-output Veronese matrix.



Table 2: Identifying submodels’ coefficients for different values of noise vari-
ance.

coeff- true variance variance variance variance
icients values s2 = 0.1 s2 = 0.5 s2 = 1 s2 = 2

a1 0.3 0.3002 0.2981 0.3006 0.2938
b1 1 0.9988 1.0007 0.9412 1.0031
a2 -0.5 -0.4996 -0.5000 -0.5006 -0.5059
b2 -1 -0.9999 -0.9991 -1.0004 -1.0011

The ensuing singular vector is then related to the switched system parameters
to be identified. We prove that the estimated parameters converge to the true
ones as the number of measurements grows. Numerical simulations show a
low estimation error, even in the case of large measurement noise. Also,
in cases that noise distribution is not completely known, simulation results
show very close estimation of unknown parameters of noise to the true values.
In future work, we will consider the problem of identifying switched systems
with process noise from large amount of noisy data. Moreover, we will address
the problem of identifying switching dynamics in switched processes form
large noisy data sets.
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[11] Yi Ma and René Vidal. Identification of Deterministic Switched
ARX Systems via Identification of Algebraic Varieties, pages 449–465.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[12] Necmiye Ozay, Constantino Lagoa, and Mario Sznaier. Set membership
identification of switched linear systems with known number of subsys-
tems. Automatica, 51:180 – 191, 2015.

[13] Necmiye Ozay, Mario Sznaier, and Constantino Lagoa. Convex certifi-
cates for model (in) validation of switched affine systems with unknown
switches. IEEE Transactions on Automatic Control, 59(11):2921–2932,
2014.



[14] Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and
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Sketch of Proof of Theorem 1: For simplicity of presentation, let

M̂k
.
= M [monn(yk, . . . , yk−na

)]

We first note that, given the assumptions made on the noise, uk and xk, the
entries of M̂k have a variance uniformly bounded for all k. Moreover

k > l + na ⇒ M̂k and M̂l are independent.



Hence, by Kolmogorov’s Strong Law of Large Numbers [17] we have

1

L

L∑

l=1

M̂k+l(na+1) −
1

L

L∑

l=1

E[M̂k+l(na+1)] → 0 a.s.

as L → ∞. Since

E[M̂k)] = Mk for all positive integer k

and applying the results above for k = 1, 2, . . . , na + 1, we conclude that

1

N

N∑

j=1

M̂j −
1

N

N∑

j=1

Mj → 0 a.s.

as N → ∞.
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Figure 3: Estimation of noise variance
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