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Abstract— We study a class of bilevel convex optimization
problems where the goal is to find the minimizer of an objective
function in the upper level, among the set of all optimal
solutions of an optimization problem in the lower level. A wide
range of problems in convex optimization can be formulated
using this class. An important example is the case where an
optimization problem is ill-posed. In this paper, our interest
lies in addressing the bilevel problems, where the lower level
objective is given as a finite sum of separate nondifferentiable
convex component functions. This is the case in a variety of
applications in distributed optimization, such as large-scale data
processing in machine learning and neural networks. To the best
of our knowledge, this class of bilevel problems, with a finite
sum in the lower level, has not been addressed before. Motivated
by this gap, we develop an iterative regularized incremental
subgradient method, where the agents update their iterates in a
cyclic manner using a regularized subgradient. Under a suitable
choice of the regularization parameter sequence, we establish
the convergence of the proposed algorithm and derive a rate of
O
(
1/k0.5−ε

)
in terms of the lower level objective function for

an arbitrary small ε > 0. We present the performance of the
algorithm on a binary text classification problem.

I. INTRODUCTION

In this paper, we consider a class of bilevel optimization
problems as follows

minimize h(x) (Ph
f )

subject to x ∈ X∗ , argmin
y∈X

f (y).

where f ,h : Rn → R denote the lower and upper level
objective functions, respectively, and X ⊆ Rn is a constraint
set. This is called the selection problem ([8], [22]) as we are
selecting among optimal solutions of a lower level problem,
one that minimizes the objective function h. In particular, we
consider the case where the lower level objective function
is given as f (x) , ∑

m
i=1 fi(x), where fi : Rn → R is the ith

component function for i = 1, · · · ,m.
We make the following basic assumptions.
Assumption 1 (Problem properties):

(a) The set X ⊂Rn is nonempty, compact and convex; also
X ⊆ int(dom( f )∩dom(h)).

(b) The functions fi(x) for i = 1, · · · ,m are proper, closed,
convex, and possibly nondifferentiable.

(c) The function h is strongly convex with parameter µh > 0
and possibly nondifferentiable.

Next, we present two instances of the applications of
formulation (Ph

f ).
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A. Example problems
(i) Constrained nonlinear optimization: Consider a con-
strained convex optimization problem given as

minimize h(x)

subject to qi(x)≤ 0, for i = 1, · · · ,m
x ∈ X

where X ⊆Rn is an easy-to-project constraint set, h,qi :Rn→
R for all i = 1, · · · ,m are convex (and possibly nonlinear)
funcitons. This problem can be reformulated as (Ph

f ) by
setting (cf. [23])

f (x),
m

∑
i=1

fi(x) =
m

∑
i=1

max{0,qi(x)}.

(ii) Ill-posed distributed optimization: An optimization
problem is called ill-posed when it has multiple optimal
solutions or it is very sensitive to data perturbations [25].
For instance, in applications arising in machine learning,
consider the empirical risk minimization problem where the
goal is to minimize the total loss ∑

m
i=1L(aix,bi), where ai

is the input, bi is the output of ith observed datum and L is
the loss function. For example, in logisitic loss regression,
L is merely convex. In these cases, another criterion such as
sparsity may be taken into account for the optimal solution.
So, to induce sparsity, a secondary objective function h is
considered in the given problem. For instance, the well-
known elastic net regularization can be used as function
h. Hence, to address ill-posedness, the following bilevel
optimization model is considered [8], [22]:

minimize ‖x‖1 +µ‖x‖2
2

subject to x ∈ argmin
y∈X

m

∑
i=1

L(aT
i y,bi),

where µ > 0 regulates the trade-off between `1 and `2 norms.

B. Existing methods
Problem (Ph

f ), that is also referred to as hierarchical opti-
mization, is a particular case of mathematical program with
generalized equation (or equilibrium) constraint [13], [15].
There has been a few approaches to tackle this problem. Note
that in all approaches the following minimization problem
and its minimizer have been extensively utilized.

Definition 1: Given a parameter λ > 0, the regularized
problem corresponding to (Ph

f ), is defined as

minimize fλ (x), f (x)+λh(x) (1)
subject to x ∈ X .
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TABLE I: Comparison of Methods for Solving the Bilevel Optimization Problem (Ph
f ).

Paper Assumptions on
lower level obj. function

Assumptions on
upper level obj. function Methodology Metric Convergence

[24] convex, locally Lipschitz convex, smooth iter. regu. hk−h∗ asymptoticfk− f ∗

[23] convex, nonsmooth convex, nonsmooth iter. regu. hk−h∗ asymptoticfk− f ∗

[2] convex, Lipschitz strongly convex, continuously
differentiable MNG hk−h∗ asymptotic

fk− f ∗ O
(

1/
√

k
)

[22] convex, continuously
differentiable, Lipschitz strongly convex, smooth SAM hk−h∗ asymptotic

fk− f ∗ O (1/k)

[29] convex, differentiable strongly convex, differentiable iter. regu. hk−h∗ O
(

1/k1/6−ε

)
fk− f ∗ asymptotic

[9] convex, continuously
differentiable

strongly convex, continuously
differentiable iter. regu. hk−h∗ O (1/k)

fk− f ∗ asymptotic

This work convex, nondifferentiable
(finite sum form) strongly convex, nondifferentiable incremental

iter. regu.
hk−h∗ asymptotic
fk− f ∗ O

(
1/k0.5−ε

)

Also, let x∗
λ

denote the unique minimizer of this problem.
We may categorize the existing algorithms as follows.
(i) Exact regularization: The regularization technique has
been highly used in some applications such as signal process-
ing with h(x) = ‖x‖2

2 or h(x) = ‖x‖1 [25], [3]. This technique
needs a proper parameter λ which is difficult to determine
in most of cases. To address this issue, Mangasarian et
al. [11], [17] introduced exact regularization. A solution of
problem (1) is called exact when it is in the set X∗. The main
drawback of this approach is that the threshold below which
for any λ the regularization (1) is exact, is very difficult to
determine a priori (see [8]).
(ii) Iterative regularization: In this approach, the idea is
to develop a single-loop scheme where the regularization
parameter is updated iteratively during the algorithm. In
[24], an explicit descent algorithm is proposed, where prob-
lem (1) is solved as a single-level unconstrained problem
iteratively. In the smooth case, the convergence is shown
when ∑

∞
k=1 λk = ∞ and limk→∞ λk = 0. For nonsmooth cases,

a bundle method was proposed, which has a descent step
for the weighted combination of objective functions in the
lower and upper levels [23]. Another algorithm called hybrid
steepest descent method (HSDM) and its extensions were
developed in [28], [19]. The main drawback of all these
works is that no complexity analysis was provided for
the underlying algrotihm. In [29], the rate of O(1/k1/6−ε)
is derived for a special case of problem (Ph

f ), where the
objective function is ‖ · ‖2 and the constraint is solutions
of a stochastic variational inequality problem. Recently, a
primal-dual algorithm in [9] was offered that uses the idea
of iterative regularization. Despite a sublinear rate in terms
of h, the algorithm can only be applied to continuously
differentiable and small-scale (i.e., m = 1) regimes.
(iii) Minimal norm gradient: In [2], the minimal norm
gradient (MNG) method was developed for solving problem
(Ph

f ) with m = 1. The rate of O(1/
√

k) was derived for
the convergence with respect to lower level problem. The

main disadvantage of the MNG method is that it is a two-
loop scheme where at each iteration a minimization problem
should be solved.
(iv) Sequential averaging: The sequential averaging method
(SAM), developed in [27], was employed in [22] for solving
the problem in a more general setting. The proposed method
is proved to have the rate of convergence of O(1/k) in terms
of the function f . The method is called Big-SAM. Despite
that it is a single-loop scheme, sequential averaging schemes
require smoothness properties of the problem and seem not
to lend themselves to distributed implementations.

C. Main Contributions
For more details on the main distinctions between our

work and the existing methods see Table 1. In none of the
existing methods, the finite sum form for the lower level
problem is considered. The sum structure is very rampant in
practice when we have separate objective functions related
to different agents in a distributed setting. This is the case
for example in machine learning for very large datasets [6],
where each fi represents an agent that is cooperating with
others. When the complete information of all the agents,
i.e. summation of all (sub)gradients is not available, these
agents can be treated distinctly. Due to its wide range of
applications in distributed optimization, finite sum problem
has been extensively studied. Among popular methods are
incremental (sub)gradient (IG) [4], [18] and incremental
aggregated (sub)gradients (IAG) [5], [26] for deterministic
and stochastic average gradient (SAG) [21], SAGA [7] and
MISO methods [16] for stochastic regimes. These algorithms
have faster convergence and are computationally efficient in
large-scale optimization since a very less amount of memory
is required at each step in order to store only one agent’s
information and subsequently update the iterate based on that
[10]. Despite the widespread use of these first-order methods,
they do not address the bilevel problem (Ph

f ).
Motivated by the existing lack in the literature and inspired

by the advantages of incremental approaches, in this paper,



we let the lower level objective function to be a summation
of m components. Then we use the idea of incremental
subgradient optimization to address problem (Ph

f ). We let
functions in both levels to be nondifferentiable. We then
prove the convergence of our proposed algorithm as well
as the O(1/k0.5−ε) rate of convergence.

Remark 1: An interesting research question that is re-
mained as a future direction to our research is if we can es-
tablish the convergence of iterative regularized IAG method
in solving problem (Ph

f ) or similarly SAG, SAGA and MISO
in stochastic regimes.

Notation The inner product of two vectors x,y ∈ Rn, is
shown as xT y. Also, ‖ · ‖ denotes Euclidean norm known
as ‖ · ‖2. For a convex function f with the domain dom( f ),
any vector g f with f (x) + gT

f (y− x) ≤ f (y) for all x,y ∈
dom( f ), is called a subgradient of f at x. We let ∂ f (x) and
∂h(x) denote the set of all subgradients of functions f and
h at x. Let f ∗ be the optimal value and X∗ represent the set
of all optimal solutions of the lower level problem in (Ph

f )
and x∗ shows any element of this set . Likewise, x∗h denotes
the optimal solution of problem (Ph

f ), and x∗
λ

denotes the
optimal solution of problem (1). Also, we let PX (x) denote
the Euclidean projection of vector x onto the set X .

The rest of this paper is organized as follows. In Section
II, we present the algorithm outline. Then, we discuss the
convergence analysis in Section III, and derive the conver-
gence rate in Section IV. We present the numerical results
in Section V, and conclude in Section VI.

II. ALGORITHM OUTLINE

In this section, we introduce the iterative regularized
incremental projected (sub)gradient (IR-IG) for generating
a sequence that converges to the unique optimal solution
of (Ph

f ). See Algorithm 1. IR-IG method includes two main

Algorithm 1 IR-IG

initialization: Set an arbitrary initial point x0 ∈X , x̄0 = x0,
and S0 = γr

0 and pick r < 1.
for k = 0,1, . . . ,N−1 do

Set xk,0 = xk and pick γk > 0 and λk > 0.
for i = 0,1, . . . ,m−1 do

Pick g fi+1(xk,i) ∈ ∂ fi+1(xk,i) and gh(xk,i) ∈ ∂h(xk,i).
Update xk,i using the following relation:

xk,i+1 := PX

(
xk,i− γk

(
g fi+1(xk,i)+

λk

m
gh(xk,i)

))
.

(2)

end for
Set xk+1 := xk,m.
Update Sk and x̄k using:

Sk+1 := Sk + γ
r
k+1, x̄k+1 :=

Skx̄k + γr
k+1xk+1

Sk+1
. (3)

end for
return x̄N .

steps. First, the agents update their iterates in an incremental

fashion similar to the standard IG method. This step takes a
circle around the all components of function f to update the
iterate. However, The main difference lies in the secondary
objective function h, which is added by a vanishing multiplier
λk. Second, we do averaging in order to accelerate the
convergence speed of the algorithm. For this, we consider
a weighted average sequence {x̄k} defined as below:

x̄k+1 :=
k

∑
t=0

ψt,kxt , where ψt,k ,
γr

t

∑
k
i=0 γr

i
, (4)

in which r < 1 is a constant, controlling the weights. Note
that (3) in Algorithm 1 follows from the relation (4) by
applying induction, (see e.g., Proposition 3 in [30]).

III. CONVERGENCE ANALYSIS

In this section, our goal is to show that the generated
sequence {x̄k} by Algorithm 1 converges to the unique
optimal solution of problem (Ph

f ) (see Theorem 1).
Remark 2: (a) Note that from Theorem 3.16, pg. 42 of

[1], Assumption 1 implies that there exist constants C f ,Ch ∈
R such that ‖g fi(x)‖ ≤ C f and ‖gh(x)‖ ≤ Ch for all i =
1, · · · ,m and x ∈ X , where g fi(x)∈ ∂ fi(x) and gh(x)∈ ∂h(x).
(b) From Theorem 3.61, pg. 71 of [1], functions fi and h are
Lipschitz over X with parameters C f and Ch, respectively,
i.e., for all i = 1, · · · ,m and x,y ∈ X

| fi(x)− fi(y)| ≤C f ‖x− y‖, |h(x)−h(y)| ≤Ch‖x− y‖.

(c) Assumption 1(a,b) imply that the optimal solution set,
X∗, is nonempty.

Here, we start with a lemma which helps bound the error
of optimal solutions of the problem (1) for two different
values of λ . We will make use of this lemma in the
convergence analysis. The proof for this lemma can be done
in a same fashion to that of Proposition 1 in [29].

Lemma 1: Let Assumption 1 hold. Suppose {x∗
λk
} be

the sequence of the optimal solutions of problem (1) with
parameter λ := λk. Then,

(a) ‖x∗
λk
− x∗

λk−1
‖ ≤ Ch

µh

∣∣∣1− λk−1
λk

∣∣∣.
(b) If λk → 0, then the sequence {x∗

λk
} converges to the

unique optimal solution of problem (Ph
f ), i.e., x∗h.

To get started, we also need a recursive upper bound on the
term ‖xk+1−x∗

λk
‖. This is provided by the following lemma

and will be used in Proposition 1 to prove the convergence
of sequence {xk} generated by the algorithm to x∗h.

Lemma 2 (A recursive error bound): Let Assumption 1
hold and 0 < µkλkµh ≤ 2m. Then, for the sequence {xk}
generated by Algorithm 1 and for all k > 0 we have∥∥∥xk+1− x∗

λk

∥∥∥2
≤
(

1− γkλkµh

2m

)∥∥∥xk− x∗
λk−1

∥∥∥2

+
3mC2

h

γkλkµ3
h

∣∣∣∣1− λk−1

λk

∣∣∣∣2 +6m2
γ

2
k (C

2
f +λ

2
k C2

h),

where x∗
λk

is the unique optimal solution of problem (1) with
λ := λk.



Proof: Using (2) and the nonexpansiveness property of
projection, we have∥∥∥xk,i+1− x∗

λk

∥∥∥2

=
∥∥∥PX

(
xk,i− γk

(
g fi+1(xk,i)+

λk
m gh(xk,i)

))
−PX (x∗λk

)
∥∥∥2

≤
∥∥∥xk,i− x∗

λk

∥∥∥2
+ γ2

k

∥∥∥g fi+1(xk,i)+
λk
m gh(xk,i)

∥∥∥2

−2γk

(
g fi+1(xk,i)+

λk
m gh(xk,i)

)T (
xk,i− x∗

λk

)
.

By boundedness of subgradients from Remark 2(a), the
definition of subgradient for fi+1, and the strong convexity
of h, we obtain∥∥∥xk,i+1− x∗

λk

∥∥∥2

≤
∥∥∥xk,i− x∗

λk

∥∥∥2
+2γ

2
k (C

2
f +λ

2
k C2

h)−2γk

(
fi+1(xk,i)− fi+1(x∗λk

)
)

− 2γkλk

m

(
h(xk,i)−h(x∗

λk
)
)
− γkλkµh

m

∥∥∥xk,i− x∗
λk

∥∥∥2

=

(
1− γkλkµh

m

)∥∥∥xk,i− x∗
λk

∥∥∥2
−2γk

(
fi+1(xk,i)+

λk

m
h(xk,i)

)
+2γk

(
fi+1(x∗λk

)+
λk

m
h(x∗

λk
)

)
+2γ

2
k (C

2
f +λ

2
k C2

h).

Taking summation from both sides over i, using xk,0 =
xk,xk,m = xk+1, and that γkλkµh > 0, we obtain

m−1

∑
i=0

∥∥∥xk,i+1− x∗
λk

∥∥∥2

≤
(

1− γkλkµh

m

)∥∥∥xk− x∗
λk

∥∥∥2
+

m−1

∑
i=1

∥∥∥xk,i− x∗
λk

∥∥∥2

+2mγ
2
k (C

2
f +λ

2
k C2

h)−2γk

m−1

∑
i=0

(
fi+1(xk,i)+

λk

m
h(xk,i)

)
+2γk

(
f (x∗

λk
)+λkh(x∗

λk
)
)
, (5)

where we used the definition of function f in the second
inequality. Now by rearranging the terms and adding and
subtracting f (xk)+λkh(xk) we obtain∥∥∥xk+1− x∗

λk

∥∥∥2

≤
(

1− γkλkµh

m

)∥∥∥xk− x∗
λk

∥∥∥2
+2mγ

2
k (C

2
f +λ

2
k C2

h)

−2γk

m−1

∑
i=0

(
( fi+1(xk,i)− fi+1(xk))+

λk

m
(h(xk,i)−h(xk))

)
+2γk

(
f (x∗

λk
)+λkh(x∗

λk
)− f (xk)−λkh(xk)

)
︸ ︷︷ ︸

Term1

≤
(

1− γkλkµh

m

)∥∥∥xk− x∗
λk

∥∥∥2
+2mγ

2
k (C

2
f +λ

2
k C2

h)

+2γk

m−1

∑
i=0

| fi+1(xk,i)− fi+1(xk)|︸ ︷︷ ︸
Term2

+
λk

m
|h(xk,i)−h(xk)|︸ ︷︷ ︸

Term3

 ,

where Term1≤ 0 is used due to optimality of x∗
λk

for f +λkh.
Also, from Remark 2(b) we know that Term2≤C f ‖xk,i−xk‖

and Term3≤Ch‖xk,i− xk‖. So, We have∥∥∥xk+1− x∗
λk

∥∥∥2
≤
(

1− γkλkµh

m

)∥∥∥xk− x∗
λk

∥∥∥2

+2mγ
2
k (C

2
f +λ

2
k C2

h)+2(C f +λkCh)γk

m−1

∑
i=0
‖xk,i− xk‖. (6)

Next, we find an upper bound for ‖xk,i− xk‖. We have
‖xk,1− xk‖
=
∥∥∥PX

(
xk,0− γk

(
g f1(xk,0)+

λk
m gh(xk,0)

))
−PX (xk)

∥∥∥
≤ γk

∥∥∥g f1(xk,0)+
λk
m gh(xk,0)

∥∥∥≤ γk

(
C f +

λk
m Ch

)
.

For i > 0, in a similar way, we have

‖xk,i+1− xk‖ ≤ ‖xk,i− xk‖+ γk

(
C f +

λk

m
Ch

)
.

So for i = 0,1, · · · ,m−1, we have

‖xk,i+1− xk‖ ≤ (i+1)γk

(
C f +

λk

m
Ch

)
≤ (i+1)γk

(
C f +λkCh

)
. (7)

Combining this with (6), we will obtain∥∥∥xk+1− x∗
λk

∥∥∥2
≤
(

1− γkλkµh

m

)∥∥∥xk− x∗
λk

∥∥∥2

+6m2
γ

2
k (C

2
f +λ

2
k C2

h). (8)

Next, we relate xk to x∗
λk−1

. We have∥∥∥xk− x∗
λk

∥∥∥2
=
∥∥∥xk− x∗

λk−1

∥∥∥2
+
∥∥∥x∗

λk
− x∗

λk−1

∥∥∥2

+2
(

xk− x∗
λk−1

)T (
x∗

λk−1
− x∗

λk

)
︸ ︷︷ ︸

Term4

.

Applying the fact that 2aT b≤ ‖a‖2/α +α‖b‖2 for all a,b ∈
Rn and α > 0 for Term4 when α = 2m/γkλkµh, we obtain∥∥∥xk− x∗

λk

∥∥∥2
=
∥∥∥xk− x∗

λk−1

∥∥∥2
+
∥∥∥x∗

λk
− x∗

λk−1

∥∥∥2

+
γkλkµh

2m

∥∥∥xk− x∗
λk−1

∥∥∥2
+

2m
γkλkµh

∥∥∥x∗
λk
− x∗

λk−1

∥∥∥2

=

(
1+

γkλkµh

2m

)∥∥∥xk− x∗
λk−1

∥∥∥2
+

(
1+

2m
γkλkµh

)∥∥∥x∗
λk
− x∗

λk−1

∥∥∥2
.

Using Lemma 1(a), we obtain∥∥∥xk− x∗
λk

∥∥∥2
≤
(

1+
γkλkµh

2m

)∥∥∥xk− x∗
λk−1

∥∥∥2

+

(
1+

2m
γkλkµh

)
C2

h

µ2
h

∣∣∣∣1− λk−1

λk

∣∣∣∣2 .
Plugging this inequality into (8) we obtain∥∥∥xk+1− x∗

λk

∥∥∥2
≤
(

1− γkλkµh

m

)(
1+

γkλkµh

2m

)∥∥∥xk− x∗
λk−1

∥∥∥2

+

(
1− γkλkµh

m

)(
1+

2m
γkλkµh

)
C2

h

µ2
h

∣∣∣∣1− λk−1

λk

∣∣∣∣2
+6m2

γ
2
k (C

2
f +λ

2
k C2

h).



The desired result is obtained from 0 < µkλkµh ≤ 2m.
We will make use of the following result in Proposition 1.

Lemma 3 (Lemma 10, pg. 49, [20]): Let {νk} be a se-
quence of nonnegative scalars and let {αk} and {βk} be
scalar sequences such that:

νk+1 ≤ (1−αk)νk +βk for all k ≥ 0,

0≤ αk ≤ 1, βk ≥ 0,
∞

∑
k=0

αk = ∞,
∞

∑
k=0

βk < ∞, lim
k→∞

βk

αk
= 0.

Then, limk→∞ νk = 0.
Assumption 2: Assume that for all k ≥ 0 we have

(a){γk} and {λk} are non-increasing positive sequences with
γ0λ0 ≤ 2m

µh
.

(b)∑
∞
k=0 γkλk = ∞. (c)∑

∞
k=0

1
γkλk

(
λk−1

λk
−1
)2

< ∞.

(d)∑
∞
k=0 γ2

k < ∞.

(e) limk→∞
1

γ2
k λ 2

k

(
λk−1

λk
−1
)2

= 0. ( f ) limk→∞
γk
λk

= 0.
Proposition 1 (Convergence of {xk}): Consider

problem (Ph
f ). Let Assumption 1 and 2 hold and {xk}

be generated by Algorithm 1. Then,
(a) limk→∞ ‖xk− x∗

λk−1
‖2 = 0.

(b) If limk→∞ λk = 0, xk converges to the unique optimal
solution of problem (Ph

f ), i.e., x∗h.
Proof: (a) Consider the result from Lemma 2. We let

νk , ‖xk− x∗
λk−1
‖2, αk ,

γkλkµh

2m

βk ,
3mC2

h

γkλkµ3
h

(
1− λk−1

λk

)2

+6m2
γ

2
k (C

2
f +λ

2
k C2

h).

From Assumption 2(a,b,c), since {γk} and {λk} are positive
and γ0λ0 ≤ 2m/µh, we have 0≤ αk ≤ 1 and βk ≥ 0 and also
∑

∞
k=1 αk =∞ and ∑

∞
k=1 βk <∞. To show that all the necessary

assumptions for Lemma 3 are satisfied, we have

lim
k→∞

βk

αk
=

6m2C2
h

µ4
h

lim
k→∞

1
γ2

k λ 2
k

(
λk−1

λk
−1
)2

+
12m3C2

f

µh
lim
k→∞

γk

λk

+
12m3C2

h
µh

lim
k→∞

γkλk.

Considering Assumption 2(e,f), we only need to show
that limk→∞ γkλk = 0. Since {λk} is non-increasing for all
k ≥ 0, we have λ 2

0 γk/λk ≥ γkλk. So by Assumption 2(f),
limk→∞ γkλk = 0. Consequently limk→∞

βk
αk

= 0. Now Lemma
3 can be applied. We have

lim
k→∞

νk = lim
k→∞
‖xk− x∗

λk−1
‖2 = 0.

(b) Applying the triangular inequality, we obtain

‖xk− x∗h‖2 ≤ 2‖xk− x∗
λk−1
‖2 +2‖x∗

λk−1
− x∗h‖2, for all k ≥ 0.

From part (a), ‖xk − x∗h‖2 converges to zero. Also, from
Lemma 1(b), we know that when λk→ 0 the sequence {x∗

λk
}

converges to the unique optimal solution of problem (Ph
f ),

i.e., x∗h. Therefore the result holds.
To have previous proposition work, we require that sequences
{γk} and {λk} satisfy Assumption 2. Below, we provide a

set of feasible sequences for this assumption. The proof is
analogous to that of Lemma 5 in [29].

Lemma 4: Assume {γk} and {λk} are sequences such that
γk =

γ0
(k+1)a and λk =

λ0
(k+1)b where a,b,γ0 and λ0 are positive

scalars and γ0λ0 ≤ 2m
µh

. If a > b, a > 0.5 and a+b < 1, then
the sequences {γk} and {λk} satisfy Assumption 2.
The following is a useful lemma in proving convergence that
we will apply in Theorem 1.

Lemma 5 (Theorem 6, pg. 75 of [12]): Let {ut} ⊂ Rn be
a convergent sequence with the limit point û ∈ Rn and let
{αk} be a sequence of positive numbers where ∑

∞
k=0 αk = ∞.

Suppose {vk} is given by vk ,
(
∑

k−1
t=0 αtut

)
/∑

k−1
t=0 αt for all

k ≥ 1. Then, limk→∞ vk = û.
Now, we can illustrate our ultimate goal in this section which
is showing the convergence of the sequence {x̄k} generated
by Algorithm 1 to x∗h

Theorem 1 (Convergence of {x̄k}): Consider problem
(Ph

f ). Let Assumption 1 hold. Also assume {γk} and {λk}
are sequences such that γk =

γ0
(k+1)a and λk =

λ0
(k+1)b where

a,b,γ0 and λ0 are positive scalars and γ0λ0 ≤ 2m
µh

. Let {x̄k}
be generated by Algorithm 1. If a > b, a > 0.5, a+ b < 1
and ar ≤ 1, then {x̄k} converges to x∗h.

Proof: Considering the given assumptions, by Lemma
4 we can see that Assumption 2 holds. We have

‖x̄k+1− x∗h‖=

∥∥∥∥∥ k

∑
t=0

ψt,kxt −
k

∑
t=0

ψt,kx∗h

∥∥∥∥∥≤ k

∑
t=0

ψt,k‖xt − x∗h‖,

applying ∑
k
t=0 ψt,k = 1 from (4) and the triangular inequality.

Now consider the definition of ψk and let αt , γr
t , ut , ‖xt−

x∗h‖ and vk+1 , ∑
k
t=0 ψt,k‖xt − x∗h‖. Since ar ≤ 1 we have

∑
∞
t=0 αt = ∑

∞
t=0 γr

t = ∑
∞
t=0(t +1)−ar = ∞. The sequence {λt}

is decreasing to zero due to b> 0, So, from Proposition 1(b),
ut = ‖xt−x∗h‖ converges to zero. Therefore, for û = 0 we can
apply Lemma 5 and thus, ‖x̄k+1− x∗h‖ converges to zero.

IV. RATE ANALYSIS

In this section, we first find an error bound with respect
to the optimal values of the lower level function f which
indeed shows the feasibility of the problem (Ph

f ). Then, we
apply it to derive a convergence rate for the algorithm.

Lemma 6: Consider the sequence {x̄N} generated by Al-
gorithm 1. Let Assumption 1 hold and {γk} and {λk} be
positive and non-increasing sequences. Then, for all N ≥ 1
and z ∈ X we have

f (x̄N)− f ∗ ≤

(
N−1

∑
k=0

γ
r
k

)−1(
m

N−1

∑
k=0

γ
r+1
k (C2

f +λ
2
k C2

h)

+m2C f

N−1

∑
k=0

γ
r+1
k

(
C f +λkCh

)
+2Mh

N−1

∑
k=0

γ
r
k λk +2M2

γ
r−1
N−1

)
,

where Mh,M are scalars such that ‖h(x)‖ ≤Mh, ‖x‖ ≤M for
all x ∈ X .



Proof: Similar to relation (5), we can have

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2 +2mγ
2
k (C

2
f +λ

2
k C2

h)

−2γk

m−1

∑
i=0

(
fi+1(xk,i)+

λk

m
h(xk,i)

)
+2γk ( f ∗+λkh(x∗))

≤ ‖xk− x∗‖2 +2mγ
2
k (C

2
f +λ

2
k C2

h)

−2γk

m−1

∑
i=0

fi+1(xk,i)+2γk f ∗+4γkλkMh.

Adding and subtracting f (xk), we obtain

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2 +2mγ
2
k (C

2
f +λ

2
k C2

h)

−2γk

m−1

∑
i=0

(
fi+1(xk,i)− fi(xk)

)
+2γk ( f ∗− f (xk))+4γkλkMh

≤ ‖xk− x∗‖2 +2mγ
2
k (C

2
f +λ

2
k C2

h)

+2γk

m−1

∑
i=0

∣∣ fi+1(xk,i)− fi(xk)
∣∣+2γk ( f ∗− f (xk))+4γkλkMh.

Applying Remark 2(b), | fi+1(xk,i)− fi(xk)| ≤ C f ‖xk,i− xk‖,
we have

‖xk+1− x∗‖2 ≤ ‖xk− x∗‖2 +2mγ
2
k (C

2
f +λ

2
k C2

h)

+2C f γk

m−1

∑
i=0
‖xk,i− xk‖+2γk ( f ∗− f (xk))+4γkλkMh.

Using the inequality (7), we obtain

‖xk+1− x∗‖2−‖xk− x∗‖2 ≤ 2γk ( f ∗− f (xk))

+2mγ
2
k (C

2
f +λ

2
k C2

h)+2m2C f γ
2
k
(
C f +λkCh

)
+4γkλkMh.

(9)

Multiplying both sides by γ
r−1
k and adding and subtracting

γ
r−1
k−1‖xk− x∗‖2 to the left hand side, we have

γ
r−1
k ‖xk+1− x∗‖2− γ

r−1
k−1‖xk− x∗‖2 +

(
γ

r−1
k−1 − γ

r−1
k

)
‖xk− x∗‖2

≤ 2γ
r
k ( f ∗− f (xk))+2mγ

r+1
k (C2

f +λ
2
k C2

h)

+2m2C f γ
r+1
k

(
C f +λkCh

)
+4γ

r
k λkMh.

Since {γk} in non-increasing and r < 1 we have γ
r−1
k−1 ≤

γ
r−1
k . Also, by the triangle inequality ‖xk− x∗‖2 ≤ 2‖xk‖2 +

2‖x∗‖2 ≤ 4M2. So, we obtain

γ
r−1
k ‖xk+1− x∗‖2− γ

r−1
k−1‖xk− x∗‖2 +4M2 (

γ
r−1
k−1 − γ

r−1
k

)
≤ 2γ

r
k ( f ∗− f (xk))+2mγ

r+1
k (C2

f +λ
2
k C2

h)

+2m2C f γ
r+1
k

(
C f +λkCh

)
+4γ

r
k λkMh.

Taking summation over k = 1,2, · · · ,N−1, we obtain

γ
r−1
N−1 ‖xN− x∗‖2− γ

r−1
0 ‖x1− x∗‖2 +4M2 (

γ
r−1
0 − γ

r−1
N−1
)

≤ 2
N−1

∑
k=1

γ
r
k ( f ∗− f (xk))+2m

N−1

∑
k=1

γ
r+1
k (C2

f +λ
2
k C2

h)

+2m2C f

N−1

∑
k=1

γ
r+1
k

(
C f +λkCh

)
+4Mh

N−1

∑
k=1

γ
r
k λk.

Removing non-negative terms from the left-hand side of the
preceding inequality, we have

− γ
r−1
0 ‖x1− x∗‖2−4M2

γ
r−1
N−1 ≤ 2

N−1

∑
k=1

γ
r
k ( f ∗− f (xk))

+2m
N−1

∑
k=1

γ
r+1
k (C2

f +λ
2
k C2

h)+2m2C f

N−1

∑
k=1

γ
r+1
k

(
C f +λkCh

)
+4Mh

N−1

∑
k=1

γ
r
k λk. (10)

From (9) for k = 0, we obtain

‖x1− x∗‖2 ≤ 2γ0 ( f ∗− f (x0))+2mγ
2
0 (C

2
f +λ

2
0 C2

h)

+2m2C f γ
2
0
(
C f +λ0Ch

)
+4γ0λ0Mh +4M2.

By multiplying both sides of the preceding inequality by γ
r−1
0

and summing it with the relation (10), we obtain

−4M2
γ

r−1
N−1 ≤ 2

N−1

∑
k=0

γ
r
k ( f ∗− f (xk))+4Mh

N−1

∑
k=0

γ
r
k λk

+2m
N−1

∑
k=0

γ
r+1
k (C2

f +λ
2
k C2

h)+2m2C f

N−1

∑
k=0

γ
r+1
k

(
C f +λkCh

)
.

Rearranging the terms we have

2
N−1

∑
k=0

γ
r
k ( f (xk)− f ∗)≤ 2m

N−1

∑
k=0

γ
r+1
k (C2

f +λ
2
k C2

h)

+2m2C f

N−1

∑
k=0

γ
r+1
k

(
C f +λkCh

)
+4Mh

N−1

∑
k=0

γ
r
k λk +4M2

γ
r−1
N−1.

Now we divide both sides by 2∑
N−1
k=0 γr

k and use the definition
of ψk,N−1 in (4),

N−1

∑
k=0

ψk,N−1 ( f (xk)− f ∗)

≤

(
N−1

∑
k=0

γ
r
k

)−1(
m

N−1

∑
k=0

γ
r+1
k (C2

f +λ
2
k C2

h)

+m2C f

N−1

∑
k=0

γ
r+1
k

(
C f +λkCh

)
+2Mh

N−1

∑
k=0

γ
r
k λk +2M2

γ
r−1
N−1

)
.

We know ∑
N−1
k=0 ψk,N−1 = 1 also f (x̄N) ≤ ∑

N−1
k=0 ψk,N−1 f (xk)

because of convexity of f . So, we obtain the desired result.

The following lemma, will be used to find a convergence
rate statement in Theorem 2.

Lemma 7 (Lemma 9, page 418 in [29]): For any scalar
α 6=−1 and integers ` and N where 0≤ `≤ N−1, we have

Nα+1− (`+1)α+1

α +1
≤

N−1

∑
k=`

(k+1)α

≤ (`+1)α +
(N +1)α+1− (`+1)α+1

α +1
.

In the following theorem, we present a rate statement for
Algorithm 1.



Theorem 2 (A rate statement for Algorithm 1):
Assume {x̄N} is generated by Algorithm 1 to solve problem
(Ph

f ). Let Assumption 1 and 2 hold and also 0 < ε < 0.5
and r < 1 be arbitrary constants. Assume for 0 < ε < 0.5,
{γk} and {λk} are sequences defined as

γk =
γ0

(k+1)0.5+0.5ε
and λk =

λ0

(k+1)0.5−ε
,

such that γ0 and λ0 are positive scalars and γ0λ0µh ≤ 2m.
Then,
(a) The sequence {x̄N} converges to the unique optimal
solution of problem (Ph

f ), i.e., x∗h.
(b) f (x̄N) converges to f ∗ with the rate O

(
1/N0.5−ε

)
.

Proof: Throughout, we set a := 0.5+0.5ε , b := 0.5−ε .
(a) From the values of a and b, and that r < 1 and 0< ε < 0.5,
we have

a > b > 0, a > 0.5, a+b = 1−0.5ε < 1,
ar = 0.5(1+ ε)r < 0.5(1.5) = 0.75 < 1.

This implies that all conditions of Theorem 1 are satisfied.
Therefore, {x̄N} converges to x∗h almost surely.
(b) Since {λk} is a non-increasing sequence from Lemma 6
we have

f (x̄N)− f ∗ ≤

(
N−1

∑
k=0

γ
r
k

)−1(
m
(
C2

f +λ
2
0 C2

h
)N−1

∑
k=0

γ
r+1
k

+m2C f
(
C f +λ0Ch

)N−1

∑
k=0

γ
r+1
k +2Mh

N−1

∑
k=0

λkγ
r
k +2M2

γ
r−1
N−1

)
.

We have γk = γ0/(k+1)a and λk = λ0/(k+1)b, thus

f (x̄N)− f ∗

≤

(
N−1

∑
k=0

γr
0

(k+1)ar

)−1(
m
(
C2

f +λ
2
0 C2

h
)N−1

∑
k=0

γ
r+1
0

(k+1)a(r+1)

+m2C f
(
C f +λ0Ch

)N−1

∑
k=0

γ
r+1
0

(k+1)a(r+1) +2Mh

N−1

∑
k=0

λ0γr
0

(k+1)ar+b

+2M2
γ

r−1
0 Na(1−r)

)
.

Rearranging the terms, we have

f (x̄N)− f ∗ ≤

(
N−1

∑
k=0

γr
0

(k+1)ar

)−1

×

(
2Mh

N−1

∑
k=0

λ0γr
0

(k+1)ar+b +2M2
γ

r−1
0 Na(1−r)

+
(
m2C f

(
C f +λ0Ch

)
+m

(
C2

f +λ
2
0 C2

h
))N−1

∑
k=0

γ
r+1
0

(k+1)a(r+1)

)
.

Let us define

Term1 =

(
N−1

∑
k=0

1
(k+1)ar

)−1

Na(1−r),

Term2 =

(
N−1

∑
k=0

1
(k+1)ar

)−1(N−1

∑
k=0

1
(k+1)ar+b

)
.

We have

Term1≤ Na(1−r)

N1−ar−1
1−ar

=
(1−ar)Na(1−r)

N1−ar−1
= O

(
N−(1−a)

)
,

Term2≤
(N+1)1−ar−b−1

1−ar−b +1
N1−ar−1

1−ar

=
(1−ar)

(
(N +1)1−ar−b−1

)
(1−ar−b)(N1−ar−1)

+
1−ar

N1−ar−1
= O

(
N−b

)
+O

(
N−(1−ar)

)
.

So, we have

f (x̄N)− f ∗ ≤O
(

N−min{1−ar,1−a,b}
)
= O

(
N−min{1−a,b}

)
,

where we used 1− a ≤ 1− ar. Replacing a and b by their
values, we have

f (x̄N)− f ∗ ≤O
(

N−min{0.5−0.5ε,0.5−ε}
)
= O

(
N−(0.5−ε)

)
.
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Fig. 1: IR-IG performane for binary text classification problem with respect to
different initial point x0, parameters (γ0,λ0) and r. The vertical axis represents the log
of average loss and the horizontal axis is the number of iterations.

V. NUMERICAL RESULTS

In this section, we apply the IR-IG method on a text
classification problem. In this problem we assume to have
a summation of hinge loss function, i.e., L (〈x,a〉,b) ,
max{0,1− b〈x,a〉} for any sample a,b in the lower level
of (Ph

f ). The set of observations (ai,bi) are derived from
the Reuters Corpus Volume I (RCV1) dataset (see [14]).
This dataset has categorized Reuters articles, from 1996 to
1997, into four groups: Corporate/Industrial, Economics,
Government/Social and Markets. In this application, we use
a subset of this dataset with N = 50,000 articles and 138,921
tokens to perform a binary classification of articles only with



respect to the Markets class. Each vector ai represents the
existence of all tokens in article i, and bi shows whether the
article belongs to the Markets class. To decide that a new
article can be placed in the Markets class, the problem in the
lower level should be solved such that the optimal solution
is a weight vector of the tokens regarding the Markets class
which minimizes the total loss. However, to make such a
decision, an optimal solution with a large number of nonzero
components are undesirable. To induce sparsity, we consider
the following bilevel problem:

minimize h(x),
µh

2
‖x‖2

2 +‖x‖1 (11)

subject to x ∈ arg min
y∈Rn

m

∑
i=1

N/m

∑
j=1

L (aT
(i−1)N/m+ jy,b(i−1)N/m+ j),

where, we let µh = 0.1 and we consider each batch of N/m=
1000 articles to be one component function with the total
number of component functions m = 50. The function h is
strongly convex with parameter µh. We let γk and λk be given
by the rules in Theorem 2. We study the sensitivity of the
method by changing x0, γ0, λ0, and the averaging parameter
r < 1. We finally report the logarithm of average of the loss
function L . The plots in Fig. 1 show the convergence of the
IR-IG method for the problem (11). The results show the
convergece of Algorithm 1 with different initial values such
as the starting point or parameters γ0,λ0 while when we pick
a smaller r the algorithm is faster in all the cases.

VI. CONCLUDING REMARKS

Motivated by the applications of incremental gradient
schemes in distributed optimization, especially in machine
learning and large data training, we develop an iterative
regularized incremental first-order method, called IR-IG, for
solving a class of bilevel convex optimization. We prove the
convergence of IR-IG and establish the corresponding rate in
terms of the lower level objective function. We finally apply
IR-IG to a binary text classification problem and demonstrate
the performance of the proposed algorithm.
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