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Optimal Trajectory Tracking of Nonholonomic Mechanical Systems: a

geometric approach

Aradhana Nayak1, Rodrigo Sato Martı́n de Almagro2, Leonardo Colombo2 and David Martı́n de Diego2

Abstract— We study the tracking of a trajectory for a
nonholonomic system by recasting the problem as an optimal
control problem. The cost function is chosen to minimize the
error in positions and velocities between the trajectory of a non-
holonomic system and the desired reference trajectory evolving
on the distribution which defines the nonholonomic constraints.
We prepose a geometric framework since it describes the
class of nonlinear systems under study in a coordinate-free
framework. Necessary conditions for the existence of extrema
are determined by the Pontryagin Minimum Principle. A
nonholonomic fully actuated particle is used as a benchmark
example to show how the proposed method is applied.

I. INTRODUCTION

Nonholonomic optimal control problems arise in many

engineering applications, for instance systems with wheels,

such as cars and bicycles, and systems with blades or skates.

There are thus multiple applications in the context of wheeled

motion, space or mobile robotics and robotic manipulation.

The earliest work on control of nonholonomic systems is by

R. W. Brockett in [9]. A. M. Bloch [2], [3] has examined sev-

eral control theoretic issues which pertain to both holonomic

and nonholonomic systems in a very general form. The

seminal works about stabilization in nonholonomic control

systems were done by A. M. Bloch, N. H. McClamroch, and

M. Reyhanoglu in [3], [5], [6], [7], and more recently by A.

Zuryev [27].

A geometrical dynamical system of mechanical type is

completely determined by a Riemannian manifold Q, a

kinetic energy, which is defined through the Riemannian

metric G on the manifold and the potential forces encoded

into a potential (conservative) function V : Q → R. These

objects, together with a non-integrable distribution D ⊂ TQ
on the tangent bundle of the configuration space determines

a nonholonomic mechanical system.

Stabilization of an equilibrium point of a mechanical

system on a Riemannian manifold has been a problem well

studied in the literature from a geometric framework along

the last decades (see [2] and [11] for a review on the topic).

Further extensions of these results to the problem of tracking

a smooth and bounded trajectory can be found in [11] where
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a proportional and derivative plus feed forward (PD+FF)

feedback control law is proposed for tracking a trajectory

on a Riemannian manifold using error functions.

For trajectory tracking, the usual approach of stabilization

of error dynamics [19], [22], [23], [25] cannot be utilized for

nonholonomic systems. This is because there does not exist

a C1 (even continuous) state feedback which can asymp-

totically stabilize the trajectory of a nonholonomic system

about a desired equilibrium point. The closed loop trajectory

violates Brockett’s condition [10], [7] which states that any

system of the form ẋ = f(x, u) must have a neighborhood

of zero in the image of the map x → f(x, u) for some u in

the control set. This result appears in Theorem 4 in [7].

In this paper, we introduce a geometrical framework in

nonholonomic mechanics to study tracking of trajectories

for nonholonomic systems based on [12], [16], [17]. The

application of modern tools from differential geometry in the

fields of mechanics, control theory and numerical integration

has led to significant progress in these research areas. For

instance, the study in a geometrical formulation of the

nonholonomic equations of motion has led to better under-

standing of different engineering problems such locomotion

generation, controllability, motion planning, and trajectory

tracking.

Combining the ideas of geometric methods in control

theory, nonholonomic systems and optimization techniques,

in this paper, we study the underlying geometry of a tracking

problem for nonholonomic systems by understanding it as an

optimal control problems for mechanical systems subject to

nonholonomic constraints.

Given a reference trajectory γr(t) = (qr(t), vr(t)) on D
the problem studied in this work consists on finding an

admissible curve γ(t) ∈ D, solving a dynamical control

system, with prescribed boundary conditions on D and min-

imizing a cost functional which involves the error between

the reference trajectory and the trajectory we want to find

(in terms of both, positions and velocities), and the effort of

the control inputs. This cost functional is accomplished with

a weighted terminal cost (also known as Mayer term) which

induces a constraint into the dynamics on D. The interval

length for the cost functional T may either be fixed, or appear

as a degree of freedom in the optimization problem, or be

time horizon. In this work, we restrict to the case when T
is fixed.

To test the efficiency of the proposed method, we use a

Runge Kutta integrator together with a shooting method in

the solution of a trajectory optimization for a simple but

challenging benchmark mechanical system: a fully actuated
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particle subject to a nonholonomic constraint into the dy-

namics.

We propose a geometric derivation of the equations of

motion for tracking a trajectory of a nonholonomic system as

an optimal control problem find we find necessary conditions

via the Pontryagin Minimum Principle (PMP), where the

optimal Hamiltonian is defined on the cotangent bundle

of the constraint distribution. This approach allow for the

reduction in the degrees of freedom of the equations for

the optimal control problem, compared with typical methods

describing the dynamics of a nonholonomic system, as the

ones arising from the application of Lagrange-d’Alembert

principle. The main advantages in this geometric framework

consist in the use of a basis of vector fields on D allowing the

reduction of some degrees of freedom in the dynamics for

a nonholonomic mechanical system. The paper is structured

as follows: we introduce mechanical systems on a manifold,

connections on a Riemannian manifold and the geometry

of nonholonomic dynamical systems on Section II, together

with the example we used as benchmark the nonholonomic

particle. Section III introduces the details of the problem

under study motivated by the non-existence of a C1 feedback

control to asymptotically stabilize the error dynamics in non-

holonomic systems. Necessary conditions for the existence of

extrema in the proposed optimal control problem are studied

from the PMP in Section IV. We also show numerical results

and analyze the results we obtain.

II. NONHOLONOMIC MECHANICAL SYSTEMS

A. Preliminaries

Let Q be a n-dimensional differentiable manifold with lo-

cal coordinates (qi), with 1 ≤ i ≤ n, the configuration space

of a mechanical system. Denote by TQ its tangent bundle

with induced local coordinates (qi, q̇i). Given a Lagrangian

function L : TQ → R, its Euler-Lagrange equations are

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
= 0, 1 ≤ i ≤ n. (1)

These equations determine a system of implicit second-

order differential equations in general. If we assume that the

Lagrangian is regular, that is, the n× n matrix
(

∂2L
∂q̇i∂q̇j

)

is non-degenerate, the local existence and uniqueness of

solutions is guaranteed for any given initial condition.

Vector fields are used to calculate the directional derivative

of a function defined on Q. In the realm of differential

geometry a more general operator is defined to perform

derivation of a wider range of geometric objects (tensors).

This operator is called connection (linear, covariant, or affine

connection). The definition of the connection is a wish list

of properties which it is expected to have

Definition 2.1: An (affine) connection on a smooth man-

ifold Q is a map which takes a pair consisting of a vector

(or a vector field), and a (p, q)-tensor field, T , and returns a

(p, q)-tensor field, such that it satisfies the following axioms

• ∇Xf = X(f), for f ∈ C∞(Q),
• ∇X(T + S) = ∇XT +∇XS, for T and S tensors of

the same type,

• ∇XT (f, g) = (∇XT )(f, g)+T (∇Xf, g)+T (f,∇Xg).
This definition of a connection is complete, i.e., this list of

properties results in a uniquely defined geometric operator;

however, an extra structure on the manifold is needed to

define this object in a chart. To do so, we need to know

how it acts on the basis of the tangent vector space. The

result is a tangent vector field, and at each point it is

spanned by the basis of the tangent space at that point

∇ ∂

∂qi

(

∂

∂qj

)

= Γk
ij

∂

∂qk
.

Denote by X(Q) the set of vector fields on Q. A metric

G on a smooth manifold is a (0, 2)-tensor field satisfying

• Symmetry: G(X,Y ) = G(Y,X) X,Y ∈ X(Q),
• Non-degeneracy: G(X,Y ) = 0 if and only if when X =

0 then Y = 0.

Locally, the metric is determined by the matrix M =
(Gij)1≤i,j≤n where Gij = G(∂/∂qi, ∂/∂qj).

Using the metric G we may compute the Christoffel

symbols associated with the metric as

Γk
ij =

(

G−1
)

ks

(

∂Gsj

∂qi
+

∂Gsi

∂qj
+

Gij

∂qs

)

where G−1 is defined as the inverse of the metric with

components determined by the inverse matrix of M .

B. Nonholonomic mechanical systems

Most nonholonomic systems have linear constraints, and

these are the ones we will consider. Linear constraints on

the velocities (or Pfaffian constraints) are locally given by

equations of the form φa(qi, q̇i) = µa
i (q)q̇

i = 0, 1 ≤
a ≤ m, depending, in general, on their configuration

coordinates and their velocities. From an intrinsic point

of view, the linear constraints are defined by a regular

distribution D on Q of constant rank n − m such that the

annihilator of D is locally given at each point of Q by

Do
q = span

{

µa(q) = µa
i dq

i ; 1 ≤ a ≤ m
}

where the one-

forms µa are independent at each point of Q.

Now we restrict ourselves to the case of nonholonomic

mechanical systems where the Lagrangian is of mechanical

type, that is, a Lagrangian systems L : TQ → R defined by

L(vq) =
1

2
G(vq , vq)− V (q),

with vq ∈ TqQ, where G denotes a Riemannian metric on

the configuration space Q representing the kinetic energy of

the systems and V : Q → R is a potential function.

Next, assume that the system is subject to nonholonomic

constraints, defined by a regular distribution D on Q with

corank(D) = m. Denote by τD : D → Q the canonical

projection of D onto Q and by Γ(τD) the set of sections of

τD which in this case is just the set of vector fields X(Q)
taking values on D. If X,Y ∈ X(Q), then [X,Y ] denotes

the standard Lie bracket of vector fields.

Definition 2.2: A nonholonomic mechanical system on a

smooth manifold Q is given by the triple (G, V,D), where

G is a Riemannian metric on Q, representing the kinetic

energy of the system, V : Q → R is a smooth function



representing the potential energy and D a non-integrable

regular distribution on Q representing the nonholonomic

constraints.

Given X,Y ∈ Γ(τD) that is, X(x) ∈ Dx and Y (x) ∈ Dx

for all x ∈ Q, then it may happen that [X,Y ] /∈ Γ(τD) since

D is nonintegrable. We want to obtain a bracket definition

for sections of D. Using the Riemannian metric G we can

define two complementary orthogonal projectors P : TQ →
D and Q : TQ → D⊥, with respect to the tangent bundle

orthogonal decomposition D ⊕D⊥ = TQ. Therefore, given

X,Y ∈ Γ(τD) we define the nonholonomic bracket [[·, ·]] :
Γ(τD)×Γ(τD) → Γ(τD) as [[XA, XB]] := P [XA, XB]. This

Lie bracket verifies the usual properties of a Lie bracket

except the Jacobi identity (see [4], [14] for example).

Definition 2.3: Consider the restriction of the Riemannian

metric G to the distribution D, GD : D×QD → R and define

the Levi-Civita connection ∇GD

: Γ(τD)× Γ(τD) → Γ(τD)
determined by the following two properties:

1) [[X,Y ]] = ∇GD

X Y −∇GD

Y X,

2) X(GD(Y, Z)) = GD(∇G
D

X Y, Z) + GD(Y,∇G
D

X Z).
Let (qi) be local coordinates on Q and {eA} be indepen-

dent vector fields on Γ(τD) (that is, eA(x) ∈ Dx) such that

Dx = span {eA(x)}, x ∈ U ⊂ Q.

Then, we can determine the Christoffel symbols ΓA
BC of the

connection ∇GD

by ∇GD

eB
eC = ΓA

BC(q)eA.
As when we work in tangent bundles, it is possible

to determine the Christoffel symbols associated with the

connection ∇GD

by ∇GD

eB
eC = ΓA

BCeA. Note that the

coefficients ΓC
AB of the connection ∇GD

are (see [1] for

details)

ΓC
AB =

1

2
(CB

CA + CA
CB + CC

AB) (2)

where the constant structures CC
AB are defined as

[[XA, XB]] = CC
ABXC .

Definition 2.4: A curve γ : I ⊂ R → D is admissible if

γ(t) =
dσ

dt
(t), where τD ◦ γ = σ.

Given local coordinates on Q, (qi) with i = 1, . . . , n; and

{eA} sections on Γ(τD), with A = 1, . . . , n−m, such that

eA = ρiA(q)
∂

∂qi
we introduce induced coordinates (qi, vA)

on D, where, if e ∈ Dx then e = vAeA(x). Therefore, γ(t) =
(qi(t), vA(t)) is admissible if

q̇i(t) = ρiA(q(t))v
A(t).

Consider the restricted Lagrangian function ℓ : D → R,

ℓ(v) =
1

2
GD(v, v) − V (τD(v)), with v ∈ D.

Definition 2.5: A solution of the nonholonomic problem

is an admissible curve γ : I → D such that

∇GD

γ(t)γ(t) + gradGDV (τD(γ(t))) = 0.

Here the section gradGDV ∈ Γ(τD) is characterized by

GD(gradGDV,X) = X(V ), for every X ∈ Γ(τD).

These equations are equivalent to the nonholonomic equa-

tions. Locally, these equations are given by

q̇i = ρiA(q)v
A (3)

v̇C = −ΓC
ABv

AvB − (GD)CBρiB(q)
∂V

∂qi
, (4)

where (GD)AB denotes the coefficients of the inverse matrix

of (GD)AB where GD(eA, eB) = (GD)AB.
Remark 2.6: The nonholonomic equations only depend on

the coordinates (qi, vA) on D. Therefore the nonholonomic

equations are free of Lagrange multipliers. These equations

are equivalent to the nonholonomic Hamel equations (see

[8], for example, and references therein).

C. Example: The nonholonomic particle

Consider a particle of unit mass evolving in Q = R
3

with Lagrangian L(x, y, z, ẋ, ẏ, ż) =
1

2
(ẋ2 + ẏ2 + ż2), and

subject to the constraint ẋ+ y ż = 0.

This nonholonomic system is defined by the annhilation

of the one-form µ(x, y, z) = (1, 0, y). The nonholonomic

equations, derived from the Lagrange-d’Alembert principle,

are given by

v̇x =λ, vx = ẋ, v̇y = 0, vy = ẏ, (5)

v̇z =yλ, vz = ż, vx + y vz = 0,

which, after substituting the Lagrange multiplier

λ = −
vzvy
1 + y2

, lead to

v̇x =−
y

1 + y2
vzvy, v̇z = −

1

1 + y2
vz vy, (6)

vz =ż, vy = ẏ, vx = ẋ, v̇y = 0, (7)

such that vx + y vz = 0. Let D ⊂ TR3 ≃ R
3 × R

3

denote the nonholonomic distribution corresponding to this

system. Then these equations define a time-continuous flow

Ft : D → D, i.e. Ft((q(0), v(0))) = (q(t), v(t)), where

q(t) = (x(t), y(t), z(t))T and v(t) = (vx(t), vy(t), vz(t))
T ,

(q(0), v(0)) ∈ D.

The distribution D is determined by D = span{Y1, Y2} =

span
{

∂
∂y

, ∂
∂z

− y ∂
∂x

}

. Then, D⊥ = { ∂
∂x

+ y ∂
∂z
}. Let

(x, y, z, v1, v2) be induced coordinates on D.

Given the vector fields Y1 and Y2 generating the distribu-

tion we obtain the relations for q ∈ R
3

Y1(q) = ρ11(q)
∂

∂x
+ ρ21(q)

∂

∂y
+ ρ31(q)

∂

∂z
,

Y2(q) = ρ12(q)
∂

∂x
+ ρ22(q)

∂

∂y
+ ρ32(q)

∂

∂z
.

Then, ρ11 = ρ31 = ρ22 = 0, ρ21 = ρ32 = 1, ρ12 = −y.

Each element e ∈ Dq is expressed as a linear combination

of these vector fields: e = v1Y1(q) + v2Y2(q), q ∈ R
3.

Therefore, the vector subbundle τD : D → R
3 is locally

described by the coordinates (x, y, θ; v1, v2); the first three

for the base and the last two, for the fibers. Observe that

e = v1
∂

∂y
+ v2

(

∂

∂z
− y

∂

∂x

)



and, in consequence, D is described by the conditions

(admissibility conditions): ẋ = −yv2, ẏ = v1, ż = v2 as

a vector subbundle of TQ where v1 and v2 are the adapted

velocities relative to the basis of D defined before.

The nonholonomic bracket given by [[·, ·]] = P([·, ·])
satisfies

[[Y1, Y2]] = P [Y1, Y2] = P

(

−
∂

∂x

)

=
y

1 + y2

(

∂

∂z
− y

∂

∂x

)

.

Therefore, by using (2) all the Christoffel symbols for

the connection ∇GD

vanish except Γ2
12 which is given by

Γ2
12 =

y

1 + y2
. The restriction of the Lagrangian function L

on D in the adapted coordinates (v1, v2) is given by

ℓ(x, y, z, y1, y2) =
1

2

(

(v1)2 + (v2)2(y2 + 1)
)

.

Then, the nonholonomic equations for the constrained

particle are given by

v̇1 = 0, v̇2 = −
y

1 + y2
v1v2 (8)

together with the admissibility conditions ẋ = −yv2, ẏ = v1

and ż = v2. Then these equations define a time-continuous

flow FD
t : D → D, i.e. Ft((q(0), v(0))) = (q(t), v(t)),

where q(t) = (x(t), y(t), z(t))T and v(t) = (v1(t), v2(t))
T ,

(q(0), v(0)) ∈ D.

The previous systems can be integrated explicitly, and

solutions are given by:

x(t) =x0 −
c2
c1

√

(y0 + c1t)2 + 1, y(t) = c1t+ y0

z(t) =
c2
2c1

(

(y0 + c1t)
√

(y0 + c1t)2 + 1 + sinh−1(y0 + c1t)
)

− z0c2, (9)

v1(t) =c1, v2(t) =
c2

√

(y0 + c1t)2 + 1
,

for x0, y0, z0, c1, c2 constants to be determined by the initial

conditions.

Remark 2.7: Note that previous equations have a singu-

larity at c1 = 0. The constant c1 arrises from the equation

for v̇1. If c1 = 0, and therefore v1(t) = 0, then the solution

for the system of equations is given by x(t) = −y0v
2
0t+x0,

y(t) = y0, z(t) = v20t+ z0, v2(t) = v20 , where x0, y0, z0, v
2
0

are constants. ⋄

III. OPTIMAL TRAJECTORY TRACKING PROBLEM

The purpose of this section is to present the tracking

problem for nonholonomic systems as an optimal control

problem. The objective is the tracking of a suitable reference

trajectory Υ(t) for a mechanical system with nonholonomic

velocity constraints as described in the previous section. It

is assumed that Υ(t) ∈ D.

We will analyze the case when the dimension of the inputs

set or control distribution is equal to the rank of D. If the rank

of D is equal to the dimension of the control distribution, the

system will be called a fully actuated nonholonomic system.

Definition 3.1: A solution of a fully actuated nonholo-

nomic problem is an admissible curve γ : I → D such that

∇GD

γ(t)γ(t) + gradGDV (τD(γ(t))) ∈ Γ(τD),

or, equivalently,

∇GD

γ(t)γ(t) + gradGDV (τD(γ(t))) = uA(t)eA(τD(γ(t))),

where uA are the control inputs.

Locally, the above equations are given by

q̇i = ρiAv
A (10)

v̇A = −ΓA
CBv

CvB − (GD)ABρiB(q)
∂V

∂qi
+ uA. (11)

As we mentioned in the Introduction, For trajectory track-

ing, the usual approach of stabilization of error dynamics

[19], [22], [23], [25] cannot be utilized for nonholonomic

systems because the closed loop trajectory violates Brockett’s

condition. A common approach to trajectory tracking for

nonholonomic systems found in the literature is the back-

stepping procedure [15], [18]. This approach is done on a

per example basis, in particular, mobile robots or unycicle

models. In [15], [18] the error dynamics of the unicycle

model is shown to be in strict feedback form. Thereafter,

integrator backstepping is employed to choose an appropriate

Lyapunov function for stabilization of the error dynamics.

This error dynamics does not evolve on the constrained mani-

fold (unlike our approach). Therefore, Brockett’s condition is

not violated. However, since ρiA(q) is unknown in a general

framework, the approach can not be generalized to solve the

tracking problem for a general nonholonomic system with

our method and then backstepping needs to be studied for

each system.

So we propose a new approach to consider tracking

problem as an optimal control problem and we call this

optimal tracking.

In the following, we shall assume that all the control

systems under consideration are controllable in the configu-

ration space, that is, for any two points q0 and qf in the

configuration space Q, there exists an admissible control

u(t) defined on the control manifold U ⊆ R
n such that

the system with initial condition q0 reaches the point qf
at time T (see [2] for more details). Given a cost function

C : D × U → R the optimal control problem consists of

finding an admissible curve γ : I → D which is a solution

of the fully actuated nonholonomic problem given initial and

final boundary conditions on D and minimizing the cost

functional

J (γ(t), u(t)) :=

∫ T

0

C(γ(t), u(t))dt.

For trajectory tracking of a nonholonomic system we

consider the following problem

Problem (optimal trajectory tracking): Given a refer-

ence trajectory γr(t) = (qr(t), vr(t)) on D, find an ad-

missible curve γ(t) ∈ D, solving (10)-(11), with prescribed



boundary conditions on D and minimizing the cost functional

J (γ(t)) =
1

2

∫ T

0

(

||γ(t)− γr(t)||
2 + ǫ||uA||2

)

dt+ ωΦ(γ(T ))

=
1

2

∫ T

0

(

||qi(t)− qir(t)||
2 + ||vA(t)− vAr (t)||

2

+ǫ||uA||2
)

dt+ ωΦ(γ(T ))

where ǫ > 0 is a regularization parameter, Φ : TQ → R

is a terminal cost (Mayer term), ω > 0 is a weight for

the terminal cost. C and Φ are assumed to be continuously

differentiable functions, and the final state γ(T ) is required

to fulfill a constraint r(γ(T ), γr) = 0 with r : D×D → R
d

and γr ∈ D given. The interval length T may either be fixed,

or appear as degree of freedom in the optimization problem.

In this work we restrict to the case when T is fixed.

Remark 3.2: Note that if ǫ = 0 then the optimal control

problem turns into a singular optimal control problem (see

[21] Section 3.2) ⋄.

IV. NECESSARY CONDITIONS FOR OPTIMALITY

In this section we apply Pontryagin’s minimization prin-

ciple to the optimal tracking problem. The Hamiltonian

H : T ∗D × U → R for the problem is given by

H(q, v, λ, µ, u) =J (qi, vA, uA) + λiρ
i
A(q)v

A (12)

+ µAv̇
A(qi, vA, uA)

where v̇A comes from equation (11). Note that λi and

µA are the costate variables or Lagrange multipliers. The

last two terms in (12) corresponds with the nonholonomic

dynamics given in equations (3) and (4) paired with the

costate variables, which represents the standard construction

of the Hamiltonian for the PMP. Also note that H is defined

on a subset of T ∗(TQ).
Denote by t 7→ u⋆(t) a curve that satisfies along a

trajectory t 7→ (q(t), v(t), λ(t), µ(t)) ∈ T ∗D,

Hopt(q, v, λ, µ, u
⋆) = min

u∈U
H(q, v, λ, µ, u),

then u∗ may be determined implicitly as a function of

(q(t), v(t), λ(t), µ(t)) ∈ T ∗D using the previous equation

and then we may define the optimal Hamiltonian Hopt :
T ∗D → R by prescribing the control u as u⋆.

Given that u⋆ minimizes H, then u⋆ is a critical point for

H and may be uniquely determined by

∂H

∂u
(q(t), v(t), λ(t), µ(t), u⋆(t)) = 0, t ∈ [0, T ]. (13)

The PMP applied to our particular problem gives the

following necessary conditions

• Stationary condition: from equation (13) µA = −ǫuA,
• State equation: Equations (10) and (11),

• Adjoint equations (or costate equations):

−λ̇i =
∂H

∂qi
= (qi − qir) + λi

∂ρiA(q)

∂qi
+ µA

∂v̇A

∂qi
,

−µ̇A =
∂H

∂vA
= (vA − vAr ) + λiρ

i
A(q) + µA

∂v̇A

∂vA
,

• Constraint induced by terminal cost: r(γ(T ), γr) = 0,

• Boundary conditions: γ(0) := (q(0), v(0)) ∈ D,
∂Φ
∂qi

(γ(T )) = λi(T ),
∂Φ
∂vA (γ(T )) = µA(T ).

A. Optimal trajectory tracking for the nonholonomic particle

Consider the situation of Example II-C. Let γr be the ref-

erence trajectory, γr = (xr(t), yr(t), zr(t), v1,r , v2,r) which

follows the constraint ẋr = yrżr at all t and the dynamical

equations for the nonholonomic particle. We wish to control

the velocity of the nonholonomic particle. We add then

control inputs in the fiber coordinates v1 and v2. Therefore

the control dynamical system to study is given by

v̇1 = u1, v̇2 = u2 −
y

1 + y2
v1v2 (14)

together with the admissibility conditions ẋ = −yv2, ẏ = v1

and ż = v2.
The cost function C : D ×U → R for the optimal control

problem is given by

C(q, v, u) =
1

2

(

||x− xr||
2 + ||y − yr||

2 + ||z − zr||
2

+||v1 − v1r ||
2 + ||v2 − v2r ||

2 + ǫ((u1)2 + (u2)2)
)

.

and the terminal cost function is given by

Φ(x, y, z, v1, v2) =||x(T )− xr(T )||
2 + ||y(T )− yr(T )||

2

+||z(T )− zr(T )||
2

+||v1(T )− v1r(T )||
2 + ||v2(T )− v2r (T )||

2

with T ∈ R
+ fixed.

The Hamiltonian for the PMP is given as

H(q, v, λ, µ, u) =
1

2

(

||x− xr||
2 + ||y − yr||

2 + ||z − zr||
2

+ ||v1 − v1r ||
2 + ||v2 − v2r ||

2 + ǫ(u1)2

+ ǫ(u2)2
)

− λ1yv
2 + λ2v

1 + λ3v
2 + µ1u

1

+ µ2

(

u2 −
y

1 + y2
v1v2

)

.

In order for u(t) to be the optimal control

we employ the stationary condition. Therefore,

u⋆
1 = −

µ1

ǫ
and u⋆

2 = −
µ2

ǫ
. The final cost is given

by Φ(γ(T )) = ||γ(T )− γr||
2 which induces the constraint

r(γ(T ), γr) =||x(T )− xr ||
2 + ||y(T )− yr||

2 + ||z(T )− zr||
2

+||v1(T )− v1r ||
2 + ||v2(T )− v2r ||

2 = 0.

Finally, the optimal Hamiltonian Hopt is given by

H(q, v, λ) =
1

2

{

||x− xr||
2 + ||y − yr||

2 + ||z − zr||
2

+ ||v1 − v1r ||
2 + ||v2 − v2r ||

2
}

− λ1yv
2

+ λ2v
1 + λ3v

2.

The adjoint equations are λ̇1 = −(x−xr), λ̇3 = −(z−zr),

λ̇2 = λ1v
2 − (y − yr) + ǫv1v2µ2

(

y2 − 1

(y2 + 1)2

)

, (15)

µ̇1 = −λ2 − (v1 − v1r )− µ2
y

1 + y2
v2,

µ̇2 = −λ3 + λ1y − (v2 − vr2)− µ2
y

1 + y2
v1.



The state equations were given in Example II-C in equation

(8) together with the admissibility conditions. Boundary con-

ditions must satisfy the constraints in order for the trajectory

to evolve on D, that is ẋ0 + y0 ż0 = 0 where ẋ0, y0, ż0
denotes the boundary conditions for the variables ẋ, y and

ż respectively.

B. Numerical results

We now test with numerical simulations how the proposed

methods work.
Denote Fλ

µ : [0, T ] × T ∗D → T ∗D, the integral flow
given by equations (15) on T ∗D and γ(0) ∈ D the initial
condition for the state dynamics. The initial guess for the
initial condition of the costate variables is denoted by α =
Fλ
µ (0). We wish to find the initial condition of the costates

for which Fλ
µ (T, γ(0), α) = (01×5)

T . The goal is to find
the root of the polynomial

F
λ
µ (α) =











λ1(T, γ(0), α) + ω(x(T,α)− xr(T ))
λ2(T, γ(0), α) + ω(y(T,α)− yr(T ))
λ3(T, γ(0), α) + ω(z(T, α)− zr(T ))

µ1(T, α)
µ2(T, α)











where T ∈ R
+ is the final time, ω ∈ R

+ is a weight for the

terminal cost and Fλ
µ (τ, γ(0), p0) is the flow of the adjoint

equations (15) starting at (γ(0), p0). The root finder used in

both situations was the fsolve routine in MATLAB.

For the intial condition γ(0) =
(

0.5 0.2 0.7; 0.5 0.4
)

and reference trajectory

γr(t) = (1, 0, t+ 1, 0, 1), p0 = 01×5, T = 4 and ǫ = 7 we

exhibit the results in Figure IV-B.
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Fig. 1. Arbitrary reference trajectory: Trajectories minimizing the cost
function J , evolving on D and tracking the reference trajectory γr in time
T and control inputs
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