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Abstract— Motivated by multi-user optimization problems
and non-cooperative Nash games in stochastic regimes, we
consider stochastic variational inequality (SVI) problems on
matrix spaces where the variables are positive semidefinite
matrices and the mapping is merely monotone. Much of
the interest in the theory of variational inequality (VI) has
focused on addressing VIs on vector spaces.Yet, most existing
methods either rely on strong assumptions, or require a two-
loop framework where at each iteration, a projection problem,
i.e., a semidefinite optimization problem needs to be solved.
Motivated by this gap, we develop a stochastic mirror descent
method where we choose the distance generating function to be
defined as the quantum entropy. This method is a single-loop
first-order method in the sense that it only requires a gradient-
type of update at each iteration. The novelty of this work lies in
the convergence analysis that is carried out through employing
an auxiliary sequence of stochastic matrices. Our contribution
is three-fold: (i) under this setting and employing averaging
techniques, we show that the iterate generated by the algorithm
converges to a weak solution of the SVI; (ii) moreover, we derive
a convergence rate in terms of the expected value of a suitably
defined gap function; (iii) we implement the developed method
for solving a multiple-input multiple-output multi-cell cellular
wireless network composed of seven hexagonal cells and present
the numerical experiments supporting the convergence of the
proposed method.

I. INTRODUCTION

Variational inequality problems first introduced in the
1960s have a wide range of applications arising in engineer-
ing, finance, and economics (cf. [1]) and are strongly tied
to the game theory. VI theory provides a tool to formulate
different equilibrium problems and analyze the problems
in terms of existence and uniqueness of solutions, stability
and sensitivity analysis. In mathematical programming, VIs
encompass problems such as systems of nonlinear equations,
optimization problems, and complementarity problems to
name a few [2]. In this paper, we consider stochastic varia-
tional inequality problems where the variable X is a positive
semidefinite matrix. Given a set X = {X ∈ S+n , tr(X) = 1},
and a mapping F : X → Rn×n, a VI problem denoted by
VI(X , F ) seeks a positive semidefinite matrix X∗ ∈ X such
that

tr(F (X∗)(X −X∗)) ≥ 0, for all X ∈ X . (1)
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In particular, we study VI(X , F ) where F (X) =
E[Φ(X, ξ(w))], i.e., the mapping F is the expected value
of a stochastic mapping Φ : X × Rd → Rn×n where the
vector ξ : Ω → Rd is a random vector associated with a
probability space represented by (Ω,F ,P). Here, Ω denotes
the sample space, F denotes a σ-algebra on Ω, and P is the
associated probability measure. Therefore, X∗ ∈ X solves
VI(X , F ) if

tr(E[Φ(X∗, ξ(w))](X −X∗)) ≥ 0, for all X ∈ X . (2)

Throughout, we assume that E[Φ(X∗, ξ(w))] is well-defined
(i.e., the expectation is finite).

A. Motivating Example

A non-cooperative game involves a number of decision
makers called players who have conflicting interests and each
tries to minimize/maximize his own payoff/utility function.
Assume there are N players each controlling a positive
semidefinite matrix variable Xi which belongs to the set of
all possible actions of the player i denoted by Xi. Let us
define X−i :, (X1, ..., Xi−1, Xi+1, ..., XN ) as the feasible
actions of other players. Let the payoff function of player i
be quantified by fi(Xi, X−i). Then, each player i needs to
solve the following semidefinite optimization problem

minimize
Xi∈Xi

fi(Xi, X−i). (3)

A solution X∗ = (X∗1 , . . . , X
∗
N ) to this game called a

Nash equilibrium is a feasible strategy profile such that
fi(X

∗
i , X

∗
−i) ≤ fi(Xi, X

∗
−i), for all Xi ∈ Xi = {Xi|Xi ∈

S+ni
, tr(Xi) = 1}, i = 1, . . . , N . As we discuss in Lemma

3, the optimality conditions of the above Nash game can
be formulated as a VI(X , F ) where X :, {X|X =
diag(X1, · · · , XN ), Xi ∈ Xi, for all i = 1, . . . , N} and
F (X) :, diag(∇X1

f1(X), · · · ,∇XN
fN (X)).

Problem (3) has a wide range of applications in wireless
communications and information theory. Here we discuss a
communication network example.

Wireless Communication Networks: A wireless network
is founded on transmitters that generate radio waves and
receivers that detect radio waves. To enhance the perfor-
mance of the wireless transmission system, multiple antennas
can be used to transmit and receive the radio signals.
This system is called multiple-input multiple-output (MIMO)
which provides high spectral efficiency in single-user wire-
less links without interference [3]. Other MIMO systems
include MIMO broadcast channels and MIMO multiple
access channels, where there are multiple users (players)
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that mutually interfere. In these systems players either share
the same transmitter or the same receiver. Recently, there
has been much interest in MIMO systems under uncertainty
when the state channel information is subject to measure-
ment errors, delays or other imperfections [4]. Here, we
consider the throughput maximization problem in multi-user
MIMO networks under feedback errors and uncertainty. In
this problem, we have N MIMO links where each link i
represents a pair of transmitter-receiver with mi antennas at
the transmitter and ni antennas at the receiver. We assume
each of these links is a player of the game. Let xi ∈ Cmi and
yi ∈ Cni denote the signal transmitted from and received by
the ith link, respectively. The signal model can be described
by yi = Hiixi +

∑
j 6=iHjixj + εi, where Hii ∈ Cni×mi

is the direct-channel matrix of link i, Hji ∈ Cni×mj is the
cross-channel matrix between transmitter j and receiver i,
and εi ∈ Cni is a zero-mean circularly symmetric complex
Gaussian noise vector with the covariance matrix Imi [5].
The action for each player is the transmit power, meaning
that each transmitter i wants to transmit at its maximal
power level to improve its performance. However, doing
so increases the overall interference in the system, which
in turn, adversely impacts the performance of all involved
transmitters and presents a conflict. It should be noted that we
treat the interference generated by other users as an additive
noise. Therefore,

∑
j 6=iHjixj represents the multi-user inter-

ference (MUI) received by ith player and generated by other
players. Assuming the complex random vector xi follows a
Guassian distribution, transmitter i controls its input signal
covariance matrix Xi :, E[xix

†
i ] subject to two constraints:

first the signal covariance matrix is positive semidefinite
and second each transmitter’s maximum transmit power is
bounded by a positive scalar p. Under these assumptions,
each player’s achievable transmission throughput for a given
set of players’ covariance matrices X1, . . . , XN is given by

Ri(Xi, X−i) = log det

(
Ini

+
∑N

j=1
HjiXjH

†
ji

)
− log det(W−i), (4)

where W−i = Ini
+
∑
j 6=iHjiXjH

†
ji is the MUI-plus-noise

covariance matrix at receiver i [6]. The goal is to solve

maximize
Xi∈Xi

Ri(Xi, X−i), (5)

for all i, where Xi = {Xi : Xi � 0, tr(Xi) ≤ p}.

B. Existing methods

Our primary interest in this paper lies in solving SVIs on
semidefinite matrix spaces. Computing the solution to this
class of problems is challenging mainly due to the presence
of uncertainty and the semidefinite solution space. In what
follows, we review some of the methods in addressing these
challenges. More details are presented in Table I.

Stochastic approximation (SA) schemes: The SA
method was first developed in [16] and has been very
successful in solving optimization and equilibrium problems
with uncertainties. Jiang and Xu [7] appear amongst the

first who applied SA methods to address SVIs. In recent
years, prox generalization of SA methods were developed
for solving stochastic optimization problems [17], [18] and
VIs. The monotonicity of the gradient mapping plays an
important role in the convergence analysis of this class of
solution methods. The extragradient method which relies
on weaker assumptions, i.e., pseudo-monotone mappings to
address VIs was developed in [19], but this method requires
two projections per iteration. Dang and Lan [20] developed
a non-Euclidean extragradient method to address generalized
monotone VIs. The prox generalization of the extragradient
schemes to stochastic settings were developed in [8]. Aver-
aging techniques first introduced in [21] proved successful in
increasing the robustness of the SA method. In vector spaces
equipped with non-Euclidean norms, Nemirovski et al. [17]
developed the stochastic mirror descent (SMD) method for
solving nonsmooth stochastic optimization problems. While
SA schemes and their prox generalization can be applied
directly to solve problems with semidefinite constraints, they
result in a two-loop framework and require projection onto
a semidefinite cone by solving an optimization problem at
each iteration which increases the computational complexity.

Exponential learning methods: Optimizing over sets
of positive semidefinite matrices is more challenging than
vector spaces because of the form of the problem constraints.
In this line of research, an approach based on matrix expo-
nential learning (MEL) is proposed in [10] to solve the power
allocation problem in MIMO multiple access channels. MEL
is an optimization algorithm applied to positive definite non-
linear problems and has strong ties to mirror descent meth-
ods. MEL makes the use of quantum entropy as the distance
generating function. Later, the convergence analysis of MEL
is provided in [5] and its robustness w.r.t. uncertainties is
shown. In [22], single-user MIMO throughput maximization
problem is addressed which is an optimization problem not
a Nash game. In the multiple channel case, an optimization
problem can be derived that makes the analysis much easier.
However, there are some practical problems that cannot be
treated as an optimization problem such as multi-user MIMO
maximization discussed earlier. In this regard, [4] proposed
an algorithm relying on MEL for solving N-player games
under feedback errors and presented its convergence to a
stable Nash equilibrium under a strong stability assumption.
However, in most applications including the game (4) the
mapping does not satisfy this assumption.

Semidefinite and cone programming: Sparse inverse
covariance estimation (SICE) is a procedure which improves
the stability of covariance estimation by setting a certain
number of coefficients in the inverse covariance to zero. Lu
[23] developed two first-order methods including the adap-
tive spectral projected gradient and the adaptive Nesterov’s
smooth methods to solve the large scale covariance estima-
tion problem. In this line of research, a block coordinate
descent (BCD) method with a superlinear convergence rate
is proposed in [11]. In conic programming with complicated
constraints, many first-order methods are combined with
duality or penalty strategies [9], [15]. These methods are



TABLE I: Comparison Of Schemes

Reference Problem Characteristic Assumptions Space Scheme Single-loop Rate
Jiang and Xu [7] VI Stochastic SM,S Vector SA 7 −
Juditsky et al. [8] VI Stochastic MM,S/NS Vector Extragradient SMP 7 O (1/t)

Lan et al. [9] Opt Deterministic C,S/NS Matrix Primal-dual
Nesterov’s methods

7 O (1/t)

Mertikopoulos et al. [10] Opt Stochastic C,S Matrix Exponential Learning 3 e−αt(α > 0)
Hsieh et al. [11] Opt Deterministic NS,C Matrix BCD 7 superlinear
Koshal et al. [12] VI Stochastic MM,S Vector Regularized Iterative SA 7 −

Yousefian et al. [13] VI Stochastic PM,S Vector Averaging B-SMP 7 O (1/t)

Yousefian et al. [14] VI Stochastic MM,NS Vector Regularized Smooth SA 7 O
(
1/
√
t
)

Mertikopoulos et al. [4] VI Stochastic SM,S Matrix Exponential Learning 3 O (1/Bt)
Necoara et al. [15] Opt Deterministic C,S/NS Vector Inexact Lagrangian 7 O

(
1/t1.5

)
Our work VI Stochastic MM, NS Matrix AM-SMD 3 O

(
1/
√
t
)

SM: strongly monotone mapping, MM: merely monotone mapping, PM: psedue-monotone mapping, S: smooth function
NS: nonsmooth function, C: convex, Opt: optimzation problem, B: strong stability parameter

projection based and do not scale with the problem size.
Much of the interest in the VI regime has focused on

addressing VIs on vector spaces. Moreover, in the literature
of semidefinite programming, most of the methods address
deterministic semidefinite optimization. Yet, there are many
stochastic systems such as wireless communication systems
that can be modeled as positive semidefnite Nash games. In
this paper, we consider SVIs on matrix spaces where the
mapping is merely monotone. Our main contributions are as
follows:

(i) Developing an averaging matrix stochastic mirror
descent (AM-SMD) method: We develop an SMD method
where we choose the distance generating function to be
defined as the quantum entropy following [24]. It is a first-
order method in the sense that only a gradient-type of
update at each iteration is needed. The algorithm does not
need a projection step at each iteration since it provides
a closed-form solution for the projected point. To improve
the robustness of the method for solving SVI, we use the
averaging technique. Our work is an improvement to MEL
method [4] and is motivated by the need to weaken the strong
stability (monotonicity) requirement on the mapping. The
main novelty of our work lies in the convergence analysis
in absence of strong monotonicity where we introduce an
auxiliary sequence and we are able to establish convergence
to a weak solution of the SVI. Then, we derive a convergence
rate of O(1/

√
T ) in terms of the expected value of a

suitably defined gap function. To clarify the distinctions of
our contributions, we prepared Table I where we summarize
the differences between the existing methods and our work.

(ii) Implementation results: We present the performance of
the proposed AM-SMD method applied on the throughput
maximization problem in wireless multi-user MIMO net-
works. Our results indicate the robustness of the AM-SMD
scheme with respect to problem parameters and uncertainty.
Also, it is shown that the AM-SMD outperforms both non-
averaging M-SMD and MEL [4].

The paper is organized as follows. In Section II, we state
the assumptions on the problem and outline our AM-SMD
algorithm. Section III contains the convergence analysis and
the rate derived for the AM-SMD method. We report some

numerical results in Section IV and conclude in Section V.
Notation. Throughout, we let Sn denote the set of all

n × n symmetric matrices and S+n the cone of all positive
semidefinite matrices. We define X := {X ∈ S+n : tr(X) ≤
1}. The mapping F : X → Rn×n is called monotone if for
any X,Y ∈ X , we have tr((X − Y )(F (X)− F (Y ))) ≥ 0.
Let [A]uv denote the elements of matrix A and C denote
the set of complex numbers. The norm ‖A‖2 denotes the
spectral norm of a matrix A being the largest singular value
of A. The trace norm of a matrix A denoted by tr(A) is the
sum of singular values of the matrix. Note that spectral and
trace norms are dual to each other [25]. We use SOL(X ,F )
to denote the set of solutions to VI(X , F ).

II. ALGORITHM OUTLINE

In this section, we present the AM-SMD scheme for
solving (2). Suppose ω : dom(ω) → R is a strictly convex
and differentiable function, where dom(ω) ⊆ Rn×n, and let
X,Y ∈ Rn×n. Then, Bregman divergence between X and
Y is defined as

D(X,Y ) := ω(X)− ω(Y )− tr
(
(X − Y )∇ω(Y )T

)
.

In what follows, our choice of ω is the quantum entropy
[26],

ω(X) =

{
tr(X logX −X) if X ∈ X ,
+∞ otherwise. (6)

The Bregman divergence corresponding to the quantum
entropy is called von Neumann divergence and is given by

D(X,Y ) = tr(X logX −X log Y ) (7)

[24]. In our analysis, we use the following property of ω.
Lemma 1: ([27]) The quantum entropy ω : X → R is

strongly convex with modulus 1 under the trace norm.
Since X ⊂ X , the quantum entropy ω : X → R is also
strongly convex with modulus 1 under the trace norm.

Next, we address the optimality conditions of a matrix
constrained optimization problem as a VI which is an exten-
sion of Prop. 1.1.8 in [28].

Lemma 2: Let X ⊆ Rn×n be a nonempty closed convex
set, and let f : Rn×n → R be a differentiable convex



function. Consider the optimization problem

minimize
X̃∈X

f(X̃). (8)

A matrix X̃∗ is optimal to problem (8) iff X̃∗ ∈ X and
tr
(
∇T f(X̃∗)(Z − X̃∗)

)
≥ 0, for all Z ∈ X .

Proof: (⇒) Assume X̃∗ is optimal to problem (8).
Assume by contradiction, there exists some Ẑ ∈ X such
that tr

(
∇T
X̃
f(X̃∗)(Ẑ − X̃∗)

)
< 0. Since f is continuously

differentiable, by the first-order Taylor expansion, for all
sufficiently small 0 < α < 1, we have

f(X̃∗ + α(Ẑ − X̃∗)) = f(X∗)+

tr
(
∇T
X̃
f(X̃∗)(Ẑ − X̃∗)

)
+ o(α) < f(X∗),

following the hypothesis tr
(
∇T
X̃
f(X̃∗)(Ẑ − X̃∗)

)
< 0.

Since X is convex and X∗, Ẑ ∈ X , we have X̃∗ + α(Ẑ −
X̃∗) ∈ X with smaller objective function value than the
optimal matrix X̃∗. This is a contradiction. Therefore, we
must have tr

(
∇T
X̃
f(X̃∗)(Z − X̃∗)

)
≥ 0 for all Z ∈ X .

(⇐) Now suppose that X̃∗ ∈ X and for all Z ∈ X ,
tr
(
∇T
X̃
f(X̃∗)(Z − X̃∗)

)
≥ 0. Since f is convex , we have

f(X̃∗) + tr
(
∇T
X̃
f(X̃∗)(Z − X̃∗)

)
≤ f(Z),

for all Z ∈ X which implies

f(Z)− f(X̃∗) ≥ tr
(
∇T
X̃
f(X̃∗)(Z − X̃∗)

)
≥ 0,

where the last inequality follows by the hypothesis. Since
X̃∗ ∈ X , it follows that X̃∗ is optima.
The next Lemma shows a set of sufficient conditions under
which a Nash equilibrium can be obtained by solving a VI.

Lemma 3: [Nash equilibrium] Let Xi ∈ Sni
be a

nonempty closed convex set and fi(Xi, X−i) be a dif-
ferentiable convex function in Xi for all i = 1, · · · , N ,
where Xi ∈ Xi and X−i ∈

∏
j 6=i Xj . Then, X∗ ,

diag(X∗1 , · · · , X∗N ) is a Nash equilibrium (NE) to game (3)
if and only if X∗ solves VI(X , F ), where

F (X) :, diag(∇X1f1(X), · · · ,∇XN
fN (X)), (9)

X :, {X|X = diag(X1, · · · , XN ), Xi ∈ Xi, for all i}.
(10)

Proof: First, suppose X∗ is an NE to game
(3). We want to prove that X∗ solves VI(X , F ), i.e,
tr
(
F (X∗)T (Z −X∗)

)
≥ 0, for all Z ∈ X . By opti-

mality conditions of optimization problem (3) and from
Lemma 2, we know X∗ is an NE if and only if
tr
(
∇TXi

fi(X
∗)(Zi −X∗i )

)
≥ 0 for all Zi ∈ Xi and all

i = 1, . . . , N . Then, we obtain for all i = 1, · · · , N

tr
(
∇TXi

fi(X
∗)(Zi −X∗i )

)
=∑

u

∑
v

[∇Xi
fi(X

∗)]uv[Zi −X∗i ]uv ≥ 0. (11)

Invoking the definition of mapping F given by (9)
and from (11), we have tr

(
F (X∗)T (Z −X∗)

)
=

∑
i,u,v[∇Xifi(X

∗)]uv[Zi −X∗i ]uv ≥ 0. From the definition
of VI(X , F ) and relation (1), we conclude that X∗ ∈
SOL(X ,F ). Conversely, suppose X∗ ∈ SOL(X ,F ). Then,
tr
(
F (X∗)T (Z −X∗)

)
≥ 0, for all Z ∈ X . Consider a fixed

i ∈ {1, . . . , N} and a matrix Z̄ ∈ X given by (10) such that
the only difference between X∗ and Z̄ is in i-th block, i.e.

Z̄ = diag
(
[X∗1 ] , . . . ,

[
X∗i−1

]
, [Zi] ,

[
X∗i+1

]
, . . . , [X∗N ]

)
,

where Zi is an arbitrary matrix in Xi. Then, we have

Z̄ −X∗ = diag (0n1×n1 , . . . , [Zi −X∗i ] , . . . ,0nN×nN
) .
(12)

Therefore, substituting Z̄ −X∗ by term (12), we obtain

tr
(
F (X∗)T (Z̄ −X∗)

)
=
∑
u

∑
v

[∇Xi
fi(X

∗)]uv

×[(Zi −X∗i )]uv = tr
(
∇TXi

fi(X
∗)(Zi −X∗i )

)
≥ 0.

Since i was chosen arbitrarily, tr
(
∇TXi

fi(X
∗)(Zi −X∗i )

)
≥

0 for any i = 1, ..., N . Hence, by applying Lemma 2 we
conclude that X∗ is a Nash equilibrium to game (3).
Algorithm 1 presents the outline of the AM-SMD method.
At each iteration t, first, using an oracle, a realization of
the stochastic mapping F is generated at Xt, denoted by
Φ(Xt, ξt). Next, a matrix Yt is updated using (14). Here
ηt is a non-increasing step-size sequence. Then, Yt will
be projected onto set X using the closed-form solution
(15). Then the averaged sequence Xt+1 is generated using
relations (16). Next, we state the main assumptions. Let us
define the stochastic error at iteration t as

Zt :, Φ(Xt, ξt)− F (Xt) for all t ≥ 0. (13)

Let Ft denote the history of the algorithm up to time t, i.e.,
Ft = {X0, ξ0, . . . , ξt−1} for t ≥ 1 and F0 = {X0}.

Assumption 1: Let the following hold:
(a) The mapping F (X) = E[Φ(Xt, ξt)] is monotone and

continuous over the set X .
(b) The stochastic mapping Φ(Xt, ξt) has a finite mean

squared error, i.e, there exist some C > 0 such that
E[‖Φ(Xt, ξt)‖22|Ft] ≤ C2.(Under this assumption, the
mean squared error of the stochastic noise is bounded.)

(c) The stochastic noise Zt has a zero mean, i.e.,
E[Zt|Ft] = 0 for all t ≥ 0.

III. CONVERGENCE ANALYSIS

In this section, our interest lies in analyzing the con-
vergence and deriving a rate statement for the sequence
generated by the AM-SMD method. Note that a solution of
VI(X , F ) is also called a strong solution. Next, we define a
weak solution which is considered to be a counterpart of the
strong solution.

Definition 1: (Weak solution) The matrix X∗w ∈ X
is called a weak solution to VI(X , F ) if it satisfies
tr(F (X)(X −X∗w)) ≥ 0, for all X ∈ X .
Let us denote X ?w and X ∗ the set of weak solutions and
strong solutions to VI(X , F ), respectively.

Remark 1: Under Assumption 1(a), when the mapping F
is monotone, any strong solution of problem (2) is a weak



Algorithm 1 Averaging Matrix Stochastic Mirror Descent
(AM-SMD)

initialization: Set Y0 := In/n, a stepsize η0 > 0, Γ0 = η0
and let X0 ∈ X and X0 = X0.
for t = 0, 1, ..., T − 1 do

Generate ξt as realizations of the random matrix ξ and
evaluate the mapping Φ(Xt, ξt). Let

Yt+1 := Yt − ηtΦ(Xt, ξt), (14)

Xt+1 :=
exp(Yt+1 + In)

tr(exp(Yt+1 + In))
. (15)

Update Γt and Xt using the following recursions:

Γt+1 := Γt + ηt+1, Xt+1 :=
ΓtXt + ηt+1Xt+1

Γt+1
.

(16)

end for
Return XT .

solution, i.e., X ∗ ⊆ X ?w. Providing that F is also continuous,
the inverse also is true and a weak solution is a strong
solution. Moreover, for a monotone mapping F on a convex
compact set e.g., X , a weak solution always exists [8].

Unlike optimization problems where the function provides
a metric for distinguishing solutions, there is no immediate
analog in VI problems. However, we use the following
residual function associated with a VI problem.

Definition 2: (G function) Define the following function
G : X → R as

G(X) = sup
Z∈X

tr(F (Z)(X − Z)) , for all X ∈ X .

The next lemma provides some properties of the G function.
Lemma 4: The function G(X) given by Definition 2 is a

well-defined gap function, i.e, (i) G(X) ≥ 0 for all X ∈ X ;
(ii) X∗w is a weak solution to problem (2) iff G(X∗w) = 0.

Proof: (i) For an arbitrary X ∈ X , we have

G(X) = sup
Z∈X

tr(F (Z)(X − Z)) ≥ tr(F (A)(X −A)) ,

for all A ∈ X . For A = X , the above inequality suggests that
G(X) ≥ tr(F (X)(X −X)) = 0 implying that the function
G(X) is nonnegative for all X ∈ X .
(ii) Assume X∗w is a weak solution. By Definition 1,
tr(F (X)(X∗w −X)) ≤ 0, for all X ∈ X which implies
G(X∗w) = sup

X∈X
tr(F (X)(X∗w −X)) ≤ 0. On the other

hand, from Lemma 4(i), we get G(X∗w) ≥ 0. We con-
clude that G(X∗w) = 0 for any weak solution X∗w. Con-
versely, assume that there exists an X such that G(X) =
0. Therefore, sup

Z∈X
tr(F (Z)(X − Z)) = 0 which implies

tr(F (Z)(Z −X)) ≥ 0 for all Z ∈ X implying X is a weak
solution.

Remark 2: Assume the sequence ηt is non-increasing and
the sequence Xt is given by the recursive rules (16) where

Γ0 = η0 and X0 = X0. Then, using induction, it can be
shown that Xt :=

∑t
k=0

(
ηk∑t

k′=0
ηk′

)
Xk for any t ≥ 0.

Next, we derive the conjugate of the quantum entropy and
its gradient.

Proposition 1: Let Y ∈ Sn and ω(X) be defined as (6).
Then, we have

ω∗(Y ) = log(tr(exp(Y + In))), (17)

∇ω∗(Y ) =
exp(Y + In)

tr(exp(Y + In))
. (18)

Proof: ω is a lower semi-continuous convex function
on the linear space of all symmetric matrices. The conjugate
of function ω can be defined as

ω∗(Y ) = sup{tr(DY )− ω(D) : D ∈ X}
= sup{tr(DY )− tr(D logD −D) : D ∈ X}
= − inf{− tr(D(Y + In)) + tr(D logD) : D ∈ X︸ ︷︷ ︸

Term 1

}.

The minimizer of the above problem is D =
exp(Y + In)

tr(exp(Y + In))
which is called the Gibbs state (see

[29], Example 3.29). We observe that D is a positive
semidefinite matrix with trace equal to one, implying that
D ∈ X . By plugging it into Term 1, we have (17). The
relation (18) follows by standard matrix analysis and the
fact that ∇Y tr(exp(Y )) = exp(Y ) [30].
Throughout, we use the notion of Fenchel coupling [31]:

H(Q,Y ) , ω(Q) + ω∗(Y )− tr(QY ) , (19)

which provides a proximity measure between Q and∇ω∗(Y )
and is equal to the associated Bregman divergence between
Q and ∇ω∗(Y ). We also make use of the following Lemma
which is proved in Appendix.

Lemma 5: ([4]) For all matrices X ∈ X and for all Y,Z ∈
Sn, the following holds

H(X,Y + Z) ≤ H(X,Y ) + tr(Z(∇ω∗(Y )−X)) + ‖Z‖22.
(20)

Next, we develop an error bound for the G function. For
simplicity of notation we use Φt to denote Φ(Xt, ξt).

Lemma 6: Consider problem (2). Let X ∈ X and the se-
quence {Xt} be generated by AM-SMD algorithm. Suppose
Assumption 1 holds. Then, for any T ≥ 1,

E[G(XT )] ≤ 2

(
log(n) +

∑T−1
t=0 η2tC

2∑T−1
t=0 ηt

)
. (21)

Proof: From the definition of Zt in relation (13), the
recursion in the AM-SMD algorithm can be stated as

Yt+1 = Yt − ηt(F (Xt) + Zt). (22)

Consider (20). From Algorithm 1 and (18), we have Xt =
∇ω∗(Yt). Let Y := Yt and Z := −ηt(F (Xt) + Zt). From
(22), we obtain

H(X,Yt+1) ≤ H(X,Yt)− ηttr((Xt −X)(F (Xt) + Zt))

+ η2t ‖F (Xt) + Zt‖22.



By adding and subtracting ηttr((Xt −X)F (X)), we get

H(X,Yt+1) ≤ H(X,Yt)− ηttr((Xt −X)Zt)

− ηttr((Xt −X)F (X)) + η2t ‖F (Xt) + Zt‖22, (23)

where we used the monotonicity of mapping F . Let us define
an auxiliary sequence Ut such that Ut+1 :, Ut+ηtZt, where
U0 = In and define Vt :, F (Ut). From (23), invoking the
definition of Zt and by adding and subtracting Vt, we obtain

ηttr((Xt −X)F (X)) ≤ H(X,Yt)−H(X,Yt+1)+

ηttr((Vt −Xt)Zt) + ηttr((X − Vt)Zt) + η2t ‖Φt‖22. (24)

Then, we estimate the term ηttr((X − Vt)Zt). By Lemma 5
and setting Y := Ut and Z := ηtZt, we get

ηttr((X − Vt)Zt) ≤ H(X,Ut)−H(X,Ut+1)

+ η2t ‖Zt‖22.

By plugging the above inequality into (24), we get

ηttr((Xt −X)F (X)) ≤ H(X,Yt)−H(X,Yt+1)

+H(X,Ut)−H(X,Ut+1) + η2t ‖Zt‖22
+ ηttr((Vt −Xt)Zt) + η2t ‖Φt‖22.

By summing the above inequality form t = 0 to T − 1, and
rearranging the terms, we have∑T−1

t=0
ηttr((Xt −X)F (X)) ≤ H(X,Y0)−H(X,YT )

+H(X,U0)−H(X,UT ) +
∑T−1

t=0
η2t ‖Zt‖22+∑T−1

t=0
ηttr((Vt −Xt)Zt) +

∑T−1

t=0
η2t ‖Φt‖22

≤ H(X,Y0) +H(X,U0) +
∑T−1

t=0
η2t ‖Zt‖22+∑T−1

t=0
ηttr((Vt −Xt)Zt) +

∑T−1

t=0
η2t ‖Φt‖22, (25)

where the last inequality holds by H(X,Y ) ≥ 0 [4]. By
choosing Y0 = U0 = In and recalling that for X ∈ X ,
tr(X) = 1 and − log(n) ≤ tr(X logX) ≤ 0 [32], from (6),
(17) and (19),

H(X,Y0) = H(X,U0) = tr(X logX −X)− tr(X)

+ log tr(exp(2In)) ≤ 0− 1− 1 + log(n) ≤ log(n).

Plugging the above inequality into (25) yields∑T−1

t=0
ηttr((Xt −X)F (X)) =

∑T−1

t=0
ηttr((Xt −X)

F (X)) ≤ 2 log(n) +
∑T−1

t=0
η2t ‖Zt‖22+∑T−1

t=0
ηttr((Vt −Xt)Zt) +

∑T−1

t=0
η2t ‖Φt‖22. (26)

Let us define γt :, ηt∑T−1
k=0 ηk

and XT :,
∑T−1
t=0 γtXt. We

divide both sides of (26) by
∑T−1
t=0 ηt. Then for all X ∈ X ,

tr

((
T−1∑
t=0

γtXt −X

)
F (X)

)
= tr

((
XT −X

)
F (X)

)
≤ 1∑T−1

t=0 ηt

(
2 log(n) +

T−1∑
t=0

η2t ‖Zt‖22

+
∑T−1

t=0
ηttr((Vt −Xt)Zt) +

∑T

t=i
η2t ‖Φt‖22

)
.

The set X is a convex set. Since γt > 0 and
∑T−1
t=0 γt = 1,

XT ∈ X . Now, we take the supremum over the set X with
respect to X and use the definition of the G function. Note
that the right-hand side of the above inequality is independent
of X .

G(XT ) ≤ 1∑T−1
t=0 ηt

(
2 log(n) +

T−1∑
t=0

η2t ‖Zt‖22+

∑T−1

t=0
ηttr((Vt −Xt)Zt) +

∑T−1

t=0
η2t ‖Φt‖22

)
.

By taking expectations on both sides, we get

E[G(XT )] ≤ 1∑T−1
t=0 ηt

(
2 log(n) +

T−1∑
t=0

η2tE[‖Zt‖22]+

∑T−1

t=0
ηtE[tr((Vt −Xt)Zt)] +

∑T−1

t=0
η2tE[‖Φt‖22]

)
.

By definition, both Xt and Vt are Ft-measurable. There-
fore, Vt − Xt is Ft-measurable. In addition, Zt is
Ft+1-measurable. Thus, by Assumption 1(c), we have
E[tr((Vt −Xt)Zt) |Ft] = 0. Applying Assumption 1(b),

E[G(XT )] ≤ 2∑T−1
t=0 ηt

(
log(n) +

∑T−1

t=0
η2tC

2

)
.

Next, we present convergence rate of the AM-SMD scheme.
Theorem 1: Consider problem (2) and let the sequence

{Xt} be generated by AM-SMD algorithm. Suppose As-
sumption 1 holds. Then,

ηt =
1

C

√
log(n)

T
, for all t ≥ 0, (27)

E[G(XT )] ≤ 3C

√
log(n)

T
= O

(
1√
T

)
. (28)

Proof: Consider relation (21). Assume that the number
of iterations T is fixed and ηt = η for all t ≥ 0, then, we
get

E[G(XT )] ≤ 2(log(n) + Tη2C2)

Tη
.

Then, by minimizing the right-hand side of the above in-
equality over η > 0, we obtain the constant stepsize (27).
By plugging (27) into (21), we obtain (28).



IV. NUMERICAL EXPERIMENTS

In this section, we examine the behavior of the AM-SMD
method on the throughput maximization problem in a multi-
user MIMO wireless network as described in Section I. First,
we need to show that the Nash equiblrium of game (5)
is a solution of VI(X , F ). Since the throughput function
Ri(Xi, X−i) given by (4) is a concave function, we can
apply Lemma 3. We have ∇XiRi(Xi, X−i) = H†iiW

−1Hii

[5]. By concavity of Ri(Xi, X−i) in Xi and convexity
of Xi, the sufficient equilibrium conditions in Lemma 3
are satisfied, therefore a Nash equiblrium of game (5) is
a solution of VI (2), where X ,

∏
i Xi and F (X) ,

−diag
(
H†11W

−1H11, · · · , H†NNW−1HNN

)
. Convexity of

−Ri results in monotonicity of the mapping F (X). Hence,
from Lemma 6, we have the following corollary.

Corollary 1: The sequence Xt generated by AM-SMD
algorithm converges to the weak solution of VI(X , F ).

A. Problem Parameters and Termination Criteria

We consider a MIMO multicell cellular network composed
of seven hexagonal cells (each with a radius of 1 km) as
Figure 1. We assume there is one MIMO link (user) in each
cell which corresponds to the transmission from a transmitter
(T) to a receiver (R). Following [33], we generate the channel
matrices with a Rayleigh distribution, i.e, each element is
generated as circularly symmetric Guassian random variable
with a variance equal to the inverse of the square distance
between the transmitters and receivers. The network can be
considered as a 7-users game where each user is a MIMO
channel. Distance between receivers and transmitters are
shown in Table II. It should be noted that the channel matrix
between any pair of transmitter i and receiver j is a matrix
with dimension of nj ×mi. In the experiments, we assume
nj = n for all j and mi = m for all i. As an example,
the channel matrix between transmitter 4 and receiver 5,
where n = m = 4 is represented in Table III. Moreover,
the transmitters have a maximum power of 1 decibels of the
measured power referenced to one milliwatt (dBm).
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Fig. 1: Multicell cellular system

We investigate the robustness of the AM-SMD algorithm
under imperfect feedback. To simulate imperfections, we

TABLE II: Distance matrix (in terms of kilometer)

R1 R2 R3 R4 R5 R6 R7
T1 0.89 1.01 1.05 1.10 1.01 1.05 1.10
T2 1.01 0.89 1.05 2.10 2.69 2.66 1.99
T3 1.10 1.90 0.89 1.01 2.10 2.72 2.72
T4 1.99 2.61 1.94 0.89 1.10 2.10 2.76
T5 2.56 2.69 2.66 1.99 0.89 1.05 2.10
T6 2.52 2.10 2.72 2.72 1.90 0.89 1.01
T7 1.90 1.10 2.10 2.76 2.61 1.94 0.89

TABLE III: Channel matrix between transmitter 4 and re-
ceiver 5 (in terms of decibels)

RA1 RA2 RA3 RA4
TA1 -0.54-0.71i -1.39+2.24i 0.65-2.17i 0.84+0.17i
TA2 -0.13-0.71i -0.14+0.88i 0.09-1.67i -1.22-0.25i
TA3 1.39+2.34i -0.17+1.23i 1.00+0.23i 1.72-0.33i
TA4 2.40-0.97i 1.10-1.07i 2.94-2.00i 0.21-1.64i

generate a zero-mean circularly symmetric complex Gaus-
sian noise vector Zt with covariance matrix σIm, where
m =

∑7
i=1mi. In experiments, we consider the following

gap function Gap(X) which is equal to zero for a strong
solution.

Definition 3 (A gap function): Define the following func-
tion Gap : X → R

Gap(X) = sup
Z∈X

tr(F (X)(X − Z)) , for all X ∈ X . (29)

Next, we provide some properties of the Gap function.
Lemma 7: The function Gap(X) given by Definition 3 is

a well-defined gap function, in other words, (i) Gap(X) is
nonnegative for all X ∈ X ; and (ii) X∗ is a strong solution
to problem (2) iff Gap(X∗) = 0.
The proof is similar to the proof of Lemma 4.

The algorithms are run for a fixed number of iterations T .
We plot the gap function for different number of transmitter
and receiver antennas (m,n). We also plot the gap function
for different values of σ including 0.5, 1, 5. We use MAT-
LAB to run the algorithms and CVX software to solve the
optimization problem (29).

B. Matrix Exponential Learning

Mertikopoulos et al. [4] proved the convergence of MEL
algorithm under strong monotonicity of mapping F assump-
tion while, in practice, this assumption might not hold for the
games and VIs. We established the convergence of the AM-
SMD and derived a rate statement without assuming strong
monotonicity. Here, we compare the performance of the AM-
SMD method with that of MEL under regularization. Doing
so, we obtain a strongly monotone mapping ([1], Chapter
2). Let ‖A‖F =

√
tr(ATA) denote the Frobenius norm of a

matrix A. Note that the function h(A) = 1
2‖A‖

2
F is strongly

convex with parameter 1 and ∇λ
2 ‖X‖

2
F = λX . Therefore,

to regularize the mapping F , we need to add the term λX to
it and consequently, the mapping F ′ = F + λX is different
from the original F . Note that for small values of λ, MEL
converges very slowly. On the other hand, the solution which



is obtained by using large values of λ is far from the solution
to the original problem. Hence, we need to find a reasonable
value of λ. For this reason, we tried three different values
for λ including 0.1, 0.5, 1.
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Fig. 2: Comparison of M-SMD, AM-SMD and MEL w.r.t. problem size (m,n),
uncertainty (σ), and regularization parameter (λ) for 4000 iterations

For each experiment, the algorithm is run for 4000 iter-
ations. We apply the well-known harmonic stepsize ηt =
1/
√
t for AM-SMD and M-SMD, and harmonic stepsize

ηt = 1/t for MEL. Figure 2 demonstrates the performance
of AM-SMD, M-SMD and MEL algorithms in terms of loga-
rithm of expected value of gap function (29). The expectation
is taken over Zt, we repeat the algorithm for 10 sample paths
and obtain the average of the gap function. In these plots,
the blue (dash-dot) and black (solid) curves correspond to the
M-SMD and AM-SMD algorithms, respectively, the magenta
(solid diamond), red (circle dashed) and brown (dashed)
curves display MEL algorithm with λ = 0.1, 0.5 and 1. As
can be seen in Figure 2, AM-SMD algorithm outperforms
the M-SMD and MEL algorithms in all experiments. It
is evident that MEL algorithm converges slowly but faster
than M-SMD. Comparing three versions of MEL algorithm
which apply large, moderate or small value of regularization
parameter λ, it can be seen that MEL is not robust w.r.t this
parameter since each one of MEL algorithms has a better
performance than the other two in some cases.
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Fig. 3: Comparison of stability of M-SMD and AM-SMD in terms of users’
objective function Ri for i = 2, 4, 6

To compare the stability of two methods, we also plot the
expected objective function value Ri against the iteration
number in Figure 3. Here, we choose n = m = 4 and
σ = 10. The algorithm is repeated for 10 sample paths
and the average of objective function is obtained. Each

plot represents the performance of both algorithms for one
specific player i. As an example, the first plot compares
the stability of AM-SMD (black solid curve) and M-SMD
(blue dash-dot curve) for the user 2. It can be seen that for
all players, the AM-SMD algorithm converges to a strong
solution relatively faster while the M-SMD does not converge
and oscillates significantly.

V. CONCLUSION

We consider stochastic variational inequalities on semidef-
inite matrix spaces, where the mapping is merely monotone.
We develop a single-loop first-order method called averaging
matrix stochastic mirror descent method and prove conver-
gence to a weak solution of the SVI with rate of O(1/

√
T ).

Our numerical experiments performed on a wireless com-
munication network display that the AM-SMD method is
significantly robust w.r.t. the problem size and uncertainty.

VI. APPENDIX

Proof of Lemma 5: Using the Fenchel coupling definition,

H(X,Y + Z) = ω(X) + ω∗(Y + Z)− tr(X(Y + Z)) .
(30)

By strong convexity of ω w.r.t. trace norm (Lemma 1) and us-
ing duality between strong convexity and strong smoothness
[34], ω∗ is 1-strongly smooth w.r.t. the spectral norm, i.e.,
ω∗(Y +Z) ≤ ω∗(Y ) + tr(Z∇ω∗(Y )) + ‖Z‖22. By plugging
this inequality into (30) we have

H(X,Y + Z) ≤ ω(X) + ω∗(Y ) + tr(Z∇ω∗(Y ))

+ ‖Z‖22 − tr(XY )− tr(XZ)

= H(X,Y ) + tr(Z(∇ω∗(Y )−X)) + ‖Z‖22,

where in the last relation, we used (19).
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