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Sequential decomposition of repeated games

with asymmetric information and dependent

states

Deepanshu Vasal

Abstract

We consider a finite horizon repeated game with N selfish players who observe their types pri-

vately and take actions, which are publicly observed. Their actions and types jointly determine their

instantaneous rewards. In each period, players jointly observe actions of each other with delay 1, and

private observations of the state of the system, and get an instantaneous reward which is a function

of the state and everyone’s actions. The players’ types are static and are potentially correlated among

players. An appropriate notion of equilibrium for such games is Perfect Bayesian Equilibrium (PBE)

which consists of a strategy and a belief profile of the players which is coupled across time and as

a result, the complexity of finding such equilibria grows double-exponentially in time. We present a

sequential decomposition methodology to compute structured perfect Bayesian equilibria (SPBE) of

this game, introduced in [1], where equilibrium policy of a player is a function of a common belief

and a private state. This methodology computes SPBE in linear time. In general, the SPBE of the game

problem exhibit signaling behavior, i.e. players’ actions reveal part of their private information that is

payoff relevant to other players.

I. INTRODUCTION

Information asymmetry among strategic agents is an important topic, which has seen some very

influential works such as [2] and [3]. Akerlof in [2] and Spence in [3] modeled a market of cars and

a job market, respectively, as instances of information asymmetry in a game, and show interesting

behavior of strategic agents derived from these models. Specifically, Akerlof in [2] showed that in
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a market of cars, where the quality of car is known only to the seller, lower prices can drive out

good cars from the market. Spence in [3] showed that in equilibrium in a job market, a candidate can

‘signal’ her higher productivity to a potential employer by opting for higher education credentials. While

these works showed very interesting and relevant phenomena for static information asymmetry, in the

real world however, there exists many such, and even more complicated decision making scenarios

which involves strategic decision makers with dynamically evolving information asymmetry. Some

instances of such systems include: (a) in cyber-physical systems, many cyber and physical devices

are connected to each other which have different information and they make a decision to optimize

their performance objectives; (b) in a wind energy market a wind energy producer observes its own

wind production privately and publicly observes the output of other producers which also determine the

prices, and its objective is to generate output that maximizes its revenue; (c) in a social network, people

have private opinions about a topic and also publicly observe actions of others, based on which they

make a decision to maximize their utility. All such scenarios can be modeled as a dynamic game of

asymmetric information1 [4]. Such problems are gaining more interest with applications such as alpha-

go by Deepmind [5] for the symmetric information game Go, and for asymmetric/imperfect information

games such as Texas Hold’em in [6].

Dynamical systems with strategic players are modeled as dynamic stochastic games, introduced by

Shapley in [7]. Discrete-time dynamic games with Markovian structure have been studied extensively to

model many practical applications, in engineering as well as economics literature [8], [9]. In dynamic

games with perfect and symmetric information, subgame perfect equilibrium (SPE) is an appropriate

equilibrium concept and there exists a backward recursive methodology to find all the SPEs of these

games (see [10]–[12] for a more elaborate discussion). Maskin and Tirole in [13] introduced the concept

of Markov perfect equilibrium (MPE) for dynamic games with symmetric information, where equilibrium

strategies are dependent on some payoff relevant Markovian state of the system, rather than on the entire

history. In dynamic games of asymmetric information, there are strategic players who are affected by an

underlying process that is dynamically evolving, and the players make asymmetric observations about

that process. In such games and more generally in any dynamic multi-agent decision problem with

asymmetric information, a player’s action not just either explore or exploit the system2, as it happens in

a single agent problem, but also signal i.e. reveal part of its private information to the other players that

is payoff relevant to them.3 Some appropriate notions of equilibrium for such games is Perfect Bayesian

Equilibrium (PBE) or Sequential Equilibrium (SE) [4], [10] which involve an equilibrium strategy profile

1Sometimes also referred to as dynamic games of incomplete/imperfect information.

2Exploitation refers to making a decision based on whereas exploration refers to taking action that improves the current

estimate of the state of the system even at some cost in the present, but that improves future reward.

3Equivalently, signaling occurs in such decision problems if players’ beliefs on a payoff relevant state are strategy dependent

i.e. they depend on the strategies of one or more players.
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and an equilibrium belief profile of all the players, among other refinements. In these equilibria, the

equilibrium strategies and beliefs are coupled together through a joint fixed-point equation in the space

of strategies and beliefs for all players and for all histories of the game.4 Since the history of such games

grows exponentially, the complexity of finding equilibria of such game grows double exponentially in

time, rendering such problems intractable. We refer the reader to the Introduction section of [14] for a

thorough introduction and a brief literature survey on dynamic games with asymmetric information.

Recently, there have been a number of results on finding an information state for different classes

of such games that decomposes these games across time (in an analogous way a dynamic program

decomposes a dynamic optimization problem), and thus reduces the complexity of finding these equilibria

from double-exponential to linear in time. Authors in [14], [15], and independently, authors in [16], [17],

presented such a sequential decomposition for games to find structured perfect Bayesian equilibrium

(SPBE) and common information based perfect Bayesian equilibrium (CIB-PBE), respectively, where

each player has a type or a state that evolves (conditionally) independently of other players’ types

in a Markovian way. Authors in [18] extended those results to LQG games (i.e. with linear state

update, quadratic instantaneous costs and Gaussian random variables), and to games with conditionally

independent hidden Markovian types in [19], where instead of perfectly observing its own type, each

player makes independent noisy observations about it, respectively. Authors in [20] considered such

dynamic game with a system state and delayed information sharing pattern where each players learns

every agents private observations and actions with delay of d−steps. Authors in [17, ch. 5] generalized

that dynamic game with a Markovian state where players make a common and private observations of the

state of the system, where these observations are conditionally independent among players, conditioned

on the current state and previous action. In this paper, we consider a model that adds to this literature,

where there exists players’ types that are static and arbitrary correlated among the players.

In this paper, similar to [14], we present a backward-forward methodology to compute SPBE of

the game, where each player’s strategy is a function of the same common information belief state and

private state. These equilibria of the game are analogous to Markov Perfect equilibria (MPE) [13] of

symmetric information games.

The paper is structured as follows. In Section II, we present the general model. In Section III, we

define information belief states, which act as the motivation for the structure of the equilibrium policies.

In Section IV, present the backward-forward methodology to compute SPBE of the game in linear time.

We discuss some remarks in Section V. We conclude in section VI.

4In comparison, Nash equilibrium for a static game is a fixed-point equation in the space of probability measures on possible

actions of the players [10]
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A. Notation

We use uppercase letters for random variables and lowercase for their realizations. For any variable,

subscripts represent time indices and superscripts represent player identities. We use notation −i to

represent all players other than player i i.e. −i = {1, 2, . . . i − 1, i+ 1, . . . , N}. We use notation at:t′

to represent vector (at, at+1, . . . at′) when t′ ≥ t or an empty vector if t′ < t. We use a−i
t to mean

(a1t , a
2
t , . . . , a

i−1
t , ai+1

t . . . , aNt ) . We remove superscripts or subscripts if we want to represent the

whole vector, for example at represents (a1t , . . . , a
N
t ). In a similar vein, for any collection of finite sets

(X i)i∈N , we denote ×N
i=1X

i by X . We denote the indicator function of any set A by IA(·). For any

finite set S, ∆(S) represents space of probability measures on S and |S| represents its cardinality. We

denote by P g (or Eg) the probability measure generated by (or expectation with respect to) strategy

profile g. We denote the set of real numbers by R. For a probabilistic strategy profile of players (βi
t)i∈N

where probability of action ait conditioned on (a1:t−1, x
i) is given by βi

t(a
i
t|a1:t−1, x

i), we use the short

hand notation β−i
t (a−i

t |a1:t−1, x
−i) to represent

∏

j 6=i β
j
t (a

j
t |a1:t−1, x

j). All equalities and inequalities

involving random variables are to be interpreted in a.s. sense.

II. GENERAL MODEL

We consider a discrete-time dynamical system with N selfish players in the set N
△
= {1, 2, . . .N}.

We consider finite horizon T
△
= {1, 2, . . . T } with perfect recall. The system state is x = (x1, . . . , xN ),

where x ∈ X is distributed as

P (x) = Qx(x) (1)

where at = (a1t , . . . , a
N
t ), and ait is the action taken by player i at time t. At start of period t, players

jointly observe at−1, and make private observations x, where xi ∈ X i is the private observation of

player i.∀t ∈ 1, . . . T ,

Player i takes action ait ∈ Ai at time t upon observing a1:t−1 which is common information among

players, and xi which is player i’s private information. The sets Ai,X i are assumed to be finite. Let

gi = (git)t be a probabilistic strategy of player i where git : A
t−1 × (X i) → ∆(Ai) such that player i

plays action ait according to Ai
t ∼ git(·|a1:t−1, x

i). Let g := (gi)i∈N be a strategy profile of all players.

At the end of interval t, player i gets an instantaneous reward Ri
t(X,At). The objective of player i is

to maximize its total expected reward in a perfect sense

J i,g := E
g

[

T
∑

t=1

Ri
t(X,At)

]

. (2)

III. STRUCTURAL RESULTS

The problem described in previous section is a repeated game with asymmetric information where

a player’s strategy is of the form ait ∼ git(·|a1:t−1, x
i). Equivalent of such decentralized problems when

players are cooperative and have the same objective can not be solved using classical tools from the
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theory of Markov Decision Processes (MDP) [21]. However, there exists some key ideas in the literature

such as agent-by-agent approach [22] and common information approach [23] that present structural

results of the optimum policies for a class of such systems with non-classical information structure and

cooperative players. Such techniques have been used in dynamic team problems such as [24]–[26]. For

the problem described in previous section, we use an approach inspired by [23].

For every agent i ∈ N and any policy profile g, let πt ∈ ∆(X ) be a common belief on x conditioned

on the common information a1:t−1, defined as follows.

πt(x) := P g(x = x|a1:t−1) (3)

A. Common agent approach

An alternative way to view the problem is as follows. As is done in common information ap-

proach [23], at time t, a fictitious common agent observes the common information a1:t−1 and gen-

erates prescription functions γt = (γit)i∈N = ψt[a1:t−1]. Player i uses these prescription functions

γit to operate on its private information xi to produce its action ait, i.e. γit : xi → ∆(Ai) and

ait ∼ γit(·|x
i) = ψ[a1:t−1](·|xi). It is easy to see that for any g policy profile of the players there

exists an equivalent ψ profile of the common agent (and vice versa) that generates the same control

actions for every realization of the information of the players.

We define a special type of common agent’s policy as follows. We call a common agent’s policy be

of type θ if the common agent observes the common belief πt derived from the common observation

a1:t−1, and generates prescription functions γt = (γit)i∈N = θt[πt]. Player i uses these prescription

function γit to operates on its private type xi to produce its action ait, i.e. γit : ∆(X ) → ∆(Ai) and

ait ∼ γit(·|x
i) = θ[πt](·|xi). Equivalently, we call a common agent’s policy be of type θ if for all i ∈ N

and for all time t, player i’s action ait depends on its information (a1:t−1, x
i) through the belief states

πt(x) = P θ(x = x|a1:t−1) and xi.

In the next lemma we show that for any given θ policy, the belief states πt can be updated recursively

as follows. Let π1(x) := Qx(x).

Lemma 1: For any given policy of type θ, there exists update functions Ft, independent of θ, such

that

πt+1 = Ft(πt, γt, at). (4)

Proof: Please see Appendix A.

IV. REPEATED GAMES WITH ASYMMETRIC INFORMATION

A. Solution concept: PBE

We introduce perfect Bayesian equilibrium (PBE) as an appropriate equilibrium concept for the

game considered. Any history of this game at which players take action is of the form ht = (x, a1:t−1).

May 17, 2019 DRAFT
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Let Ht be the set of such histories at time t. At any time t player i observes hit = (xi, a1:t−1) and all

players together observe hct = (a1:t−1) as common history. Let Hi
t be the set of observed histories of

player i at time t and Hc
t be the set of common histories at time t. An appropriate concept of equilibrium

for such games is PBE [11] which consists of a pair (β∗, µ∗) of strategy profile β∗ = (β∗,i
t )t∈T ,i∈N

where β
∗,i
t : Hi

t → ∆(Ai) and a belief profile µ∗ = (iµ∗
t )t∈T ,i∈N where iµ∗

t : Hi
t → ∆(Ht) that

satisfy sequential rationality so that ∀i ∈ N , t ∈ T , hit ∈ Hi
t, β

i

E
(β∗,iβ∗,−i, µ∗)

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
hit

}

≥ E
(βiβ∗,−i, µ∗)

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
hit

}

, (5)

and the beliefs are updated using Bayes’ rule, whenever possible.

In this paper, we first define a common belief π∗
t as a belief on x. Then player i derives its

equilibrium belief iµ∗
t on (x−i) by conditioning π∗

t on its private type xi i.e. iµ∗
t (x

−i) = π∗
t (x

−i|xi).

We define structured perfect Bayesian equilibrium as follows.

Definition 1 (SPBE): A structured perfect Bayesian equilibrium (SPBE) is a PBE of the considered

dynamic game where at any time t, for any agent i, its equilibrium strategy β
∗,i
t depends on player i’s

information (a1:t−1, x
i) through the common belief and its private type xi.

We conjecture that as in [14], such structured strategies form a rich class where any expected reward

profile of the players that can be generated from any general strategy profile can also be generated using

such structured strategy profile.

In the following we present a backward-forward methodology to compute SPBE of this game.

1) Backward Recursion: In this section, we define an equilibrium generating function θ =

(θit)i∈N ,t∈T and a sequence of functions (V i
t )i∈N ,t∈{1,2,...T+1}, where V i

t : ∆(X ) × X i → R, in a

backward recursive way, as follows.

1. Initialize ∀πT+1 ∈ ∆(X ), xi ∈ X i,

V i
T+1(πT+1, x

i) := 0. (6)

2. For t = T, T − 1, . . . 1, ∀πt ∈ ∆(X ), let θt[πt] be generated as follows. Set γ̃t = θt[πt], where γ̃t

is the solution, if it exists5, of the following fixed-point equation, ∀i ∈ N , xi ∈ X i,

γ̃it(·|x
i) ∈ arg max

γi
t(·|x

i)
E
γi
t(·|x

i)γ̃−i
t , πt

{

Ri
t(X,At) + V i

t+1(Ft(πt, γ̃t, At), x
i)
∣

∣

∣
xi
}

, (7)

where expectation in (7) is with respect to random variables (X,At) through the measure
∑

x−i,x πt(x
−i|xi)γit(a

i
t|x

i)γ̃−i
t (a−i

t |x−i), Ft is defined in Lemma 1. Furthermore, set

V i
t (πt, x

i) := E
γ̃i
t(·|x

i)γ̃−i
t , πt

{

Rt
i(x,At) + V i

t+1(Ft(πt, γ̃t, At), x
i)
∣

∣

∣
xi
}

. (8)

It should be noted that (7) is a fixed-point equation where the solution of the above fixed-point equation

γ̃it appears in both, the left-hand-side and the right-hand-side of the equation. However, it is not the

outcome of the maximization operation as in a best response equation similar to that of a Bayesian

Nash equilibrium.

5Existence of general solution of this per stage fixed-point equation is discussed in Remark 4.
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2) Forward Recursion: Based on θ defined above in (6)–(8), we now construct a set of

strategies β∗ and beliefs µ∗ for the game D in a forward recursive way, as follows, where β
i,∗
t :

At−1×X i → ∆(Ai) and iµ∗
t : At−1×X i → ∆(X ). We first define the update function of equilibrium

common belief π∗
t : At−1 → ∆(X ), where for every private history (a1:t−1, x

i) of player i, it’s

equilibrium belief iµ∗
t is constructed by conditioning common belief π∗

t on its private state xi.

1. Initialize at time t = 0, ∀i ∈ N ,

π∗
1 [φ](x) := Qx(x) (9)

2. For t = 1, 2 . . . T, i ∈ N , ∀a1:t−1, x
i

β
∗,i
t (ait|a1:t−1, x

i) := θit[π
∗
t [a1:t−1]](a

i
t|x

i) (10a)

iµ∗
t (x

−i|a1:t−1, x
i) := π∗

t [a1:t−1](x
−i|xi) (10b)

π∗
t+1[a1:t] := Ft(π

∗
t [a1:t−1], θt[π

∗
t [a1:t−1]], at) (10c)

where Ft is defined in Lemma 1.

In the following theorem, we show that the equilibrium strategy and belief profile (β∗, µ∗) defined

above constitute a PBE of the game considered.

Theorem 1: A strategy and belief profile (β∗, µ∗), constructed through backward/forward recursive

methodology is a PBE of the game, i.e. ∀i ∈ N , t ∈ T , (a1:t−1, x
i), βi

t:T ,

E
β
∗,i

t:T
β
∗,−i

t:T
, µ∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

≥

E
βi
t:T β

∗,−i

t:T
, µ∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

. (11)

Proof: The proof is provided in Appendix B.

V. REMARKS

A few remarks are in order.

Remark 1: We note that in Step-2 in Backward Recursion, a fixed-point equation is solved in

(γ̃it , V
i
t )i∈N for each πt ∈ ∆(X ) and for each t ∈ T, T − 1, . . . 1. Since Backward recursion dominates

the computational complexity, the complexity of our methodology is linear in time. However, we do not

make any claim about the complexity of solving the fixed-point in each instant, which, together with

its existence as discussed below, is an important open question for future research.

Remark 2: We emphasize that even though the backward-forward methodology presented above

finds a class of equilibrium strategies that are structured i.e. depend on the common belief and private

state, the unilateral deviations of players in (11) are considered in the space of general strategies, i.e.,

the methodology does not make any bounded rationality assumptions.
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Remark 3: Intuition of the proof: In such games, one could use the one-shot deviation principle [27]

to argue that sequential rationality reduces to showing that no player wants to deviate unilaterally in βi
t

at any time t, keeping the rest of the strategy β
i,∗
t+1:T as the equilibrium strategy. We argue that this is

equivalent to (7) i.e. for a given (π∗
t , x

i), a player’s unilateral deviation in its strategy β
i,∗
t is the same as

unilaterally deviation in its measure γit(·|x
i) on its action ait (and not on the whole function γit(·|·)). This

is because under such unilateral deviations, a player uses the same future information states (π∗
t+1, x

i)

as it would have done under an equilibrium strategy, whose update depends on equilibrium γ̃t. This is

so because player uses the same equilibrium π∗
t+1 to predict other player’s actions, and update of its

equilibrium private state xi does not depend on γit .

Remark 4: While it is known that for any finite dynamic game with asymmetric information and

perfect recall, there always exists a PBE [10, Prop. 249.1], existence of SPBE is not always guaranteed.

It is clear from our methodology that existence of SPBE boils down to existence of a solution to the

fixed-point equation (7) at every stage. Specifically, at each time t given the functions V i
t+1 for all i ∈ N

from the previous round (in the backwards recursion) equation (7) must have a solution γ̃it for all i ∈ N .

Generally, existence of equilibria is shown through Kakutani’s fixed point theorem, as is done by proving

existence of a mixed strategy Nash equilibrium of a finite game [10], [28]. This is done by showing

existence of fixed point of the best-response correspondences of the game. Among other conditions, it

requires the closed graph property of the correspondences, which is usually implied by the continuity

property of the utility functions involved. For (7) establishing existence is not straightforward due to:

(a) potential discontinuity of the πt update function Ft when the denominator in the Bayesian update is

0 and (b) potential discontinuity of the value functions, V i
t+1. It is noted in [17, ch. 5] through [29] that

for dynamic zero-sum games with asymmetric information, the value function is a continuous function,

on the basis of which and the above mentioned arguments, the existence of equilibria in sequential

decomposition fir such games is established. Furthermore, authors in [18] consider an LQG dynamic

game with asymmetric information (with linear state update, quadratic costs and Gaussian noise), where

they present sufficient algorithmic conditions for such an equilibrium to exist. Authors in [30] study

a public goods game for which signaling equilibria were found numerically using such methodology

where agents have independent types which are perfectly observed by them and agents observe each

others’ actions in each time-period. Having said this, existence of the fixed-point equation for a more

general class of problems remain an open question.

Remark 5: This model also allows to incorporate many bounded rationality models. Some examples

include using a discount factor δ or by restricting the search for optimum γit(·|x
i) in (7) in the space

of functions that are linear in private information variables.

Remark 6: In this paper, we considered a model with static types of the players. If the types of

the players were also dynamic, say in a Markovian or a controlled Markovian way, we believe such a

decomposition is not possible. The reason is that there is no consistent set of sufficient belief statistics
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that summarizes the observed history of the players in such a way that does not lead to infinite regress

of beliefs. We pose it as an open problem if there exists any special structure of dynamic evolution

of private correlated states that allow for sequential decomposition in dynamic games with asymmetric

information.

VI. CONCLUSION

In this paper, we considered a model of repeated game where there is an underlying state of the

system that is static and players jointly observe actions of other players with delay 1 and correlated

private observations of the state of the system. Each player receives a reward that is a function of the state

and actions of all the players. We define a common information belief state and private information belief

states of the players. We then presented a backward-forward methodology similar to the one presented

in [1] to compute its structured perfect Bayesian equilibria (SPBE). Future work includes proving such a

methodology for discounted infinite-horizon case and specializing results to many practical settings such

as games on graph, where players who are connected on the graph have correlated private information.

Some practical applications of interest include security games for cyber-physical systems and Bayesian

learning games in a social network with fully rational and potentially adversarial agents. An important

future direction would to be investigate if this new result in the theory of such games can facilitate

more efficient way of computing equilibria in [6] which can have significant implications in developing

a software to solve real-world strategic problems.
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APPENDIX A

Lemma 2: There exists an update function Ft of πt, independent of θ

πt+1 = Ft(πt, γt, at) (12)

Proof:

πt+1(x) = P θ(x|a1:t, γ1:t+1) (13a)

= P θ(x|a1:t, γ1:t) (13b)

=
P θ(x, at|a1:t−1, γ1:t)

∑

x,at
P θ(x, at|a1:t−1, γ1:t)

(13c)

=
πt(x)

(

∏N
i=1 γ

i
t(a

i
t|x

i)
)

∑

x πt(x)
∏N

i=1 γ
i
t(a

i
t|x

i)
(13d)
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if the denominator is not 0 and

πt+1(x) = πt(x) (13e)

otherwise. Thus we have,

πt+1 = Ft(πt, γt, at) (13f)

APPENDIX B

(PROOF OF THEOREM 1)

In the following theorem, we will assume that the equilibrium strategies and beliefs (β∗, µ∗) are

generated using an equilibrium function θ. Moreover, we will also use π∗
t map corresponding to iµ∗

t as

defined in (10). With slight abuse of notation, we use both beliefs and belief functions as superscripts on

expectations, where the reference is clear from the context. These functions when used as superscripts

in expectation denote the belief functions, which when applied on the conditioned random variables,

define beliefs on the random variables of interest inside the expectation.

Proof: We prove (11) using induction and from results in Lemma 3, 4 and 5 proved in

Appendix C. For base case at t = T , ∀i ∈ N , (a1:t−1, x
i) ∈ Hi

T , β
i

E
β
∗,i

T
β
∗,−i

T
, π∗

T

{

Ri
t(X,At)

∣

∣

∣
a1:t−1, x

i
}

= V i
T (π

∗
T [a1:t−1], x

i) (14a)

≥ E
βi
T β

∗,−i

T
, π∗

T

{

Ri
t(X,At)

∣

∣

∣
a1:t−1, x

i
}

(14b)

where (14a) follows from Lemma 5 and (14b) follows from Lemma 3 in Appendix C.

Let the induction hypothesis be that for t+ 1, ∀i ∈ N , (a1:t, x
i) ∈ Hi

t+1, β
i,

E
β
∗,i

t+1:T
β
∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

≥

E
βi
t+1:T β

∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

. (15a)

Then ∀i ∈ N , (a1:t−1, x
i) ∈ Hi

t, β
i, we have

E
β
∗,i

t:T
β
∗,−i

t:T
, π∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

= V i
t (π

∗
t [a1:t−1], x

i) (16a)

≥ E
βi
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + V i

t+1(π
∗
t+1[a1:t−1, At], x

i)
∣

∣

∣
a1:t−1, x

i
}

(16b)

= E
βi
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + E

β
∗,i

t+1:T
β
∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, At, x

i

}

∣

∣

∣
a1:t−1, x

i

}

(16c)
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≥ E
βi
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + E

βi
t+1:T β

∗,−i

t+1:T
π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, At, x

i

}

∣

∣

∣
a1:t−1, x

i

}

(16d)

= E
βi
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + E

βi
t:T β

∗,−i

t:T
π∗

t

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, At, x

i

}

∣

∣

∣
a1:t−1, x

i

}

(16e)

= E
βi
t:T β

∗,−i

t:T
, π∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

, (16f)

where (16a) follows from Lemma 5, (16b) follows from Lemma 3, (16c) follows from Lemma 5, (16d)

follows from induction hypothesis in (15a) and (16e) follows from Lemma 4.

APPENDIX C

As we did in the previous theorem, in the following lemmas, we would assume that the equilib-

rium strategies and beliefs (β∗, µ∗) are generated using an equilibrium function θ. We also use π∗
t

corresponding to iµ∗
t as defined in (10).

Lemma 3: This lemma states that the reward that player i would get on playing equilibrium strategy

will be greater or equal to the reward it would get if it deviates only at time t, keeping the rest of its

strategy as equilibrium strategy. ∀t ∈ T , i ∈ N , (a1:t−1, x
i) ∈ Hi

t, β
i
t

V i
t (π

∗
t [a1:t−1], x

i) ≥ E
βi
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + V i

t+1(π
∗
t+1[a1:t−1, At])

∣

∣

∣
a1:t−1, x

i
}

(17)

Proof: We prove this lemma by contradiction.

Suppose the claim is not true for t. This implies ∃i, β̂i
t, â1:t−1, x

i such that

E
β̂i
tβ

∗,−i
t , π∗

t

{

Ri
t(X,At) + V i

t+1(π
∗
t+1[â1:t−1, At])

∣

∣

∣
â1:t−1, x

i
}

> V i
t (π

∗
t [â1:t−1]). (18)

We will show that this contradicts the definition of V i
t in (8).

Construct γ̂it(a
i
t|x

i) = β̂i
t(a

i
t|â1:t−1, x

i)

May 17, 2019 DRAFT
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Then for â1:t−1, x
i, we have

V i
t (π

∗
t [â1:t−1])

< E
β̂i
t,β

∗,−i
t ,π∗

t ,x
i
{

Ri
t(X,At) + V i

t+1(π
∗
t+1[â1:t−1, At])

∣

∣

∣
â1:t−1, x

i
}

(19a)

=
∑

x,at,at,

xi,x−i

[

Ri
t(X,At) + V i

t+1(πt+1[â1:t−1, at])
]

π∗
t [â1:t−1](x

−i|xi)β̂i
t(a

i
t|â1:t−1, x

i)β∗,−i
t (a−i

t |π∗
t [â1:t−1], x

−i)

(19b)

=
∑

x,at,xi,x−i

[

Ri
t(X,At) + V i

t+1(πt+1[â1:t−1, at])
]

π∗
t [â1:t−1](x

−i|xi)γ̂it(a
i
t|x

i)β∗,−i
t (a−i

t |π∗
t [â1:t−1], x

−i)

(19c)

= E
γ̂i
t(·|x

i)β∗,−i
t , π∗

t [â1:t−1]
{

Ri
t(X,At) + V i

t+1(π
∗
t+1[â1:t−1, At])

∣

∣

∣
xi
}

(19d)

≤ max
γi
t(·|x

i)
E
γi
t(·|x

i)β∗,−i
t , π∗

t [â1:t−1]
{

Ri
t(X,At) + V i

t+1(π
∗
t+1[â1:t−1, At])

∣

∣

∣
xi
}

(19e)

= V i
t (π

∗
t [â1:t−1]) (19f)

where (19a) follows from (18), (19c) follows from the definition of γ̂it , and (19f) follows from the

definition of V i
t in (8).

Lemma 4: ∀i ∈ N , t ∈ T , (a1:t, xi) ∈ Hi
t+1 and βi

t

E
βi
t:T β

∗,−i

t:T
, π∗

t

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t, x

i

}

=

E
βi
t+1:T β

∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t, x

i

}

. (20)

Proof: Since the above expectations involve random variables X−i, At+1:T , we consider

P βi
t:T β

∗,−i

t:T
, π∗

t (x, at+1:T

∣

∣

∣
a1:t, x

i).

P βi
t:Tβ

∗,−i

t:T
, π∗

t (x, at+1:T

∣

∣

∣
a1:t, x

i) = P βi
t:T β

∗,−i

t:T
, π∗

t (x
∣

∣

∣
a1:t, x

i)P βi
t:T β

∗,−i

t:T
, π∗

t (at+1:T

∣

∣

∣
x, a1:t) (21a)

We first note that

P βi
t:Tβ

∗,−i

t:T
, π∗

t (at+1:T

∣

∣

∣
x, a1:t) (21b)

= βi
t+1(a

i
t+1|a1:t−1, x

i)
(

β
∗,−i
t+1 (a−i

t+1|a1:t−1, x
−i)

)

P βi
t:Tβ

∗,−i

t:T
, π∗

t (at+2:T

∣

∣

∣
a1:t, x) (21c)

= P βi
t+1:Tβ

∗,−i

t+1:T
, π∗

t+1(at+1:T |a1:t, x) (21d)

Thus using the above equation, (21a) is given by

P βi
t+1:Tβ

∗,−i

t+1:T
, π∗

t+1(x, at+1:T |a1:t−1, x
i) = P βi

t+1:T β
∗,−i

t+1:T
, π∗

t+1(x, at+1:T |a1:t−1, x
i). (21e)

Lemma 5: ∀i ∈ N , t ∈ T , a1:t−1 ∈ Hc
t , x

i ∈ (X i)
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V i
t (π

∗
t [a1:t−1], x

i) = E
β
∗,i

t:T
β
∗,−i

t:T
,π∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

. (22)

Proof:

We prove the lemma by induction. For t = T ,

E
β
∗,i

T
β
∗,−i

T
, π∗

T

{

Ri
t(X,At)

∣

∣

∣
a1:t−1, x

i
}

=
∑

x−i,aT ,x−i

Ri
t(X,At)π

∗
T [a1:t−1](x

−i|xi)β∗,i
T (aiT |a1:t−1, x

i)β∗,−i
T (a−i

T |a1:t−1, x
−i) (23a)

= V i
T (π

∗
t [a1:t−1], x

i), (23b)

where (23b) follows from the definition of V i
t in (8) and the definition of β∗

T in the forward recursion

in (10). Suppose the claim is true for t+ 1, i.e., ∀i ∈ N , t ∈ T , (a1:t−1, x
i) ∈ Hi

t+1

V i
t+1(π

∗
t+1[a1:t], x

i) = E
β
∗,i

t+1:T
β
∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t, x

i

}

. (24)

Then ∀i ∈ N , t ∈ T , (a1:t−1, x
i) ∈ Hi

t, we have

E
β
∗,i

t:T
β
∗,−i

t:T
, π∗

t

{

T
∑

n=t

Ri
n(X,An)

∣

∣

∣
a1:t−1, x

i

}

= E
β
∗,i

t:T
β
∗,−i

t:T
, π∗

t

{

Ri
t(X,At) + E

β
∗,i

t:T
β
∗,−i

t:T
, π∗

t ,x
i

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, At, x

i

}

∣

∣

∣
a1:t−1, x

i

}

(25a)

= E
β
∗,i

t:T
β
∗,−i

t:T
, π∗

t

{

Ri
t(X,At) + E

β
∗,i

t+1:T
β
∗,−i

t+1:T
, π∗

t+1

{

T
∑

n=t+1

Ri
n(X,An)

∣

∣

∣
a1:t−1, At, x

i

}

∣

∣

∣
a1:t−1, x

i

}

(25b)

= E
β
∗,i

t:T
β
∗,−i

t:T
, π∗

t

{

Ri
t(X,At) + V i

t+1(π
∗
t+1[a1:t−1, At], x

i)
∣

∣

∣
a1:t−1, x

i
}

(25c)

= E
β
∗,i
t β

∗,−i
t , π∗

t

{

Ri
t(X,At) + V i

t+1(π
∗
t+1[a1:t−1, At], x

i)
∣

∣

∣
a1:t−1, x

i
}

(25d)

= V i
t (π

∗
t [a1:t−1], x

i) (25e)

where (25b) follows from Lemma 4 in Appendix C, (25c) follows from the induction hypothesis in

(24), (25d) follows because the random variables involved in expectation, X,At do not depend on

β
∗,i
t+1:Tβ

∗,−i
t+1:T and (25e) follows from the definition of V i

t in (8).
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