
Guaranteed Safe Reachability-based Trajectory Design for a
High-Fidelity Model of an Autonomous Passenger Vehicle

Sean Vaskov1, Utkarsh Sharma2, Shreyas Kousik1,
Matthew Johnson-Roberson3, Ramanarayan Vasudevan1

Abstract— Trajectory planning is challenging for autonomous
cars since they operate in unpredictable environments with
limited sensor horizons. To incorporate new information as
it is sensed, planning is done in a loop, with the next plan
being computed as the previous plan is executed. The recent
Reachability-based Trajectory Design (RTD) is a provably safe,
real-time algorithm for trajectory planning. RTD consists of an
offline component, where a Forward Reachable Set (FRS) is
computed for the vehicle tracking parameterized trajectories;
and an online part, where the FRS is used to map obstacles to
constraints for trajectory optimization in a provably-safe way.
In the literature, RTD has only been applied to small mobile
robots. The contribution of this work is applying RTD to a
passenger vehicle in CarSim, with a full powertrain model,
chassis and tire dynamics. RTD produces safe trajectory plans
with the vehicle traveling up to 15 m/s on a two-lane road,
with randomly-placed obstacles only known to the vehicle when
detected within its sensor horizon. RTD is compared with a
Nonlinear Model-Predictive Control (NMPC) and a Rapidly-
exploring Random Tree (RRT) approach. The experiment
demonstrates RTD’s ability to plan safe trajectories in real
time, in contrast to the existing state-of-the-art approaches.

I. Introduction

Autonomous vehicles typically operate with a limited
sensor horizon in unpredictable environments. To do so, they
often employ a three-level hierarchy for receding-horizon
motion planning, wherein a short trajectory is executed
while the next trajectory is being planned [1]–[3]. In this
hierarchy, the high-level planner provides coarse route infor-
mation without considering vehicle dynamics. The mid-level
planner, or trajectory planner, creates dynamically-feasible
trajectories and associated control inputs that guide the
vehicle along the high-level planner’s route while avoiding
obstacles. The low-level controller translates the mid-level
planner’s control inputs into commands for the vehicle’s
actuators, without considering the vehicle’s surroundings.
To ensure safety, the trajectory planner must compensate
for uncertainty in a vehicle’s model, which can appear as
state estimation error and tracking error between planned
and executed trajectories. Furthermore, the trajectory planner
must be persistently feasible, meaning that it is always
able to find a new, safe trajectory while executing the

* This work is supported by the Ford Motor Company via the Ford-UM
Alliance under award N022977.

1Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
<skvaskov,skousik,ramv>@umich.edu

2Integrative Systems + Design, University of Michigan, Ann Arbor, MI
48109 <utkrsh>@umich.edu

3Naval Architecture and Marine Engineering, University of Michigan,
Ann Arbor, MI 48109 <mattjr>@umich.edu

(a)

0 15 30 45 60 75 90
x [m]

0

10

20

y
[m

]

(b)

Fig. 1: Simulation of the vehicle performing two lane change maneuvers
on a 90 m section of a 1 km test track,beginning from the right side
of the figure. It uses the presented RTD method to drive safely while
avoiding randomly generated obstacles in real time. Subfigure (a) depicts the
vehicle in Carsim; (b) depicts the RTD planner, which generates trajectories
autonomously using an optimization toolbox in MATLAB. Orange boxes
are obstacles. The vehicle is solid blue at the same time instances in both
plots; in (a), the vehicle is transparent at intermediate times to illustrate
its motion. The green contours in (b) represent the forward reachable
set corresponding to the trajectory at each planning iteration. The vehicle
begins the first lane change at approximately 15 m/s, then slows down to
approximately 8 m/s while completing the second. A video is available at
http://www.roahmlab.com/acc2019_rtd_video.

previous trajectory. This means that the trajectory planner
must produce safe, dynamically-feasible trajectories in real
time. This is challenging because the dynamics of a vehicle
are typically nonlinear and high-dimensional [4]–[6]. In this
work, we apply a recent proposed trajectory planner that is
provably safe and persistently feasible, called Reachability-
based Trajectory Design (RTD) [7], to a passenger vehicle
as depicted in Figure 1. In this work, we only consider static
obstacles; dynamic obstacles are left as future work.

A. Literature Review

A variety of approaches have been proposed to attempt
safe, persistently-feasible trajectory planning. We briefly
review existing trajectory planning methods, which can be
broadly divided into sampling-based, model predictive con-
trol, and reachability-based approaches.

Sampling-based approaches operate by discretizing the
vehicle’s state or control space and time to find trajectories
that follow high-level routes [8]. For example, the Rapidly-
exploring Random Tree (RRT) and Probabilistic RoadMaps
(PRM) algorithms attempt to find dynamically-feasible tra-
jectories by growing graphs of nodes in the vehicle’s state
space, with edges between the nodes associated with control

ar
X

iv
:1

90
2.

01
78

6v
2

 [
cs

.S
Y

]
 6

 F
eb

 2
01

9

http://www.roahmlab.com/acc2019_rtd_video

inputs; since vehicles have complex dynamic models, new
nodes for such systems are created by forward-integration of
the dynamics [9]. However, it is difficult to guarantee safety
of these approaches for two reasons. First, they typically
only track a vehicle’s center of mass (as opposed to the
vehicle’s body), which can make collision checking for a
vehicle’s entire body challenging; and second, for complex
nonlinear models, one must typically specify a temporal and
state space discretization granularity for collision checking
[8]. Importantly, the finer the discretization, the slower a
collision checker runs; i.e. there is a tradeoff between speed
and safety. To encourage safety and persistent feasibility,
one can plan a braking trajectory at the same time as a
non-braking trajectory (i.e. one that attempts to satisfy the
high-level plan) [6]; or use an Extended Kalman Filter when
propagating an RRT to compensate for a vehicle’s inability
to perfectly follow a planned trajectory [10]. However, to the
best of our knowledge, no sampling-based method has been
proposed that is provably safe and persistently feasible.

Model-predictive control (MPC) trajectory planners for-
mulate an optimization program over the vehicle’s control
inputs over a short time horizon by treating the vehicle’s
dynamics and environment as constraints. These approaches
typically plan around a reference trajectory, which must be
known a priori or generated at runtime; without a reference
trajectory, MPC for nonlinear systems and non-convex con-
straints is typically too slow for real-time application [11].
Depending on the reference trajectory, the MPC problem
may be infeasible, but it is unclear how best to generate
the reference in arbitrary scenarios. In structured scenarios,
objects such as a road centerline can used as a reference
[12]. To compensate for uncertainty, Robust MPC has been
proposed for linear systems, but vehicle dynamics are non-
linear [5], [13]. Methods have also been proposed to ensure
recursive feasibility for MPC, meaning a solution is available
at every planning iteration, for linear systems [14] and for
nonlinear systems either with two states in discrete time [15]
or with up to five states with slow dynamics [16]; each
of these has a tradeoff between discretization granularity
and solve time. For nonlinear systems, MPC approaches
typically approximate the dynamics by linearization, or with
polynomials [17]. To solve the trajectory planning problem,
MPC requires discretizing the vehicle’s control inputs and
trajectory so that each discrete point can be treated as a de-
cision variable [11]. However, to the best of our knowledge,
there is no provable method for discretization to ensure the
MPC solution compensates for tracking error and obstacle
avoidance.

Reachability-based approaches attempt to ensure safety
and persistent feasibility by computing a reachable set to
capture a family of possible trajectories given a model of the
vehicle’s uncertainty. One such technique, the funnel libraries
approach, precomputes reachable “funnels” of the vehicle’s
tracking error around a pre-defined library of trajectories,
then links these funnels end-to-end to perform trajectory
planning at runtime [18]. Recently, a Hamilton-Jacobi based
approach was proposed to compute the reachable set of a

vehicle’s tracking error to produce lookup table of controllers
that bound the tracking error of the vehicle at runtime;
this approach requires that the vehicle tracks a reference
trajectory produced by, e.g. RRT or MPC [19]. Sums-of-
Squares (SOS) programming and control barrier functions
have been similarly applied to bound tracking error to ensure
safety about a reference trajectory while enabling real-time
planning [20], [21]. For each of these methods, it is unclear
how to either ensure that a solution remains persistently fea-
sible or how to represent obstacles so that collision checking
operates in real time without sacrificing safety. For example,
intersecting reachable sets with obstacles represented as
semi-algebraic sets can be too slow in practice [7, Section
6.1]. The aforementioned RTD approach achieves safety by
computing a Forward Reachable Set (FRS) that includes the
vehicle’s tracking error and ensures that the vehicle always
has a braking trajectory available [22]. RTD is persistently
feasible because it enables the user to enforce a timeout
on the online trajectory planning without sacrificing safety;
and, real-time planning is possible with a prescription for
how to discretize obstacles without losing safety guarantees
[7]. However, thus far, RTD has only been applied to small
mobile robots.

The contribution of this work is demonstrating that RTD
is applicable to passenger vehicles with nonlinear dynamics
describing the powertrain, chassis, and tires. We compute an
FRS for such a car simulated in CarSim [4], and use RTD
to perform safe and persistently feasible maneuvers around
static obstacles, as depicted in Figure 1.

B. RTD Overview and Paper Organization

RTD uses a high-fidelity model of the vehicle (Section II)
to track desired trajectories in a lower-dimensional subspace
(Section III). An FRS is computed for trajectories of the
high-fidelity model in the lower-dimensional subspace by
accounting for tracking error (Section IV). To enable real
time operation, obstacles are represented as discretized, finite
sets, while still ensuring safety; and to ensure persistent fea-
sibility, specifications are placed on the braking behavior of
the vehicle (Section V). Finally, the FRS is used at run-time
to map obstacles to constraints for an online optimization
step that ensures RTD can only pick safe trajectory plans
in a receding horizon fashion (Section VI). The method is
applied to a CarSim vehicle model (Section VII).

C. Notation

For a set A, its boundary is ∂A and its complement is AC ,
its interior is int(A), and its power set is P(A). The degree
of a polynomial is the degree of its largest multinomial; the
degree of the multinomial xα, α ∈N is |α|= ‖α‖1. The set R≥0
is [0,∞). If z is a state, then ż is its time derivative. Subscripts
denote the index or subspace to which a state belongs.

II. High-FidelityModel

This paper implements RTD on a passenger car model in
CarSim. The inputs are throttle, steering wheel angle, and
brake master cylinder pressure. We say vehicle to refer to

the Carsim model. A high-fidelity model is used to predict
the motion of the vehicle and design a trajectory tracking
controller. Denote the state of the high-fidelity model as zhi ∈

Zhi ⊂ R
nhi , with dynamics żhi : [0,T]×Zhi ×U → Rnhi . Initial

conditions for these dynamics occupy the space Zhi,0 ⊆ Zhi;
T is the time horizon of each trajectory plan; and the control
input is drawn from U ⊂RnU . We use a bicycle model similar
to [23, (1)] as the high-fidelity model:

żhi =
d
dt



xc
yc
x
y
θ
vx
vy
ω


=



vx cosθ− vy sinθ
vx sinθ+ vy cosθ

vx cosθ− vy sinθ−ω(y− yc)
vx sinθ+ vy cosθ+ω(x− xc)

ω
1
m Fx −

1
m Ff,y sinδ+ vyω

1
m Ff,y cosδ+ 1

m Fr,y− vxω
l f
Iz

Ff,y cosδ− lr
Iz

Fr,y


, (1)

where xc and yc are the position of the vehicle’s center of
mass; x and y are the position of any point on the vehicle’s
body; θ is the vehicle’s heading in the global coordinate
frame; vx, vy are longitudinal and lateral speed of the center
of mass; and ω is yaw rate. The constants m, Iz, l f , and
lr are the vehicle’s mass, yaw moment of inertia, distance
from the front wheel to center of mass, and distance of
the rear wheel to center of mass. To identify the model
parameters, the vehicle is run through a series of open-loop
acceleration, and deceleration inputs. We fit polynomials
relating the throttle and brake inputs to the driving force,
Fx, and we find a linear relationship between wheel angle,
δ, and steering wheel angle. Cornering maneuvers produce
data to fit a simplified Pajecka tire model [23, (2a, 2b)] to
the lateral tire forces, Ff,y and Fr,y. Since Fx, Ff,y, and Fr,y
are continuous, the dynamics (1) are continuous.

Recall that (1) cannot perfectly capture the motion of the
vehicle. However, since the time horizon [0,T], is compact,
we can bound prediction error as follows.

Assumption 1. Future state predictions given by the high-
fidelity model (1) predict each state of the vehicle within an
error bound εi > 0 for i = 1, · · · ,nhi at each time t ∈ [0,T].

By this assumption, the high-fidelity model lies within εx, εy
of the vehicle in its x and y coordinates, as required by
[7, Assumption 9]. We simulate the high-fidelity model and
compare its state to Carsim data to empirically find the
error bounds: |ε| ≤ [0.1, 0.1, 0.12, 0.15, 0.02, 0.4, 0.08, 0.05]>

where | · | is taken elementwise.
Notice that the dynamics of all points on the vehicle’s

body are included in (1). This is because the vehicle has
nonzero volume, so it is insufficient to only consider the
center-of-mass dynamics for trajectory planning. Approaches
that only plan with the center of mass typically expand the
size of obstacles in the vehicle’s environment such that, if the
center of mass does not lie within expanded obstacles, then
no point on the vehicle’s body can lie in the actual obstacle
[8]. In such approaches either the vehicle’s footprint is a
disk, so that obstacles can be expanded uniformly; or, the

obstacle representation requires tuning parameters in a trial-
and-error fashion to compensate for the vehicle’s shape and
possible range of headings, making it hard to ensure safety.
In contrast, RTD directly addresses planning trajectories with
the vehicle’s entire body.

Remark 2. The state space Zhi has a two-dimensional spatial
subspace X ⊂ Zhi with coordinates x and y. The vehicle has a
rectangular footprint X0 ⊂ X that represents all points on the
vehicle’s body at the beginning of each planning iteration.
The states xc and yc evolve in a center-of-mass subspace
Xc ⊂ X. According to the dynamics of x and y in (1), the
vehicle’s footprint acts as a rigid body [24, Lecture 7].

III. Producing and Tracking Trajectories

Since the high-fidelity vehicle model is nonlinear with
saturating inputs, it is difficult to use for planning in real-
time. Instead, RTD plans desired trajectories with a lower-
dimensional trajectory-producing model, which has shared
states z ∈ Z ⊂ Zhi, where dim(Z) = nZ < dim(Zhi). The model
includes trajectory parameters, k, that are drawn from a pa-
rameter space, K. The trajectory-producing model produces
desired trajectories with dynamics żdes : [0,T]×Z×K→ RnZ

with a space Z0 ⊂ Zhi,0 of initial conditions. We use the
following trajectory-producing model:

żdes(t,z(t),k) =

[
ẋ(t)
ẏ(t)

]
=

[
k2− k1(y(t)− yc(0))
v∗y + k1(x(t)− xc(0))

]
(2)

v∗y = k1

(
lr −

ml f

Cr (lr + l f)
k2

2

)
, (3)

where z = [x,y]>; k1 (resp. k2) specifies a constant desired
yaw rate (resp. longitudinal speed); and Cr is the rear
cornering stiffness from the tire force model in (1). The
lateral speed, v∗y, is derived from steady-state, linear tire
force assumptions [25, Section 10.1.2]. Notice that (2) only
has the two states x and y, i.e. the center of mass and
heading dynamics are omitted. This is because the desired
trajectories of the states xc, yc, and θ are treated as functions
of the parameters k and time, which lets us compute explicit
solutions for their trajectories. Consequently, (2) produces
trajectories of the vehicle’s entire footprint in X, with initial
conditions anywhere in the footprint X0. So, the shared state
subspace Z ⊂ Zhi is in fact the spatial subspace X.

We use the trajectory-producing model as follows. For
every trajectory parameter k ∈ K, the high-fidelity model
generates a feedback controller uk : [0,T] × Zhi → U that
attempts to track the trajectory parameterized by k; to shorten
vocabulary, when applying uk, we say that the vehicle
tracks k. In our case, the vehicle uses linear MPC to track
trajectories, implemented with MATLAB’s MPC toolbox.
MPC was chosen to incorporate input saturation and rate
limits, but any feedback controller can be used with RTD.

We now address the fact that desired trajectories pro-
duced by (2) are not necessarily dynamically feasible for
the high-fidelity model (1). This is because the dynamics
and dimension of the two models differ, and because state
estimation error can accumulate as a trajectory is tracked

Fig. 2: Example of tracking error plotted for a reference trajectory of k1 = 0
rad/s and k2 = 12 m/s and T = 2.1 s. The top and bottom plots show the
time derivative of absolute error in x and y states respectively. Data (blue)
is from CarSim and captures initial velocities and yaw rates between 10.78
to 13.26 ms and -0.25 to 0.25 rad/s. The green lines are the error functions
gx and gy as in (4).

using feedback. We refer to the difference between the
high-fidelity model and the trajectory-producing model as
tracking error. We bound tracking error with a function
g : [0,T]× Z × K → RnZ , and use it to create a trajectory-
tracking model that matches the desired trajectories to the
high-fidelity model; this requires the following assumption.

Assumption 3. The spaces Zhi, Zhi,0, U, Z, Z0, and K
are compact subsets of Euclidean space that admit semi-
algebraic representations.

Now, for the states x and y in (2), we find functions gx,gy :
[0,T]×K→ R≥0 such that

max
zhi∈Ahi

|zhi,i(t,zhi,uk)− zdes,i(t,z,k)| ≤
∫ t

0 gi(τ,k)dτ, (4)

for all t ∈ [0,T], z ∈ Z, and k ∈ K. The subscript i = x,y
selects the corresponding components; the set Ahi = {zhi ∈

Zhi | zhi,i = zi for i = x,y}. Arguments to zhi, uk, and z are
dropped to lighten notation. The tracking error function is
g = [gx,gy]>. In this work, gx and gy are polynomials of
degree 2 that overapproximate tracking error data found by
simulating the high-fidelity model tracking reference trajec-
tories from a variety of initial conditions. Importantly, state
estimation error in zhi,0 is added to the initial conditions, so g
conservatively approximates the prediction errors described
in Assumption 1. Although not considered in this paper, state
estimation error due to imperfect sensors and observer design
can also be accounted for in g. Figure 2 shows data collected
in CarSim of the vehicle tracking a reference trajectory of
12 m/s and 0 rad/s from initial velocities between 10.78 to
13.26 m/s and yaw rates between -0.25 and 0.25 rad/s, along
with the computed error functions. Constructing g is not the
focus of this work, but it can be conservatively approximated
with, e.g., SOS programming [26, Chapter 7].

The tracking error function lets the trajectory-producing

model “match” the high-fidelity model in the shared states:

Lemma 4. Let Ld = L1([0,T], [−1,1]nZ) denote the space
of absolutely integrable functions from [0,T] to [−1,1]nZ

and recall that nZ = 2 in (2). Let zhi : [0,T]→ Zhi denote
a trajectory of (1) from arbitrary zhi,0 ∈ Zhi,0 and tracking
arbitrary k ∈ K. Then, there exists d ∈ Ld such that, almost
everywhere t ∈ [0,T],

zhi,i(t) = zhi,0,i +
∫ t

0
(
zdes,i(τ,z,k) + gi(τ,k) ·di(τ)

)
dτ (5)

where i = x,y selects each shared state in Z ⊂ Zhi.

Proof. From (4), g bounds the maximum absolute error in
x and y that can accumulate by any t ∈ [0,T]. Taking both
the positive and negative case of the term inside the absolute
value on the left hand side, then taking time derivatives, gives
us the following inequalities: żhi,i(t,zhi,uk) ≤ żdes,i(t,z,k) +

gi(t,k) and żhi,i(t,zhi,uk) ≥ żdes,i(t,z,k)−gi(t,k). Therefore, for
all t ∈ [0,T], we can pick di(t) ∈ [−1,1] and integrate from 0
to t such that (5) is satisfied. �

We now define the trajectory-tracking model, with state
z = [x,y]> ∈ Z, as:

żi(t) = żdes,i(t,z(t),k) + gi(t,k) ·di(t), (6)

where i = x,y and d = [dx,dy]> ∈ Ld. The utility of (6) is that,
by Lemma 4, it can match any trajectory of the high-fidelity
model in the shared states over the time horizon [0,T]; and,
since the shared states occupy a lower-dimensional space
than Zhi, we can compute an FRS of the trajectory-tracking
model.

IV. The Forward-Reachable Set

We now briefly discuss the FRS, detailed in [7, Section
3]. The FRS is all points in X, and associated parameters in
K, that are reachable by the trajectory-tracking model:

XFRS = {(ẑ, k̂) ∈ X×K | ∃ t ∈ [0,T], z0 ∈ Z0, d ∈ Ld

s.t. żi(τ) = żdes,i(τ,z(τ), k̂) + gi(τ, k̂) ·di(τ),
z(0) = z0, and z(t) = ẑ},

(7)

where i = x,y. By Lemma 4, XFRS contains all points in X
that are reachable by the high-fidelity model tracking any
trajectory parameterized by any k ∈ K.

Remark 5. Recall that the dynamics żdes from (2) and g
from (4) are polynomials. Furthermore, the spaces [0,T], Z,
and K are compact and admit semi-algebraic representations
by Assumption 3 Therefore, by [7, Lemma 14 and Remark
18], we can use SOS programming to find a polynomial wα :
X×K→ R of degree 2α ∈ N for which

XFRS ⊆ {(z,k) ∈ X×K | wα(z,k) ≥ 1}, (8)

that is, the 1-superlevel set of wα overapproximates the FRS.

We use Remark 5 to ensure safety and persistent feasibility
of the vehicle in Section V. See [27, Theorem 6] for a proof,
and [7, Program (Dl)] to compute wα.

In Section VII, the vehicle will be run on a test track
with a max speed of 15 m/s. We compute six FRSes (i.e.

six wα polynomials) for commanded velocities of 3–5, 5–
7, 7–9, 9–11, 11–13, and 13–15 m/s. The vehicle only
goes below 3 m/s when braking to a stop. Each wα has
α = 6. We use polynomial error functions g of degree 2;
we fit a g for each FRS. Computing more FRSes with finer
ranges of initial conditions and commands, would reduce
conservatism; however, we found empirically that using 6
FRSes led to the vehicle completing the experiments of
Section VII. Any number of FRSes could be used as long
as, together, they cover the vehicle’s initial conditions. Per
[7, Appendix 14.2], at each planning iteration, the vehicle
picks the FRS with the highest possible commanded speed
that contains its current initial condition, which maintains
the safety guarantee presented in the following section.

V. Safety and Persistent Feasibility

We now define safety and persistent feasibility by using
wα from Remark 5 to project the FRS into X and K. Note
that we have computed multiple FRS’s for separate speed
ranges in Section IV; the material in this section holds for
each FRS independently.

A. Ensuring Safety

We ensure safety by representing obstacles with discrete
points in X that become nonlinear constraints for the online
trajectory planner. This representation lets the trajectory
planner run in real time [7, Section 6.1]. First, we specify
how obstacle data must be received from sensors:

Assumption 6. Obstacles, denoted Xobs ⊂ X, are closed
polygons that are static with respect to time. There are at
most nobs ∈ N obstacles within the vehicle’s sensor horizon
distance Dsense > 0 at any time. The vehicle senses all
obstacles within Dsense of its center of mass. Obstacles do
not appear spontaneously within the sensor horizon.

Note that Xobs can contain more than one disjoint polygonal
obstacle. This assumption is reasonable for obstacles repre-
sented by occupation grids or line segments fit to lidar data.
Occlusions can be treated as static obstacles.

To relate obstacles to trajectory parameters, we define the
FRS parameter projection map πK :P(X)→P(K) for which

πK(X′) = {k ∈ K | ∃ z ∈ X′ s.t. wα(z,k) ≥ 1}. (9)

Then, the safe set of parameters corresponding to an obstacle
Xobs ⊂ X is Ksafe = πK(Xobs)C . To conservatively approximate
Ksafe in real time, we use the approach proposed in [7,
Section 6], wherein Xobs is buffered, then its boundary is
discretized. For a chosen buffer distance b ≥ 0, the buffered
obstacle is:

Xb
obs =

{
z ∈ X | ∃ z′ ∈ Xobs s.t.

∥∥∥z− z′
∥∥∥

2 ≤ b
}
. (10)

Since Xobs is a polygon, the boundary of Xb
obs consists of a

finite number of line segments and circular arcs of radius b
[28, Section 9.2]. Let L = {L1, · · · ,LnL } and A = {A1, · · · ,AnA }

denote the sets of line segments and arcs, respectively, so
that ∂Xb

obs =
(⋃nL

i=1 Li
)
∪

(⋃nA
i=1 Ai

)
. It is shown in [7, Section

6] that these line segments and arcs ∂Xb
obs can be sampled

to produce a finite discretized obstacle Xp ⊂ X that conser-
vatively approximates the obstacle, i.e. πK(Xp)C ⊆ Ksafe. To
understand why Xp ⊂ ∂Xb

obs, note that the spatial component
of the vehicle’s dynamics is continuous, so the vehicle
cannot collide with the obstacle without passing through the
obstacle’s boundary first. Example buffered and discretized
obstacles are shown in Figure 3.

We construct Xp as follows, summarizing [7, Algorithm
1]. Given a connected, compact curve S : [0,1]→ R2 and a
distance s> 0, let sample(S , s) return a (finite) set P of points
spaced along S such that, for any point p ∈ P, there exists
at least one other point p′ ∈ P no farther than s away in the
2-norm, i.e. ‖p− p′‖2 ≤ s. We also require that S (0),S (1) ∈ P,
i.e. the “endpoints” of S are in P. Then,

Xp =

 nL⋃
i=1

sample(Li, sL)

∪
 nA⋃

i=1

sample(Ai, sA)

 , (11)

where sL > 0 is the point spacing and sA > 0 is the arc
point spacing. By construction, Xp is a set of points that
“surround” the obstacle. So, to ensure safety, we must
guarantee that no point on the vehicle’s footprint can travel
“between” any pair of adjacent points in Xp farther than a
chosen buffer distance b, otherwise the vehicle can collide
with Xobs. This means that sL and sA must be small enough
that points in Xp are close to each other in the 2-norm. The
values of sL and sA depend upon the shape of the vehicle’s
footprint X0; which, in this work, is a rectangle (as per
Remark 2). We ensure safety with the following lemma that
follows from [7, Example 66 and Theorem 68].

Lemma 7. Suppose Xobs is a set of obstacles as in As-
sumption 6, and X0 has width W. Pick a buffer distance
b ∈ (0,W/2). Set sL = 2b and sA = 2bsin(π/4). Then, if Xp is
constructed as in (11), the unsafe parameters corresponding
to Xp are a conservative approximation of the unsafe param-
eters corresponding to Xobs, i.e. πK(Xp) ⊇ πK(Xobs) = KC

safe.

By Lemma 7, the vehicle is safe over a time horizon [0,T],
i.e. the duration of a single planned trajectory, when tracking
any k ∈ πK(Xp)C . For the vehicle, we pick b = 0.05 m, so
sL = 0.1 m and sA = 0.07 m.

B. Ensuring Persistent Feasibility

We now ensure the vehicle is able to always find a safe
trajectory while planning with a receding-horizon strategy by
specifying a minimum duration T for each planned trajectory
and a minimum sensor horizon Dsense.

Remark 8. We assume that sensor data is processed and
passed to the trajectory planner instantaneously. Then, tra-
jectory planning is limited to a duration τplan ∈ (0,T) every
planning iteration; a new k ∈ K is found every τplan seconds,
otherwise the vehicle begins braking. Note that, in practical
applications, τplan can be increased to include the time it
takes to process sensor data.

In this work, τplan = 0.5 seconds. We now consider how the
vehicle must brake to be safe. To understand how the vehicle

Fig. 3: Examples of safe braking along a trajectory, of discretized obstacles,
and of the maps πK and πX . The left subplot is K. The green circle indicates
the parameters for the selected trajectory, k = (0.28 rad/s, 10 m/s). The
filled orange contours are the parameter projection map, πK (Xp), for the
orange obstacle points in the right subplot. The right subplot is X. The
initial speed and yaw rate of the vehicle are 0.027 rad/s and 11.1 m/s. The
vehicle’s pose, taken from CarSim data, is plotted every 0.5 s; it is blue when
initially tracking the trajectory, and red when braking. The green contour is
the spatial projection map of the forward reachable set, πX(k). Notice that
the FRS does not intersect the obstacles, meaning that the chosen k is safe
for the actual vehicle to track.

tracks parameters, we define the FRS spatial projection map
πX : P(K)→P(X) for which

πX(K′) = {z ∈ X | ∃ k ∈ K′ s.t. wα(z,k) ≥ 1}. (12)

By Remark 5, for any k ∈ K, πX(k) ⊂ X contains all points
in X reachable by any point on the vehicle’s body, with
dynamics (1), over the time horizon [0,T]. Now, we use πX
to define safe braking behavior.

Assumption 9. While tracking any k ∈ K over the time
horizon t ∈ [0,T], if the vehicle begins braking at t = τplan,
then all points on the vehicle’s body lie within πX(k), the
spatial projection of the parameter k.

In other words, the FRS is large enough that the vehicle can
brake within it for any trajectory parameter; as discussed
next, this requires choosing T so the vehicle can satisfy
Assumption 9 as shown in Figure 3.

To ensure Assumption 9 can be fulfilled, the time horizon
T must be large enough that, when tracking any k ∈ K, the
vehicle travels farther than the maximum braking distance it
can achieve by braking at τplan from any state zhi ∈ Zhi that
results from tracking k. Notice that (2) creates trajectories
that maintain a fixed speed over [0,T]. Furthermore, the
vehicle has a maximum stopping distance of Dstop at the
max speed considered in the FRS; and, the vehicle’s stopping
distance increases with the square of its speed. Therefore, by
[7, Remark 73], picking

T ≥ τplan + Dstop/vmax (13)

ensures that the trajectories in the FRS are long enough to
satisfy Assumption 9 [7, Appendix 14]. For example, for an
FRS with vmax = 11 and τplan = 0.5 s, Dstop = 15.4 m and T =

1.9 s. Note that this assumes no delay in braking actuation;
if there is delay, then T must be increased to include it. Also,
recall that, since we compute multiple FRSes, the max speed
of each FRS determines its time horizon T .

Finally, to ensure persistent feasibility, recall by Remark 1
that the vehicle’s state estimation error is bounded in x and
y by εx and εy respectively. To compensate for this error, we
expand obstacles by εx in x and εy in y before creating the
discretized obstacle with (11). Recall that state estimation

error, and the resulting tracking error, is accounted for in g
as in (4). We conclude this section by specifying the sensor
horizon required for persistent feasibility.

Lemma 10. [7, Theorem 35]. Let Xobs ⊂ X be obstacles as in
Assumption 6. Let ε=

√
ε2

x +ε2
y . Let vmax denote the vehicle’s

max speed. Suppose that the vehicle has known safe k0 ∈ K
at t = 0. Then, if the sensor horizon is

Dsense ≥ (T +τplan) · vmax + 2ε, (14)

the vehicle can always either find a new trajectory parameter
k ∈ K or begin braking safely at every t = jτplan where j ∈N.

See [7, Theorem 35] for the proof. In this work, Dsense ≥

42.4 m; note that this is within the reported range of many
commercial lidar units such as [29].

VI. Online Planning

We now apply RTD’s online trajectory optimization (see
[7, Section 7 Algorithm 2]) to the vehicle. Per Lemma 10,
at each planning iteration, the vehicle either finds a new safe
plan (i.e., picks a new k ∈ K) or begins braking safely. First,
we state how to find a new safe plan.

Let wα be as in Remark 5. Suppose the vehicle is at
planning iteration j ∈N and tracking the previous iteration’s
safe parameter k j−1. Suppose that Xobs ⊂ X is an obstacle as
in Assumption 6, sensed as in Lemma 10. Let J : K→ R be
an arbitrary cost function. Let Xp be the discretized obstacle
constructed as in Lemma 7. We find k j with the program:

k j = argmin
k

{
J(k) | wα(z,k) < 1 ∀ z ∈ Xp.

}
(15)

By Remark 5, the constraint wα(z,k) < 1 ensures that, for
any feasible k, no point on the vehicle’s body can reach any
z ∈ Xp at any t ∈ [jτplan, (j+1)τplan]. By Lemma 7, this means
that no point on the vehicle’s body can reach Xobs.

In practice, feasible solutions to (15) can be found quickly
because Xp becomes a finite list of point constraints on the
decision variable k. We implement (15) with MATLAB’s
fmincon general nonlinear solver. The cost function at
each planning iteration is the vehicle’s position and velocity
relative to a desired waypoint and velocity, respectively,
which are given by a high-level planner described in Section
VII-A. Recall that, by Assumption 9, if a new safe k cannot
be found within τplan, then the car can always brake safely
within the FRS of the previous plan.

VII. Simulation

This section compares RTD to Rapidly-Exploring Ran-
dom Tree (RRT) and Nonlinear Model-Predictive Control
(NMPC) trajectory planners. The simulations are run on a
2.6 GHz computer with 128 GB RAM. Planning times are
reported using Matlab’s tic and toc functions. All planners
use a receding horizon strategy where they must plan a new
trajectory every τplan = 0.5 s. In the first experiment, all three
planners are run with a real-time planning limit enforced. In
the second experiment, RRT and NMPC are given extra time.

The vehicle runs on a 1036 m, counter-clockwise, closed
loop test track with 7 turns (with approximate curvatures of
0.005–0.04 m−1) and two 4 m wide lanes. Twenty stationary
obstacles (with random length of 3.3–5.1 m length and width
of 1.7–2.5 m) are distributed around the track in random
lanes, with random longitudinal spacing of 40-55 m along
the road. Each obstacle is placed in the lane center with its
heading in the direction of the lane. We generated ten such
random tracks; even though the mean obstacle spacing is
the same, the tracks vary in difficulty. For example, some
tracks require the vehicle to perform overtaking maneuvers
while cornering. The vehicle begins each simulation at the
northwest corner of the track in the left lane, with first
obstacle at least 50 m away. The obstacle spacing means
the vehicle should be able to navigate every test track. A
road-block scenario, where RTD is forced to brake to a stop,
is also shown in the video linked in VII-B.

A high-level planner places waypoints ahead of the vehicle
at a lookahead distance proportional to the vehicle’s current
speed. If the lane centerline from the vehicle’s current
position and lane to the waypoint intersects an obstacle,
the waypoint is switched to the other lane to encourage a
lane change. Lane keeping is not explicitly enforced but is
encouraged via the cost function. Each simulation is deemed
successful if the vehicle completes one lap of the track.

A. Trajectory Planner Implementations

RTD is implemented as discussed in Sections II–VI.
Constraints in the online optimization program (15) limit the
commanded change in velocity to 1 m/s and yaw rate to less
than 0.25 rad/s in each planning iteration. These constraints
create initial condition ranges over which the tracking error
functions, described in Section IV, are valid. FRSes can be
computed for more aggressive maneuvers, but, even without
them, the vehicle is able to successfully navigate the test
track. To keep the vehicle on the road, RTD buffers the road
boundaries by 2.5 m (outside the road) and incorporates these
buffers as obstacles. Since the FRS includes the full vehicle
body, this ensures that the vehicle’s center of mass stays in
the road boundaries when tracking any trajectory planned by
RTD.

The RRT planner is implemented based on [6]. To com-
pensate for the vehicle’s footprint, obstacles are buffered by
4 m in length and 1.5 m in width. New nodes are creating
by first selecting a random existing node, then forward-
integrating the vehicle’s high-fidelity model with randomly-
chosen control inputs held for 0.5 s. This creates 50 points
spaced 0.01 s apart; the last such point is the new node,
which is discarded if any of the points leave the track or
enter a buffered obstacle. Two trees are built in parallel: one
with throttle inputs, and one with braking inputs. The cost
at each node is the distance to the current waypoint, plus
penalties for being near obstacles or road boundaries, and
for commanding large control inputs.

The NMPC planner uses GPOPS-II, a commercially avail-
able pseudo-spectral nonlinear MPC solver [17]. GPOPS-
II uses a kinematic bicycle model, similar to [7, Section

Planner Planning Time (s) % of Track
Complete Crashes Safe

StopsAvg Max Avg Max
RTD 0.09 0.50 100 100 0 0

RRT 5.00 5.00 31 86 0 10
0.50 0.50 13 38 1 9

GPOPS 3.71 72.58 100 100 0 0
0.50 0.50 0 0 0 10

TABLE I: Simulation results comparing RTD, RRT, and GPOPS-II on 10
simulated tracks. The first experiment, with the real-time planning limit, is
shown in gray, and the second experiment in white. The fourth and fifth
columns show the average and max percent of each track completed. The
six and seventh columns count the number of crashes or safe stops if the
vehicle did not complete the track.

9.2.3], with acceleration and steering wheel angle rate as
inputs. Reducing the number of inputs and complexity of
the dynamics was found to reduce solve time. Obstacles
are buffered by 4 m in length and 1.25 m in width. The
track is discretized and represented as a set of adjacent
rectangles. Constraints are created as half-planes to ensure
that the planned trajectory (of the center of mass) does not
enter buffered obstacles or exit rectangles defining the track.
To reduce the number of constraints, only obstacles and road
boundaries within the lookahead distance of the high-level
planner are considered.

B. Results

Results are shown in Table I. A video of RTD planning
in real time is available at http://www.roahmlab.com/
acc2019_rtd_video. In the first experiment, RTD success-
fully navigates the track in all 10 trials, with an average
planning time of 0.086 s. With the 0.5 s time limit, RRT
on average, navigates 13% of the track on average. When
the vehicle approaches obstacles, the planner struggles to
generate feasible nodes that both avoid the obstacle and
stay on the track. Since the algorithm penalizes nodes near
obstacles and plans a braking trajectory at each iteration, it
is able to stop safely (without colliding with an obstacle) in
9 trials. RRT has 1 crash because it cannot always generate
a feasible braking trajectory. Increasing the buffer size of
the obstacles could reduce collisions, but would impact
performance. GPOPS-II is unable to plan trajectories in less
than 0.5 seconds due to the number of track constraints;
hence, it records 10 safe stops.

In the second experiment, the extended planning time
allows RRT to generate more nodes per planning iteration,
and complete more of the track: 31% on average, with
a maximum of 86%. Although unable to reach the goal,
RRT uses the extended planning time to find safe stopping
paths. GPOPS-II successfully reaches the goal in all 10
trials; however, it achieves an average planning time of
3.71 s. The planning times for GPOPS-II have a standard
deviation of 4.20 s; the large standard deviation is expected
because the number of constraints vary based on the track
curvature. Heuristics may reduce the amount of constraints,
but would be obstacle- or track-specific. In contrast, the
average planning time and standard deviation of RTD is 0.09
s and 0.06 s; hence we expect changes in the track will not
affect its ability to perform in real time. Additionally due to

http://www.roahmlab.com/acc2019_rtd_video
http://www.roahmlab.com/acc2019_rtd_video

Lemma 10, when RTD is unable to plan a trajectory within
the 0.5 s time limit, it is always able to safely brake.

VIII. Conclusion
To design trajectories for autonomous cars while ensuring

safety and persistent feasibility, one must have real-time
performance despite model uncertainty and error in the
vehicle’s ability to track a planned trajectory. In this work,
we apply the Reachability-based Trajectory Design (RTD)
method, which is provably safe and persistently feasible,
to a full-sized passenger vehicle in CarSim. RTD has been
applied to small mobile robots in prior work; here, we
demonstrate that the method can plan dynamically-feasible,
safe trajectories for autonomous cars. In ten simulated trials,
RTD successfully drives the vehicle around an entire 1
km test track at up to 15 m/s around randomly generated
obstacles (only known when detected at runtime) safely and
in real-time. Currently, RTD is limited to static obstacles,
and requires that braking is implicitly included in the offline
reachability computation. Future work will address these
limitations, apply RTD on a physical car, explore new
online algorithms for globally-optimal planning, and address
vehicle-specific types of uncertainty such as road friction.

References
[1] M. Buehler, K. Iagnemma, and S. Singh, The darpa urban

challenge: Autonomous vehicles in city traffic. Springer,
2009, vol. 56.

[2] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and
F. Borrelli, “Predictive control for agile semi-autonomous
ground vehicles using motion primitives,” in American Con-
trol Conference (ACC), 2012, IEEE, 2012, pp. 4239–4244.

[3] L. Palmieri, S. Koenig, and K. O. Arras, “Rrt-based non-
holonomic motion planning using any-angle path biasing,”
in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 2775–2781.

[4] Mechanical simulation: Carsim, https://www.carsim.
com/, Accessed: 2018-09-05.

[5] G. Orosz, Y. Zhang, W. B. Qin, C. R. He, and S. S. Avedisov,
“Nonholonomic lane change maneuvers for connected and
autonomous vehicles,” in 9th European Nonlinear Dynamics
Conference (ENOC 2017), 2017.

[6] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and
J. P. How, “Real-time motion planning with applications to
autonomous urban driving,” IEEE Transactions on Control
Systems Technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[7] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and
R. Vasudevan, “Bridging the gap between safety and real-
time performance in receding-horizon trajectory design for
mobile robots,” ArXiv e-prints arXiv:1809.06746, Sep. 2018.

[8] M. Elbanhawi and M. Simic, “Sampling-based robot motion
planning: A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” The international journal of
robotics research, vol. 30, no. 7, pp. 846–894, 2011.

[10] R. Pepy and A. Lambert, “Safe path planning in an
uncertain-configuration space using rrt,” in 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Oct. 2006, pp. 5376–5381.

[11] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka,
“Real-time motion planning methods for autonomous on-
road driving: State-of-the-art and future research directions,”
Transportation Research Part C: Emerging Technologies,
vol. 60, pp. 416 –442, 2015.

[12] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager,
F. Borrelli, and M. Diehl, “An auto-generated nonlinear
mpc algorithm for real-time obstacle avoidance of ground
vehicles,” in 2013 European Control Conference (ECC), Jul.
2013, pp. 4136–4141.

[13] Y. Gao, A. Gray, A. Carvalho, H. E. Tseng, and F. Borrelli,
“Robust nonlinear predictive control for semiautonomous
ground vehicles,” in 2014 American Control Conference,
Jun. 2014, pp. 4913–4918.

[14] J. Lofberg, “Oops! i cannot do it again: Testing for recursive
feasibility in mpc,” Automatica, vol. 48, no. 3, pp. 550 –555,
2012.

[15] S. Streif, M. Kogel, T. Bathge, and R. Findeisen, “Robust
nonlinear model predictive control with constraint satis-
faction: A relaxation-based approach,” IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 11073 –11 079, 2014, 19th IFAC
World Congress.

[16] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and
P. Haves, “Model predictive control for the operation of
building cooling systems,” IEEE Transactions on Control
Systems Technology, vol. 20, no. 3, pp. 796–803, May 2012.

[17] M. A. Patterson and A. V. Rao, “Gpops-ii: A matlab software
for solving multiple-phase optimal control problems using
hp-adaptive gaussian quadrature collocation methods and
sparse nonlinear programming,” ACM Trans. Math. Softw.,
vol. 41, no. 1, 1:1–1:37, Oct. 2014.

[18] A. Majumdar and R. Tedrake, “Funnel libraries for real-
time robust feedback motion planning,” ArXiv preprint
arXiv:1601.04037, 2016.

[19] S. L. Herbert*, M. Chen*, S. Han, S. Bansal, J. F. Fisac,
and C. J. Tomlin, “Fastrack: A modular framework for fast
and guaranteed safe motion planning,” IEEE Conference on
Decision and Control (submitted), 2017.

[20] S. Singh, M. Chen, S. Herbert, C. J. Tomlin, and M. Pavone,
“Robust tracking with model mismatch for fast and safe
planning: An sos optimization approach,” ArXiv preprint
arXiv:1808.00649, 2018.

[21] Y. Chen, H. Peng, and J. Grizzle, “Obstacle avoidance for
low-speed autonomous vehicles with barrier function,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 1,
pp. 194–206, 2018.

[22] S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasude-
van, “Safe trajectory synthesis for autonomous driving in
unforeseen environments,” in ASME 2017 Dynamic Systems
and Control Conference, American Society of Mechanical
Engineers, 2017, V001T44A005–V001T44A005.

[23] A. Liniger, A. Domahidi, and M. Morari, “Optimization-
based autonomous racing of 1: 43 scale rc cars,” Optimal
Control Applications and Methods, vol. 36, no. 5, pp. 628–
647, 2015.

[24] J. Vandiver and D. Gossard, 2.003sc engineering dynamics,
https://ocw.mit.edu/courses/mechanical-engineering/2-
003sc-engineering-dynamics-fall-2011/, Accessed: 2018-
08-20, 2011.

[25] D. Schramm, M. Hiller, and R. Bardini, Vehicle dynamics
modeling and simulation. Springer, 2014, p. 230.

[26] J. B. Lasserre, Moments, positive polynomials and their
applications. World Scientific, 2009, vol. 1.

[27] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R.
Tedrake, “Convex optimization of nonlinear feedback con-
trollers via occupation measures,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1209–1230, 2014.

[28] E. Fogel, D. Halperin, and R. Wein, “Minkowksi sums
and offset polygons,” in CGAL Arrangements and Their
Applications: A Step-by-Step Guide. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 209–240.

[29] Velodyne’s hdl-64e: A high definition lidar sensor for 3-d
applications, White Paper, Velodyne, Oct. 2007.

https://www.carsim.com/
https://www.carsim.com/

	I Introduction
	I-A Literature Review
	I-B RTD Overview and Paper Organization
	I-C Notation

	II High-Fidelity Model
	III Producing and Tracking Trajectories
	IV The Forward-Reachable Set
	V Safety and Persistent Feasibility
	V-A Ensuring Safety
	V-B Ensuring Persistent Feasibility

	VI Online Planning
	VII Simulation
	VII-A Trajectory Planner Implementations
	VII-B Results

	VIII Conclusion

