
On Computation of Koopman Operator from Sparse Data

Subhrajit Sinha and Enoch Yeung

Abstract— In this paper we propose a novel approach to
compute the Koopman operator from sparse time series data.
In recent years there has been considerable interests in oper-
ator theoretic methods for data-driven analysis of dynamical
systems. Existing techniques for the approximation of the
Koopman operator require sufficiently large data sets, but in
many applications, the data set may not be large enough to
approximate the operators to acceptable limits. In this paper,
using ideas from robust optimization, we propose an algorithm
to compute the Koopman operator from sparse data. We enrich
the sparse data set with artificial data points, generated by
adding bounded artificial noise and and formulate the noisy
robust learning problem as a robust optimization problem and
show that the optimal solution is the Koopman operator with
smallest error. We illustrate the efficiency of our proposed
approach in three different dynamical systems, namely, a linear
system, a nonlinear system and a dynamical system governed
by a partial differential equation.

I. INTRODUCTION

In recent years there has been an increasing number of fields
where the underlying physical systems are represented by
data. Increasing memory, processor speed, and the advent of
distributed computing architectures have enabled us to handle
and analyze data with more precision and to address learning
problems for nonlinear complex systems at an unprecedented
scale. Another advantage of data-driven analysis lies in the
fact that for many naturally occurring complex systems and
engineered systems with emergent phenomena, e.g. biolog-
ical systems, inter-dependent critical infrastructure, social
networks, financial systems, it may not always be possible
to derive and analyze theoretical mathematical models of
the underlying systems [1]. In such cases, one has to resort
to data-driven techniques for understanding the behavior of
such systems.
In the realm of dynamical systems, there is an increasing
interest in transfer operator theoretic techniques for anal-
ysis and control [2]–[17]. The operator based techniques
differ from the classical study of dynamical systems in the
sense that instead of studying the dynamical system on
the configuration manifold and the tangent and cotangent
bundles associated with them, the evolution is studied on the
space of functions [18] or on the space of measures. The
big advantage of using the function space or the measure
space instead of the configuration space is the fact that
in those spaces, the evolution is linear, even if the actual
system is nonlinear. Moreover, the operators, namely, Perron-
Frobenius operator and the Koopman operator are positive
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Markov operators. These properties can be exploited to have
probabilistic interpretations and can be used for various ap-
plications like the optimal placement of sensors and actuators
[19], [20] etc. However, the trade-off lies in the fact that the
operators defined on the function space or the measure space
are infinite dimensional.
Another advantage of the operator theoretic framework for
analysis and control of dynamical systems is that the methods
developed are data-centric and in many cases wholly data-
driven. In particular, a finite-dimensional approximation of
both Perron-Frobenius and Koopman operators can be con-
structed from time-series data obtained from experiments [3].
Towards this goal various data-driven methods are proposed
for the finite dimensional approximation of these operators
[5], [21]–[24], with Dynamic Mode Decomposition (DMD)
and extended DMD being the ones which are used exten-
sively. Recent works have also addressed the problem of
computing these operators for systems with process and ob-
servation noise and for Random Dynamical Systems (RDS)
[25]–[28]. In [25] the authors have provided a characteriza-
tion of the spectrum and eigenfunctions of the Koopman
operator for discrete and continuous time RDS, while in
[26], the authors have provided an algorithm to compute
the Koopman operator for systems with both process and
observation noise. In [27], [28] the authors used robust
optimization-based techniques to compute the approximate
Koopman operator for data sets of finite length and have
shown that normal DMD or EDMD and subspace DMD [26]
lead to an unsatisfactory approximation of Koopman operator
for data sets of finite length.
A different challenge that researchers often have to account
for is the scenario when the data set is not only finite, but
also small, that is sparse. Sparse data refers to data sets
with few data points and can have an immense effect on
the ability to train the Koopman operator into producing
accurate predictions. In particular, in the case of sparse data
the existing DMD and EDMD algorithms may lead to an ill-
conditioned least-square problem. In this paper, we address
the problem of computation of Koopman operator when the
data set is sparse. We append artificial data points to the
sparse data set to enrich the data and use robust optimization-
based techniques to obtain the approximate Koopman opera-
tor. The robust optimization problem is a min-max problem
which can be approximated as a least squares problem with
a regularization term. The regularization parameter imposes
sparsity in the Koopman operator. Moreover, it prevents over-
fitting of the data and hence can be used to design a data-
driven predictor [29].
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The organization of the paper is as follows. In section II
we provide the basics of transfer operators followed by a
discussion of DMD and EDMD algorithms in section III. In
section IV we present the main results of the paper and state
the algorithm to construct the Koopman operator for sparse
data. Design of the robust predictor is discussed in section
V, with simulation results in section VI. Finally we conclude
the paper in VII.

II. TRANSFER OPERATORS FOR DYNAMICAL SYSTEMS

Consider a discrete-time dynamical system

zt+1 = T (zt) (1)

where T : Z ⊂ RN → Z is assumed to be an invertible
smooth diffeomorphism. Associated with the dynamical sys-
tem (1) is the Borel-σ algebra B(Z) on Z and the vector
space M(Z) of bounded complex valued measures on X .
With this, two linear operators, namely, Perron-Frobenius (P-
F) and Koopman operator, can be defined as follows [30] :
Definition 1 (Perron-Frobenius Operator): The Perrorn-
Frobenius operator P :M(Z)→M(Z) is given by

[Pµ](A) =

∫
Z
δT (z)(A)dµ(z) = µ(T−1(A))

δT (z)(A) is stochastic transition function which measure the
probability that point z will reach the set A in one time step
under the system mapping T .
Definition 2 (Invariant measures): Invariant measures are
the fixed points of the P-F operator P that are also probability
measures. Let µ̄ be the invariant measure then, µ̄ satisfies

Pµ̄ = µ̄.
If the state space Z is compact, it is known that the P-F
operator admits at least one invariant measure.
Definition 3 (Koopman Operator): Given any h ∈ F , U :
F → F is defined by

[Uh](z) = h(T (z))

where F is the space of function (observables) invariant
under the action of the Koopman operator.
Both the P-F operator and the Koopman operator are linear
operators, even if the underlying system is non-linear. But
while analysis is made tractable by linearity, the trade-off
is that these operators are typically infinite dimensional. In
particular, the P-F operator and Koopman operator often
will lift a dynamical system from a finite-dimensional space
to generate an infinite dimensional linear system in infinite
dimensions.
Properties 4: Following properties for the Koopman and
Perron-Frobenius operators can be stated [30].

a). For the Hilbert space F = L2(Z,B, µ̄)

‖ Uh ‖2=

∫
Z

|h(T (z))|2dµ̄(z)

=

∫
Z

|h(z)|2dµ̄(z) =‖ h ‖2

where µ̄ is an invariant measure. This implies that
Koopman operator is unitary.

b). For any h ≥ 0, [Uh](z) ≥ 0 and hence Koopman is a
positive operator.

c). For invertible system T , the P-F operator for the
inverse system T−1 : Z → Z is given by P∗ and
P∗P = PP∗ = I . Hence, the P-F operator is unitary.

d). If the P-F operator is defined to act on the space of
densities i.e., L1(Z) and Koopman operator on space
of L∞(Z) functions, then it can be shown that the P-F
and Koopman operators are dual to each other 1

〈Uf, g〉 =

∫
Z

[Uf ](z)g(z)dx

=

∫
X

f(y)g(T−1(y))

∣∣∣∣dT−1

dy

∣∣∣∣ dy = 〈f,Pg〉

where f ∈ L∞(Z) and g ∈ L1(Z) and the P-F
operator on the space of densities L1(Z) is defined
as follows

[Pg](z) = g(T−1(z))|dT
−1(z)

dz
|.

e). For g(z) ≥ 0, [Pg](z) ≥ 0.
f). Let (Z,B, µ) be the measure space where µ is a

positive but not necessarily the invariant measure of
T : Z → Z, then the P-F operator P : L1(Z,B, µ) →
L1(Z,B, µ) satisfies following property:∫

Z

[Pg](z)dµ(z) =

∫
Z

g(z)dµ(x).

III. DYNAMIC MODE DECOMPOSITION (DMD) AND
EXTENDED DYNAMIC MODE DECOMPOSITION (EDMD)

Dynamic Mode Decomposition was first proposed in [22] in
the context of analysis of fluid flow analysis. DMD algorithm
is a way of approximating the spectrum of the Koopman
operator. DMD algorithm was improved upon (EDMD) in
[24], where the authors used a choice of observables, called
a dictionary. In this improved algorithm, the Koopman
operator is approximated as a linear map on the span of
the finite set of dictionary functions. In this section, we
briefly describe the EDMD algorithm for approximating the
Koopman operator.
Consider snapshots of data set obtained from simulating
a discrete time dynamical system z 7→ T (z) or from an
experiment

Xp = [x1, x2, . . . , xM ], Xf = [y1, y2, . . . , yM ] (2)

where xi ∈ X and yi ∈ X . The two pair of data sets are
assumed to be two consecutive snapshots i.e., yi = T (xi).
Let D = {ψ1, ψ2, . . . , ψK} be the set of dictionary functions
or observables, where ψ : X → C. Let GD denote the span
of D such that GD ⊂ G, where G = L2(X,B, µ). The choice
of dictionary functions are very crucial and it should be
rich enough to approximate the leading eigenfunctions of

1with some abuse of notation we use the same notation for the P-F
operator defined on the space of measure and densities.



Koopman operator. Define vector valued function Ψ : X →
CK

Ψ(x) :=
[
ψ1(x) ψ2(x) · · · ψK(x)

]
(3)

In this application, Ψ is the mapping from physical space to
feature space. Any function φ, φ̂ ∈ GD can be written as

φ =

K∑
k=1

akψk = ΨTa, φ̂ =

K∑
k=1

âkψk = ΨT â (4)

for some set of coefficients a, â ∈ CK . Let

φ̂(x) = [Uφ](x) + r,

where r is a residual function that appears because GD
is not necessarily invariant to the action of the Koopman
operator. To find the optimal mapping which can minimize
this residual, let K be the finite dimensional approximation
of the Koopman operator. Then the matrix K is obtained as
a solution of least square problem as follows

min
K
‖ GK−A ‖F (5)

G =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm)

A =
1

M

M∑
m=1

Ψ(xm)>Ψ(ym),

(6)

with K,G,A ∈ CK×K . The optimization problem (5) can
be solved explicitly to obtain following solution for the
matrix K

KEDMD = G†A (7)

where G† is the psedoinverse of matrix G. DMD is a special
case of EDMD algorithm with Ψ(x) = x.

IV. KOOPMAN OPERATOR CONSTRUCTION FOR SPARSE
DATA

In many experiments, it often is the case that the data ob-
tained is not rich enough to achieve a good enough approxi-
mation of Koopman operator. In this case, existing algorithms
like DMD or EDMD fail to generate acceptable Koopman
operators. In fact, in many instances, these algorithms lead
to unstable eigenvalues, even though the underlying system
is stable [27], [28]. In this section, a robust optimization-
based framework is presented for a better approximation of
the Koopman eigenspectrum for sparse data.

A. Enrichment of the existing dataset

Let X̄p = [x1, x2, · · · , xM ] and X̄f = [y1, y2, · · · , yM ]
be the snap-shots of data obtained from a discrete-time
dynamical system z → T (z), where z ∈ Z ⊂ RN , xi ∈ Z
and yi ∈ Z. The two pair of data sets are assumed to be two
consecutive snapshots i.e., yi = T (xi). Consider xi + δxi,
where ‖ δxi ‖≤ λX . Since, T is a diffeoemorphism,

T (xi + δxi) ≈ T (xi) +
∂T

∂x
δxi = yi + δyi. (8)

Since ‖ δxi ‖≤ λX , xi + δxi ∈ B(xi, λX), where

B(x0, r) = {x ∈ RN | ‖ x− x0 ‖≤ r}.

Again T being a smooth diffeomorphism implies that ∂T∂x ≤
λT and hence T (xi+δxi) ∈ B(yi, λY ), where λY ≤ λXλT .
Hence, a sufficiently small perturbation to any point xi will
result in a small enough perturbation of yi and it is the
boundedness of the small perturbations that is used to enrich
the existing data set. In particular, to each observed data tuple
(xi, yi), we augment an extra data point (xi+ δxi, yi+ δyi).
Note that, for each data point more than one data point can
be augmented, but for clarity, we will discuss the situation
where only one extra artificial data point is augmented to
each observed data point. Hence, an artificial data set

Xp = [x1, · · · , xM , x1 + δx1, · · · , xM + δxM ]

= [x1, · · · , x2M ]

Xf = [y1, · · · , yM , y1 + δy1, · · · , yM + δyM ]

= [y1, · · · , y2M ]

(9)

is created with 2(M+1) data points. Here xM+i = xi+δxi
and yM+i = yi + δyi.

B. Robust Optimization Formulation

Let Xp = [x1, · · · , x2M ] and Xf = [y1, · · · y2M ] be the
enriched data set, as given in (9). However, all the data
points (xi, yi) are not obtained from the system but has
some error due to the artificial data points. The errors in
the artificial data points can be thought of as measurement
noise and the uncertainty acts as an adversary which tries
to maximize the residual. Hence to obtain the Koopman
operator K for uncertain data, a robust optimization problem
can be formulated as the following min−max optimization
problem.

min
K

max
δ∈∆

‖ GδK−Aδ ‖F=: min
K

max
δ∈∆
J (K,Gδ,Aδ)

(10)
where

Gδ =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(xi)

Aδ =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(yi), (11)

with K,Gδ,Aδ ∈ CK×K .
The robust optimization problem (10), is in general non-
convex because the cost J may not be a convex function
of δ.
Proposition 5: The optimization problem (10) can be ap-
proximated as

min
K

max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F (12)

where U is a compact set in RK×K .



Proof: From Taylor series expansion we have, Ψ(xi +
δxi) = Ψ(xi)+Ψ′(xi)δxi+h.o.t., where Ψ′(xi) is the first
derivative of Ψ(x) at xi. Hence,

Gδ ≈ G +
1

2M

2M∑
i=1

Ψ>(xi)δxiΨ
′(xi)

= G + δG

where δG = 1
2M

∑2M
i=1 Ψ>(xi)δxiΨ

′(xi).
Moreover,

‖ δG ‖F=‖ 1

2M

2M∑
i=1

Ψ>(xi)δxiΨ
′(xi) ‖F

≤ 1

2M

2M∑
i=1

‖ Ψ>(xi)δxiΨ
′(xi) ‖F

≤ 1

2M

2M∑
i=1

‖ Ψ>(xi) ‖F · ‖ δxi ‖F · ‖ Ψ′(xi) ‖F

Hence, δG belongs to a compact set U1. Similarly, one can
show Aδ ≈ A + δA and δA belongs to a compact set U2.
Letting U = U1 ∪ U2, proves the proposition.
The above proposition allows us to compute the Koopman
operator K as a solution of a robust optimization problem
(12). The optimization problem (12) has interesting connec-
tions with optimization problem involving regularization. In
particular, one has the following theorem.
Theorem 6: The optimization problem

min
K

max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F (13)

is equivalent to the following optimization problem

min
K
‖ GK−A ‖F +λ ‖ K ‖F (14)

Proof: The min-max optimization problem is

J = min
K

max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F (15)

Fix K ∈ RK×K and let

r = max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F

be the worst-case residual. Let max{‖ u ‖F |u ∈ U} ≤ λ.
Then,

r = max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F

≤ max
δG,δA∈U

‖ GK−A ‖F + ‖ δGK− δA ‖F

≤‖ GK−A ‖F +λ ‖ K ‖F +λ ‖ I ‖F (16)
≤‖ GK−A ‖F +λ ‖ K ‖F +λK (17)

Again, let
(
δG? , δA?

i

)
= λu√

‖Ki‖2+1

(
K>i , −1

)
where Ai and Ki are the ith columns of A and K respec-
tively and

u =

{
GKi−Ai

‖GKi−Ai‖2 , if GKi 6= Ai

any unit norm vector otherwise.

Let

ri = max
δG,δA∈U

‖ (G + δG)Ki − (Ai + δAi) ‖F .

Hence,

ri ≥‖ (GKi −Ai) + (δG?Ki − δA?
i ) ‖F

=‖ (GKi −Ai) +
λ(GKi −Ai)

‖ GKi −Ai ‖2
(K>i Ki + 1) ‖F

=‖ GKi −Ai ‖F +λ ‖ Ki ‖F +λ (18)

Hence,

r =

K∑
i=1

ri ≥‖ GK−A ‖F +λ ‖ K ‖F +λK. (19)

Finally, from (16) and (19) and minimizing over K we get

min
K

max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F

is equivalent to

min
K
‖ GK−A ‖F +λ ‖ K ‖F +λK.

Moreover, since λ and K are positive constants,

min
K

max
δG,δA∈U

‖ (G + δG)K− (A + δA) ‖F

is equivalent to

min
K
‖ GK−A ‖F +λ ‖ K ‖F .

The above theorem allows computation of the approximate
Koopman operator as a solution of an optimization problem
with a regularization term. In particular, the approximate
Koopman operator can be obtained as a solution of the
following optimization problem

‖ GK−A ‖F +λ ‖ K ‖F . (20)

where

G =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(xi)

A =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(yi).

(21)

Remark 7: Algorithm (1) describes the procedure of adding
M extra data points, but it should be noted that one can add
more or less number of artificial data points.

V. DESIGN OF ROBUST PREDICTOR

The Koopman operator generates a linear system in a higher
dimensional space, even if the underlying system is linear.
The linearity of the operator enables the design of linear
predictors for nonlinear systems. The following is presented
briefly for the self-containment of the paper and for details
the readers are referred to [29]. Let {x0, . . . , xM} be the
training data-set and K be the finite-dimensional approx-
imation of the transfer Koopman operator obtained using
algorithm 1. Let x̄0 be the initial condition from which the



Algorithm 1 Computation of Koopman Operator from Lim-
ited Data

1) To the existing data set D = [x1, · · · , xM ] add new
data points x̃i = xi + δxi, where ‖ δxi ‖≤ c.

2) Form the enriched data set D̄ =
[x1, · · · , xM , x̃1, · · · , x̃M ].

3) Form the sets Xp = [x1, · · · , xM−1, x̃1, · · · , x̃M−1]
and Xf = [x2, · · · , xM , x̃2, · · · , x̃M ].

4) Fix the dictionary functions Ψ = [ψ1, · · · , ψK ].
5) Solve the optimization problem to obtain the approxi-

mate Koopman operator K

‖ GK−A ‖F +λ ‖ K ‖F .

where

G =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(xi)

A =
1

2M

2M∑
i=1

Ψ(xi)
>Ψ(yi).

future is to be predicted. The initial condition from state
space is mapped to the feature space using the same choice of
basis function used in the robust approximation of Koopman
operator i.e.,

x̄0 =⇒ Ψ(x̄0)> =: z ∈ RK .

This initial condition is propagated using Koopman operator
as

zn = Knz.

The predicted trajectory in the state space is then obtained
as

x̄n = Czn

where matrix C is obtained as the solution of the following
least squares problem

min
C

M∑
i=1

‖ xi − CΨ(xi) ‖22 (22)

VI. SIMULATIONS

In this section, we demonstrate the efficiency of the proposed
algorithm on three different dynamical systems. In particular,
we construct the Koopman operator for a linear system,
a non-linear system and a system governed by a Partial
Differential Equation (PDE).

A. Network of Coupled Oscillators

Consider a network of coupled linear oscillators given by

θ̈k = −Lkθ − dθ̇k, k = 1, · · · , N (23)

where θk is the angular position of the kth oscillator, N is the
number of oscillators, Lk is the kth row of the Laplacian L
and d is the damping coefficient. The Laplacian L is chosen
such that the network is a ring network with 20 oscillators
(Fig. 1).

O1

O2

O3

O4

O5

O20

Fig. 1. Ring network of 20 linear oscillators.

In these sets of simulations, the damping coefficient d has
been assumed the same for all the oscillators and is set
equal to 0.4. Data for all the states were collected for 100-
time steps, with sampling time δt = 0.01 seconds and since
the system is linear, linear basis functions were used for
computation of the Koopman operator. The first 15-time steps
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Fig. 2. (a) Eigenvalue obtained using normal DMD on original training
data and Robust DMD on enriched data set. (b) Dominant eigenvalues.

data was used for training the Koopman operators. Normal
DMD on the 15 data points yields positive eigenvalues with
a significant real part, as shown in Fig. 2. For the Robust
identification of Koopman operator, the original data set was
enriched by adding 30 artificial data points and Robust DMD
formulation (algorithm 1) yields a much better approximation
of the eigenvalues for the original system. The eigenvalues
obtained using normal DMD and Robust DMD are shown
in Fig. 2, where in Fig. 2a the complete spectrum is plotted
and in Fig. 2b the dominant eigenvalues are shown.
As mentioned earlier, data were obtained for 100 times
steps and the first 15 time steps were used for training
the Koopman operator. Koopman operators thus obtained
was used to predict the next 45 time steps and was used
to compare the error. The errors in the prediction of the
positions of oscillators 3 and 4, using both normal DMD and
Robust DMD, are shown in Fig. 3a and Fig. 3b respectively.
It can be observed that Robust DMD formulation generates
much smaller error compared to normal DMD. In fact, this
was expected, since Robust DMD with enriched data-set
approximates the eigenspectrum much better compared to
normal DMD.
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Fig. 3. (a) Errors in the prediction of position of oscillator 3. (b) Errors
in the prediction of position of oscillator 4.

B. Stuart-Landau Equation

The nonlinear Stuart-Landau equation on a complex function
z(t) = r(t) exp(iθ(t)) is given by

ż = (µ+ iγ)z − (1 + iβ)|z|2z, (24)

where i is the imaginary unit. The solution of (24) evolves
on the limit cycle |z| =

√
µ. Hence, the continuous time

eigenvalues lie on the imaginary axis. The discretized version
of (24) is

(
rt+1

θt+1

)
=

(
rt + (µrt − r3t )δt
θt + (γ − βr2t )δt

)
(25)

The set of dictionary functions were chosen as

Ψ(θt) =
(
e−10iθt e−9iθt · · · e9iθt e10iθt

)
(26)

and data was collected for 150 time steps, with δt = 0.01
and initial condition (1, π).
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Fig. 4. (a) Eigenvalues obtained with EDMD on original data and Robust
EDMD on enriched data set. (b) Dominant eigenvalues.

The first 30-time steps data were used as the training data
for training the Koopman operator. An extra 30 artificial
points were added to the obtained data set to form the
enriched data set and this enriched data set was used to
compute the eigenspectrum of the Koopman operator using
Robust EDMD algorithm. The eigenvalues obtained using
the dictionary functions given in (26), with normal EDMD
and Robust EDMD with enriched data set is shown in Fig.
4a. Fig. 4b shows the dominant eigenvalues and it can be
observed that Robust EDMD provides a better approximation
of the original eigenspectrum. In particular, normal EDMD
generates unstable eigenvalues.
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Fig. 5. Comparison of errors in prediction of r using Robust EDMD
and normal EDMD. The top figure shows the prediction error using Robust
EDMD and the lower plot shows prediction error using normal EDMD.
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Fig. 6. Comparison of errors in prediction of θ using Robust EDMD
and normal EDMD. The top figure shows the prediction error using Robust
EDMD and the lower plot shows prediction error using normal EDMD.

Further, using the Koopman operators obtained using both
normal EDMD and Robust EDMD, future values of both r
and θ was predicted for the next 70 time steps. The errors
in the prediction of r and θ are shown in Fig. 5 and Fig.
6 respectively. In all the error plots, the errors are plotted
against the actual values of r and θ and it can be observed
that the errors in prediction for both r and θ with Robust
EDMD are significantly smaller than the prediction errors
using normal EDMD.

C. Burger-Equation

The third example considered in this paper is the Burger
equation. Burger equation is a successful but simplified
partial differential equation which describes the motion of
viscous compressible fluids. The equation is of the form

∂tu(x, t) + u∂xu = k∂2
xu

where u is the speed of the gas, k is the kinematic viscosity,
x is the spatial coordinate and t is time.
In the simulation, choosing k = 0.01, we approximated
the PDE solution using the Finite Difference method [31]
with the initial condition u(x, 0) = sin(2πx) and Dirichet
boundary condition u(0, t) = u(1, t) = 0. Given the spatial



and temporal ranges, x ∈ [0, 1], t ∈ [0, 1], the discretizaion
steps are chosen as ∆t = 0.02 and ∆x = 1 × 10−2. With
the above set of conditions, the flow u is shown in Fig. 7.
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Fig. 7. Flow field of Burger equation.

Since the space discretization was chosen as ∆x = 1×10−2,
there are 100 state variables. For computing the Koopman
operator, 8-time steps data were used. 40 extra data points
were added to enrich the data set and the Robust Koopman
operator was computed using the enriched data set. Koopman
operator using normal DMD was also computed for compar-
ing the errors in prediction. The errors in the prediction of
35 future time steps for x40 and x100 is shown in Fig. 8(a)
and Fig.. 8(b) respectively. It can be seen that the error in
prediction using Robust Koopman operator from the enriched
data set is much smaller as compared to the normal DMD.
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Fig. 8. (a) Errors in prediction of x40. (b) Errors in prediction of x100.

We further used different training size data for computing the
Koopman operator and compared the mean square error in
prediction of all the states. In particular, we used both Robust
DMD approach and normal DMD to predict 35-time steps
from t = 100, with 7 different training size data, namely 5,
10, 15, 20, 25, 30 and 35-time steps. For each of the training
size data, we appended the data set with artificial data points
so that there are 40 data points in total. The mean square
errors in the prediction of the states are shown in Fig. 9.
Fig. 9(a) shows the mean square error in prediction using
the proposed approach and Fig. 9(b) shows the mean square
error using normal DMD. It can be clearly seen that errors
using the proposed method are much smaller (of the order of
102). Another observation is that normal DMD is not much
sensitive to small variations in training data size, whereas
the proposed method is more sensitive to training data size.
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Fig. 9. (a) Mean square error of prediction of all the states using Robust
DMD aproach. (b) Mean square error of prediction of all the states using
normal DMD.

VII. CONCLUSIONS

In this paper, we addressed the problem of computation of
Koopman operator from sparse time series data. In certain
experimental applications, it may not be possible to obtain
time series data which is rich enough to approximate the
Koopman operator. We propose an algorithm to compute
the Koopman operator for such sparse data. The intuition
was based on exploiting the differentiability of the system
mapping to append artificial data points to the sparse data
set and using robust optimization-based techniques to ap-
proximate the Koopman eigenspectrum. The efficiency of the
proposed method was also demonstrated on three different
dynamical systems and the results obtained were compared
to existing Dynamic Mode Decomposition and Extended



Dynamic Mode Decomposition algorithms to establish the
advantage of our proposed algorithm and in the future; we
hope to investigate the performance of our approach on real
experimental data sets.
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[8] I. Mezić and A. Banaszuk, “Comparison of systems with complex
behavior,” Physica D, vol. 197, pp. 101–133, 2004.

[9] M. Dellnitz, O. Junge, W. S. Koon, F. Lekien, M. Lo, J. E. Marsden,
K. Padberg, R. Preis, S. D. Ross, and B. Thiere, “Transport in
dynamical astronomy and multibody problems,” International Journal
of Bifurcation and Chaos, vol. 15, pp. 699–727, 2005.
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