
Multi-agent trajectory planning: A decentralized iterative algorithm
based on single-agent dynamic RRT?

Paolo Verbari, Luca Bascetta, Maria Prandini

Abstract— This paper addresses trajectory planning in a
multi-agent cooperative setting, where n agents are moving in
the same region and need to coordinate so as to maintain
a certain pairwise safety distance, while avoiding obstacles.
We introduce a decentralized strategy that is based on an
iterative (re)plan-compare-assign process. The key features of
the proposed strategy are that coordination is obtained via
the compare-assign phase in at most n iterations (including
the initialization), and (re)planning is performed by the agents
using a single-agent planner, considering the tentative trajec-
tories of the others fixed, and without sharing with them their
tracking capabilities and adopted cost criterion. In the proposed
implementation, each agent uses a dynamic Rapidly exploring
Random Tree star (RRT?) planner that integrates a new prune
and graft feature to avoid rebuilding a new tree from its
root each time replanning is needed. The resulting Multi-RRT?

algorithm is tested in 2D scenarios and shows promising results.

I. INTRODUCTION

Trajectory planning in a multi-agent system consists in
designing the trajectories of multiple agents that are moving
in the same region of the space, from their origin to their
destination positions, while minimizing some cost like, e.g.,
their travel time. Multi-agent trajectory planning problems
are encountered in robotics when coordinating a group of
robots or aerial vehicles sharing the same environment (see
e.g., [1], [2], [3]), and also in transportation infrastructures
like air transportation [4], [5], at different time scales (short,
mid and long-term). Besides avoiding obstacles, the agents
have typically to maintain a minimum safety distance from
each other, so as to avoid conflicts. This makes the trajec-
tory planning problem coupled, and calls for a cooperative
solution involving all the agents.

In this work, we introduce a decentralized iterative so-
lution that distributes the computational load between all
agents, preserves privacy of their local information related,
e.g., to their tracking capabilities, requires a limited amount
of information broadcasting, and implements a fairness cri-
terion. Initially, every agent neglects the others and plans
its optimal trajectory. All planned trajectories are broadcast,
and each agent that is involved in a conflict replans its
own trajectory separately, treating other agents as moving
obstacles. To this purpose, agents adopt a dynamic version of
the Rapidly exploring Random Tree star (RRT?) planner [6],
[7], which is enhanced here with a prune and graft feature
to avoid the time consuming operation of rebuilding the tree
from its root at each iteration, similarly to the approach in [8]

The authors are with Politecnico di Milano, Piazza Leonardo da Vinci
32 – 20133 Milano, Italy paolo.verbari@mail.polimi.it,
{luca.bascetta, maria.prandini}@polimi.it

where dynamic RRT is proposed. Performance degradation
of all the replanning agents is broadcast, and the agent with
minimal performance degradation has to adopt its replanned
trajectory and broadcast it to the others. In the following
iteration, agents that are involved in a conflict replan their
own trajectory, broadcast their performance degradation, and
so on. This replan-compare-assign scheme is repeated till all
trajectories are conflict-free.

Multi-agent (MA) versions of RRT? have been proposed
in the literature, e.g., in [9], [10]. However, multi-agent plan-
ning is performed centrally, which requires all information
on the agents actuation capabilities, origin and destination, to
be available to a single central unit that solves the planning
problem for all agents. Privacy and computational issues
may arise. In particular, the MA-RRT? algorithm introduced
in [9] searches for a conflict-free multi-agent trajectory
directly in the joint state-space of all the agents, whose
dimension grows linearly with the number of agents (the
sample space size grows exponentially!). On the contrary,
in our algorithm, RRT? is run by each agent, based on the
knowledge of its own actuation capabilities, on a state space
whose dimension does not depend on the number n of agents
involved. This comes at the price of repeatedly solving a
planning problem till convergence. The number of iterations
for conflict resolution is upper bounded by n−1 so that an
agent might have to run RRT? n times in the worst case,
including the initialization. However, each single instance of
RRT? is computationally much less intensive.
In [10], agents are sorted according to an a-priori agreed
priority criterion, and trajectories are planned in sequence by
the central unit via a variant of the RRT? algorithm, starting
from the trajectory of the highest priority agent and moving
to the lowest-priority one, each time treating the trajectories
that have already been designed as obstacles to avoid.
Decentralized versions of multi-agent prioritized planning
have been introduced where each robot computes its own
trajectory through either synchronous [11] or asynchronous
[12] iterations. The ordering must still be agreed a-priori.
In [13] a variant of the standard decoupled approach to multi-
robot motion planning [14] is proposed, where a central
unit first computes a trajectory for each agent neglecting the
others and then coordinates the motion of the agents to avoid
collisions. In order to reduce the dimension of the configura-
tion space on which planning is performed, [15] decouples a
multi-agent path planning problem into subproblems whose
solutions can be determined sequentially. In a similar vein,
[16] adopts dynamic subdimensional expansion in proba-
bilistic planners by initially planning in the configuration



space of each agent, separately, and coupling the spaces of
multiple agents only when they get close with one another. A
parallelization scheme for sampling-based motion planning
algorithms including RRT? is proposed in [17] to speed them
up. A hybrid control architecture integrating parallel problem
solving is adopted in the decentralized approach in [18].

Admittedly, our approach presents many features in com-
mon with previous works. However, these features have been
demonstrated separately in the literature and our goal here is
to fully exploit and integrate them so as to obtain a computa-
tionally efficient, scalable solution that preserves privacy by
combining a decentralized negotiation scheme with single-
agent dynamic RRT? in the Multi-RRT? algorithm.

The rest of the paper is organized as follows. In Section
II, we present the multi-agent trajectory planning problem,
which is reduced to multiple single-agent trajectory planning
problems in the decentralized scheme proposed in Section
III. The Multi-RRT? algorithm is formulated in Section
IVand its performance is shown in Section V with reference
to 2D scenarios. Finally, some concluding remarks are drawn
in Section VI.

II. PROBLEM FORMULATION

We consider an n-agent system where each agent i is
moving in some region P from an origin ps,i ∈ P to a des-
tination position pe,i 6= ps,i ∈ P. Fixed obstacles are possibly
present in P and are represented as an open subset Pobs ⊂ P.
Consequently, the free space is defined as Pf ree := P \Pobs.
All origins and destinations are assumed to belong to Pf ree.

Each agent dynamics is described via a differential equa-
tion of the form

q̇i(t) = fi (qi(t),ui(t)) , qi(0) = q0,i, (1)

where fi is continuously differentiable as a function of both
arguments, qi ∈ Qi ⊆ Rd and ui ∈Ui ⊆ Rm are the state and
control input of agent i, respectively, and q0,i is the initial
state. State qi includes the position pi, and pi(0) = ps,i.

An obstacle-free trajectory zi of agent i is defined as
the tuple zi = (qi(·),ui(·),τi), where τi is the duration of
the trajectory, and qi(·) : [0,τi]→ Qi and ui(·) : [0,τi]→Ui
represent the state and control input evolution, satisfying
the differential constraint (1) for t ∈ [0,τi], qi(0) = q0,i,
pi(τi) = pe,i, and pi(t) ∈ Pf ree, t ∈ [0,τi].

Trajectory zi =(qi(·),ui(·),τi) of agent i is rated according
to some cost criterion Ji(zi), which is non-zero for all
trajectories joining two different positions. For instance,

Ji(zi) =
∫

τi

0
gi (qi(t),ui(t)) dt, (2)

where gi : Qi×Ui → R≥0 is an instantaneous cost function
weighting time and/or control effort. If gi(·, ·) = 1, then,
agent i is minimizing the time to reach its destination.

Trajectory zi is said to be conflict-free if it is obstacle-free
and also keeps agent i at a safety distance dS > 0 from all the
other agents, i.e., ‖pi(t)−p j(t)‖> dS, t ∈ [0,τ], j = 1, . . . ,n,

i 6= j and τ = min(τi,τ j)
1. The safety distance condition

makes the problem coupled and calls for determining a
joint trajectory Z = {z1, . . . ,zn} that is conflict-free and
satisfactory in terms of cost for all the n agents.

Our goal is to provide a decentralized cooperative solu-
tion that distributes the computational workload between all
agents, requires a reduced amount of information exchange
and a reduced number of iterations, preserves privacy on the
agents capabilities, and is fair and acceptable by all agents.

We look for a solution where throughout iterations each
agent just needs to use a planner for the design of a trajectory
that avoids obstacles which are either fixed or possibly time-
varying (this is the case if obstacles represent the other
agents) but according to a known trajectory. In the sequel,
we shall refer to this planner as a single-agent planner

III. DECENTRALIZED COOPERATIVE RESOLUTION

We suppose that all agents are willing to cooperate so as
to plan a joint conflict-free trajectory Z = {z1, . . . ,zn}, that
brings all of them from their origin to their destination while
avoiding an excessive deterioration of their cost Ji(zi) in (2),
i = 1, . . . ,n, with respect to the cost that they would achieve
by disregarding the safety separation constraint.

The proposed decentralized cooperative resolution scheme
is iterative and starts with an initialization step, where every
agent neglects the presence of all the other agents and
computes an optimal obstacle-free trajectory z?i with its
onboard single-agent planner. In the following, we shall refer
to the cost associated with the computed z?i as J?i = Ji(z?i ).
This represents the best performance that agent i can achieve.
The trajectory z?i is broadcast to all agents so that they can
check for possible conflicts. If a conflict is detected, then,
the iterative conflict resolution process starts.

In the first iteration, agents that are involved in a conflict
replan their own trajectory separately, designing a conflict-
free optimal trajectory through their single-agent planner
with all the other agents modelled as time varying obsta-
cles that are moving according to the trajectory that they
broadcast. Each one of these agents then broadcasts the de-
terioration of performance associated with its new trajectory.
The agent with minimal performance degradation is assigned
the task of contributing to conflict resolution by updating its
trajectory and replacing it with the newly planned one. Its
new conflict-free trajectory is broadcast to the other agents.
In all the following steps of the decentralized resolution
scheme, the agent is treated as a moving obstacle and its
trajectory is not further modified.
This replan-compare-assign scheme is repeated through it-
erations till all trajectories are conflict-free. After at most
n− 1 iterations we obtain a conflict-free joint trajectory. In
the worst case, an agent has to compute its trajectory n times,
including the initialization phase.

Performance deterioration of agent i at iteration k is
evaluated in percentage with respect to its minimum cost

1Agents contribute to the safety requirement up to the time they reach
their destination. This allows to account for agents with the same destination,
like aircraft landing at the same airport.



as follows:

D(k)
i =

Ji(z
(k)
i )− J?i
J?i

·100, (3)

where z(k)i denotes the trajectory computed by agent i at
iteration k. This allows to account for the fact that costs are
different possibly due to a larger distance to travel, limited
actuation capabilities, etc. Also it allows for different cost
criteria to be adopted by different agents.

The proposed algorithm has the following key features:
• agents do not share private information regarding their

actuation capabilities coded through the input set Ui,
i = 1, . . . ,n, and their cost function Ji;

• each agent has to be able to perform only trajectory
planning with obstacle avoidance, since multi-agent
coordination is achieved via the compare-assign pro-
cedure based on the performance degradation indices.
Any obstacle-free trajectory planner which accounts for
optimality can be adopted, possibly also different ones
among agents with different computation capabilities;

• except for the initialization step, at the following it-
erations agents broadcast only a scalar quantity (their
performance degradation), and just the agent with the
lowest performance degradation has to transmit its re-
planned trajectory;

• the algorithm ends in a finite number of iterations, which
is upper bounded by n−1, since at every iteration the
number of agents that are possibly involved in a conflict
decreases by at least 1, and it is initially at most n.

Note that the proposed approach is effective if indeed each
agent can compute a conflict-free trajectory without requiring
the other agents to change their own trajectory. This is the
case for ground robots that can stop and then restart. As
for aerial robots, stop-and-restart solutions are not feasible,
but solutions where they take some detour and then continue
towards their destination could be implemented.

The implemented priority ordering method is aiming at
imposing some degree of fairness in the solution, while re-
ducing the impact of conflict resolution on the overall multi-
agent system performance. As a matter of fact, the choice
of which agent should be in charge of conflict resolution is
made sorting them based on performance, instead of using
an a-priori defined order. The resulting multi-agent joint
trajectory is not guaranteed to be Pareto optimal. However,
this is the price to pay for the simplicity of the scheme.

Agents have to agree on the coding of the trajectory
information to be broadcast. Since trajectory information is
used for checking the safety distance and for characterizing
moving obstacles to be avoided, each trajectory can be coded
as a list of timed waypoints in the pi component of the
state qi. This list is transmitted and is then interpolated
by each agent with linear segments travelled at constant
speed to derive the moving obstacle description that is
fed into its own single-agent planner. If the time distance
between consecutive waypoints is sufficiently small, then, the
resulting piecewise linear trajectory is an accurate estimate of

the actual trajectory. The safety distance could be eventually
slightly increased when modelling the agent as a moving
obstacle to account for the introduced estimation error.

IV. MULTI-RRT?

In this section, we present the Multi-RRT? implementation
of the proposed decentralized cooperative resolution scheme.
Like in the multi-agent trajectory planner [10], the Rapidly
exploring Random Tree star (RRT?) algorithm is used as
a single-agent planner for the agents to recompute at each
iteration their trajectory while accounting for other agents
as moving obstacles. However, here the designed conflict-
free joint trajectory is the result of a single-agent replanning
that is performed according to an order that is not a-
priori agreed, but is defined through iterations based on
performance deterioration so as to enforce fairness in the
obtained solution.

RRT? belongs to the family of sampling-based planners
that were introduced to handle systems with high dimen-
sional state spaces [6], [7], and originates from RRT. In RRT,
a roadmap in the form of a tree of feasible trajectories is
built by starting from the initial state as root of the tree and
then sequentially sampling a state (node) at random in the
obstacle-free state space, and connecting it to a neighbouring
node in the tree with a trajectory (edge) that is optimal
according to the chosen cost criterion and compatible with
the agent’s constraints, till a neighbour of the destination
position is reached. A collision check module allows to
determine the feasibility of a tentative trajectory with respect
to the obstacle-free requirement.
RRT satisfies the probabilistic completeness property, i.e.,
it returns a feasible solution with a probability converging
to one as the number of samples grows to infinity, if such
a solution exists, but does not provide any performance
guarantee because nodes are not necessarily connected to the
tree optimally. This requires to possibly rewire the tree every
time a new node is sampled by testing connections with pre-
existing nodes that are in a suitably defined neighborhood.
This is the additional key feature introduced in RRT?, which
is in fact asymptotically optimal, i.e., the probability of
finding an optimal solution, if there exists one, converges to
1 as the tree cardinality grows to infinity, [6]. Evidently, the
computational complexity of RRT? increases as the number
of nodes in the tree grows. If the number of nodes is
lower, a lower performing solution is found. One can set
the number of nodes as a compromise between performance
and computing time.

In the proposed Multi-RRT? algorithm, at every iteration
all the agents that are involved in a collision (either with a
fix or a moving obstacle representing an agent) have to run
RRT?, which can be computationally intensive especially if
a large number of nodes is used. In order to alleviate the
computational load caused by multiple runs of RRT?, we
propose a solution where each agent builds the complete
tree only once, at the initialization step, and, then, at each
of the following iterations, it uses the tree computed at the
previous iteration and applies a prune and graft procedure.



Fig. 1. Example of a tree avoiding a fixed rectangular obstacle (left plot): branches that are travelled within the time intervals [0, 15], (15, 30], (30, 45],
are coloured in blue, green, red, respectively, and those travelled at a time larger than 45 are coloured in black. Time is measured in minutes, space in
kilometres. The middle plot represents the tree pruned from branches where a conflict occurs with a moving obstacle (thick line). The pruned tree is then
grafted with collision-free edges as shown in the right plot.

This has the positive effect of saving time, memory, and
avoiding repeating the same computations. More precisely,
when an agent detects a collision with an obstacle, it prunes
its own tree removing the branches that are involved in the
collision and then starts regrowing the tree by grafting it
with new edges. This is shown pictorially in Figure 1. In the
left plot we can see a tree that is built to avoid the fixed
rectangular obstacle with edges travelled in the same time
slot coded with the same color. When a moving obstacle
representing an agent is added, those branches where the
two agents are closer than the safety distance are pruned, as
shown in the center plot. The pruned tree is then regrown
with collision-free edges as shown in the right plot.

Note that agents run RRT? also at the initialization stage,
so as to perform avoidance of the fix obstacle and build the
tree that will then be pruned and grafted if needed to avoid
the other agents.

V. NUMERICAL EXAMPLES
In this section, we report some simulation results to the

purpose of showing the performance of Multi-RRT?. Two
configurations referring to a 2-dimensional region will be
presented, one with 3 agents and the other one with 5 agents.
In both examples, we consider as cost function for all agents
the time to reach their destination.

For simplicity, in our simulations we assume that each
agent is travelling at constant speed and simplify its dynamic
by considering as steering function for building the RRT?

tree a simple function that connects two consecutive points
through a line segment and avoids too sharp turning between
consecutive segments. This approximation is useful to get
a fast execution of the RRT? planner, that is fundamen-
tal within Multi-RRT?, since RRT? is run multiple times.
To make the piecewise linear planned trajectories joining
consecutive points smoother, one can adopt a cubic spline
interpolation of those points, and account for the introduced
error by incrementing the fixed obstacle size and the safety
distance of some small amount. More complex steering func-
tions accounting for more complex dynamics and constraints
(see, e.g., [19] and [20]) could be implemented without
modifying the decentralized cooperative scheme, due to the
modular structure of Multi-RRT?.

In our examples, we further assume that all agents can
broadcast and receive information without transmission er-
rors. Each agent will communicate to the others the ideal
trajectory that it would like to follow, its performance degra-
dation index (3) in case its ideal trajectory is not conflict-free,
and finally, if its performance degradation is found out to be
the lowest, its replanned trajectory.

Three-agent system example

Fig. 2. 3-agent system: configuration – fixed rectangular obstacle in the
middle, origin (x) and destination (?) of agent 1 (green), agent 2 (blue), and
agent 3 (magenta).

The considered configuration involves 3 agents and is
reported in Figure 2, where each agent is assigned a color:
agent 1 is green, agent 2 is blue, and agent 3 is magenta.
The starting positions are marked with an “x” sign, and
the destination positions are marked with a “?” sign. The
rectangular shape in the center of the figure is a fixed obstacle
that must be avoided.

The cardinality of the tree in the RRT? planner adopted by
each agent is 11000. New samples are extracted according
to the uniform distribution in a square region of size 500
kilometers. The speed of each agent, assumed to be constant,
is 15.216 km/min. The maximum steering angle of all the
agents is π/4. The initial heading angle of both agent 1 and
agent 2 is set equal to π/2, while that of agent 3 is set equal
to −π/2. The safety distance dS is set equal to 10 kilometres.

We next describe the evolution of the Multi-RRT? algo-
rithm throughout its iterations. We report the outcome of a
representative run.
At the initialization step, each single agent computes its
own ideal obstacle-free trajectory neglecting other agents



Fig. 3. 3-agent system: initialization (left plot): initially planned obstacle-free trajectories of the 3 agents computed neglecting the others (green for agent
1, blue for agent 2, and magenta for agent 3; first iteration (middle plot) – newly planned trajectories of the 3 agents (green for agent 1, blue for agent 2,
and magenta for agent 3); second iteration (right plot) – newly planned trajectory of agent 1 (green) and agent 3 (magenta), and final trajectory of agent
2 (black).

(see the left plot of Figure 3), broadcasts it, and checks for
possible conflicts with the trajectories received from the other
2 agents.
In this example, each agent predicts some conflict and then,
at the first iteration of Multi-RRT?, replans its trajectory so
as to avoid those received from the other 2 agents. The
replanned tentative trajectories are reported in the middle
plot of Figure 3. Given that agent 2 turns out to be the one
with lowest performance degradation, its replanned tentative
trajectory becomes its actual trajectory, and at the second
iteration agents 1 and 3 provide new tentative trajectories as
reported in the right plot of Figure 3, where the trajectory of
agent 2 is plotted in black since it is its final one. Now it is
agent 1 with the lowest performance degradation with respect
to agent 3. Its tentative trajectory becomes its actual final one.
Agent 3 can maintain its obstacle-free trajectory planned at
the initialization stage and its performance degradation is
then zero.

Table I reports the value in percentage of the performance
degradation (see (3)) with respect to the optimal costs J?i , i=
1,2,3, computed separately by each agent and shared with
the others since a conflict is detected. At the first iteration
all agents are involved in the conflict resolution process,
and agent 2 has the lowest performance degradation with
a cost increase of 0.32% with respect to J?2 . At the following
iteration, performance degradation is not computed for agent
2 since its trajectory is set to be the one computed at iteration
1. At iteration 2, the lowest performance degradation is that
of agent 1, which amounts to about 15% of J?1 , and agent
1 has then to follow its tentative trajectory computed at
iteration 2.

TABLE I
3-AGENTS: PERFORMANCE DEGRADATION IN A RUN OF MULTI-RRT? .

iteration 1 2
agent 1 14.79 15.52
agent 2 0.32 –
agent 3 39.84 39.63

Figure 4 represents the distances between agent pairs as a
function of time. In black the distance between agents 3 and
1, in green the distance between agents 2 and 3, and in blue
the distance between agents 1 and 2. The horizontal red line

represents the safety limit.

Fig. 4. 3-agent system: distance between the first and the third agent
(black), the first and the second agent (blue), and the second and the third
agent (green). The red line defines the safety distance.

Five-agent system example

The considered 5-agent system configuration is reported
in Figure 5, together with the optimal trajectories computed
by each agent neglecting the others in a representative Multi-
RRT? run. Agent 1 is coded with green color, agent 2 with
yellow, agent 3 with magenta, agent 4 with blue, and agent
5 with black. The starting positions are marked with an “x”
sign, and the destination positions are marked with a “?”
sign. There is no fixed obstacle in this example.

Fig. 5. 5-agent system: origins (x), destinations (?), and optimal trajectories
computed neglecting the other agents by agent 1 (green), agent 2 (yellow),
agent 3 (magenta), agent 4 (blue), and agent 5 (black).

The cardinality of the tree in the RRT? planner adopted by
each agent is 20000. New samples are extracted according



to the uniform distribution in a square region of size 500
kilometers. The (constant) speed of each agent is 15.216
km/min, the maximum steering angle of all the agents is π/4,
and the safety distance is 10 kilometres, as in the previous
example. The initial heading angle of agents 1, 3, and 4 is
set equal to 0, and that of agents 2 and 5 is set equal to π .

Table II reports the performance degradation index (3)
computed in percentage with respect to the values for the
optimal costs J?i , i = 1, . . . ,5, determined separately at the
initialization step by agents 1, . . . ,5 using RRT?. Finally,
Figure 6 plots the joint conflict-free trajectories computed
by Multi-RRT?.

TABLE II
5-AGENTS: PERFORMANCE DEGRADATION IN A RUN OF MULTI-RRT? .

iteration 1 2 3 4
agent 1 29.98 25.52 37.31 16.80
agent 2 22.69 19.38 – –
agent 3 28.88 25.70 23.44 –
agent 4 48.07 23.90 41.31 32.37
agent 5 10.83 – – –

Fig. 6. 5-agent system: final set of conflict-free trajectories of agent 1
(green), agent 2 (yellow), agent 3 (magenta), agent 4 (blue), agent 5 (black).

VI. CONCLUSIONS
This paper addressed the problem of trajectory planning

for multiple agents moving in the same region with ob-
stacles. A cooperative decentralized scheme is proposed,
where agents exchange information on their planned optimal
obstacle-free trajectories, which are then possibly modified
if the safety distance constraint is not satisfied through a
suitable designed iterative resolution scheme. Convergence
to a joint obstacle-free and safe trajectory is achieved in a
finite number of iterations.

Trajectory planning for each single agent can be performed
via a single-agent planner like the RRT? algorithm, which is
able to account for optimality and constraints, and that can
be implemented with an ad-hoc prune and graft procedure
to avoid rebuilding the tree of feasible trajectories from
its root every time a replanning is needed. The resulting
Multi-RRT? algorithm has been tested in 2D scenarios,
adopting a simplified implementation where kinematic and
dynamic constraints are neglected and edges joining nodes
are assumed to be linear trajectories travelled at constant
speed.

Future work includes the implementation of Multi-RRT?

in a 3D environment, using a more accurate steering function.
Also, the approach could be extended to large scale multi-
agent systems by appropriately clustering agents in non-
interfering groups, each group running separately the pro-
posed decentralized trajectory planning scheme so as to limit
the communication broadcasting and number of iterations.
This requires further investigations.

REFERENCES

[1] J. Yu and S. LaValle, “Optimal multi-robot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[2] J. Snape, S. Guy, J. Van Den Berg, and D. Manocha, “Smooth
coordination and navigation for multiple differential-drive robots,” in
Experimental Robotics, ser. Springer Tracts in Advanced Robotics,
O. Khatib, V. Kumar, and G. Sukhatme, Eds. Springer Berlin, 2014,
vol. 79, pp. 601–613.

[3] J. Van Den Berg and M. Overmars, “Prioritized motion planning for
multiple robots,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2005, pp. 430–435.

[4] J. K. Kuchar and L. C. Yang, “A review of conflict detection and
resolution modeling methods,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 1, no. 4, pp. 179–189, 2000.

[5] J. Tang, “Review: Analysis and improvement of traffic alert and
collision avoidance system,” IEEE Access, vol. 5, pp. 21 419–21 429,
2017.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[7] ——, “Optimal kinodynamic motion planning using incremental
sampling-based methods,” in IEEE Conference on Decision and Con-
trol, 2010, pp. 7681–7687.

[8] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
IEEE International Conference on Robotics and Automation, 2006,
pp. 1243–1248.

[9] M. Čáp, P. Novák, J. Vokřı́nek, and M. Pěchouček, “Multi-agent
RRT*: Sampling-based cooperative pathfinding,” in 12th International
Conference on Autonomous Agents and Multiagent Systems, 2013, pp.
1263–1264.

[10] M. Ragaglia, M. Prandini, and L. Bascetta, “Multi-agent Poli-RRT*,”
in Modelling and Simulation for Autonomous Systems, ser. Lecture
Notes in Computer Science, 2016.

[11] P. Velagapudi, K. Sycara, and P. Scerri, “Decentralized prioritized
planning in large multirobot teams,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2010, pp. 4603–4609.

[12] M. Čáp, P. Novák, M. Selecky, J. Faigl, and J. Vokřı́nek, “Asyn-
chronous decentralized prioritized planning for coordination in multi-
robot system,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 3822–3829.

[13] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006, pp. 5960–5963.

[14] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[15] J. Van Den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” Robotics, vol. 5, pp. 137–144, 2010.

[16] G. Wagner, M. Kang, and H. Choset, “Probabilistic path planning for
multiple robots with subdimensional expansion,” in IEEE International
Conference on Robotics and Automation, 2012, pp. 2886–2892.

[17] M. Otte and N. Correll, “C-FOREST: Parallel shortest path planning
with superlinear speedup,” IEEE Transactions on Robotics, vol. 29,
no. 3, pp. 798–806, 2013.

[18] K. Azarm and G. Schmidt, “Conflict-free motion of multiple mobile
robots based on decentralized motion planning and negotiation,” in
International Conference on Robotics and Automation, vol. 4, 1997,
pp. 3526–3533.

[19] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[20] M. Ragaglia, M. Prandini, and L. Bascetta, “Poli-RRT*: Optimal
RRT-based planning for constrained and feedback linearisable vehicle
dynamics,” in European Control Conference, 2015, pp. 2521–2526.


