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• Context: Autonomous Energy Systems
• Reinforcement Learning (RL): an AI control strategy 

o Control of nonlinear systems over multi-step time horizons learned by 
experience, 

o Not computed online by optimization. 
• Alternating Direction Method of Multipliers (ADMM): a distributed 

control meta-algorithm
o dual decomposition (enables decoupled, parallel, distributed solution) 
o method of multipliers (enables convexification/stability/convergence). 
o Iterates among subproblems.

• ADMM-RL combines ADMM and RL
o Integrates learned controllers as subsystems in distributed control. 
o replaces subproblems in ADMM with RL. 

• Benefits
o (RL alone) Enables “over-time” control of nonlinear systems
o Resulting pretrained sub-solver speeds up deployed distributed controller. 

• We illustration ADMM-RL in
o distributed wind farm yaw control, and 
o distributed grid-aware demand aggregation for water heaters.

Distributed Reinforcement Learning with ADMM-RL



3

• Energy systems rapidly becoming too complex to 
control optimally via real-time optimization.

• Reinforcement learning has potential to bypass 
online optimization and enable control of highly 
nonlinear stochastic systems.

• ADMM-RL extends RL to distributed control 
context. 

• RL as an additional strategy within distributed 
control is a very interesting concept (e.g., top-down 
vs bottom-up; what is autonomy?)

Main points
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Key Features of AES

• Autonomous – Makes decisions 
without operators

• Resilient – Self-reconfiguring, 
cellular building blocks, able to 
operate with and without 
communications

• Secure – Incorporates cyber and 
physical security against threats

• Reliable and Affordable - Self 
optimizes for both economics and 
reliability

• Flexible – Able to accommodate 
energy in all forms including 
variable renewables

Background: Autonomous Energy Systems
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Challenges of the Future Grid
• Going from hundreds to millions of controllable assets (both large-scale central 

station control and individual microgrid control has been accomplished – but we have not 
accomplished fully linking from large to small scales)

• Increasing data and information from sensors
• Unable to use current optimization techniques because of computational 

intractability
• More interdependencies with communications and other energy domains 

(heat/cooling, gas, water, transportation)

Beyond central-station based grid

Microgrids

Nested, cellular 
control areas

Courtesy Ben Kroposki
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Wind Plant Controls
to AES

Buildings to AES

Vehicle to AES

Autonomous Energy Systems
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 Equivalent in idea to autonomous vehicles, “Autonomous Energy Grids” do not 
require operators and make independent decisions. They can self-reconfigure and 
optimize themselves for reliability and economic performance while integrating 
energy in all forms 

 Need to advance foundational science:
 Smart Device/ Power Electronics
 Cybersecurity
 Non-linear Control Theory
 Optimization Theory
 Complex System Theory
 Big Data Analytics

OptimizationNonlinear Control

Big-data Analytics  Complex  Systems 

+

Smart Grid 
Devices

Cyber Security

Research Needs in Autonomous Energy Systems

Need to develop new mathematical 
formulations and a common analytical 
framework for modeling, optimization, 

and control of complex systems at 
multiple spatial and temporal scales

Storage

Wind

Solar

Buildings

EVs
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AES Priority Research Directions
Big Data Analytics
• Develop ways to use heterogeneous grid data (addressing access 

and privacy) to better conduct ensemble forecasting of grid states 
and enable automated and distributed decision making from 
machine learning techniques. 

Optimization Theory
• Develop computationally-affordable, stable, and provably optimal 

algorithms that can be implemented in real-time and distributed 
fashions.

Controls Theory
• Develop scalable, real-time, decentralized and distributed controls 

that take into account inherently asynchronous operations as a 
result of communications delays, losses, and distributed 
(asynchronous) control actions. 

Complex Systems Theory
• Develop modeling and simulation methods that address 

integration and interdependencies of many different energy and 
communications systems at various temporal and spatial scales. 

7
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• Coordination of devices is needed in order to enable high 
penetration of renewables economically.

• Enabling grid operation is not the primary function of many 
systems
o Building equipment (e.g. water heaters), electric vehicles, wind turbines, 

solar inverters, batteries,… all have their own goals.
• The systems are complicated

o Nonlinearity, model uncertainty, stochasticity, nonconvexity, time-
dependence

o Whole system control requires solution of large online optimization of 
approximated problems.

• AI aims for controllers that
o learn from experience to operate in complex environments,
o adapt to stochastic input and uncertain feedback,
o avoid online optimization,
o react rather than think.

• Our current emphasis is on scalable integration of AI and 
traditional methods.

Motivation/Perspective for AI in AES
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Test domain 1: wind farm yaw control

Downwind turbines 
generate less energy

Goal: yaw the turbines to 
optimally steer the wakes

State of the art is NREL tool FLORIS: 
• Nonlinear  physics simulation
• Steady state optimization Our model problem is over time:
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Test domain 2: grid aware water heater control

https://smartenit.com/portfolio-items/iot_water_heater/

Water heaters can be used as energy storage, 
especially if coordinated on large scale

Demand response devices: 
selfish (autonomous) objectives 

Cold shower penalty + energy cost

cooperative (connected) objectives
Power overuse penalty

= set point of water heater i.

Linear physics

“Competing” solvers:
• Mixed Integer Non Linear Program
• Model Predictive Control

As above, goal is optimal behavior over time   
horizon:
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RL allows for evolving correct actions based on 
experience: learning by doing.

Applications (press & papers): 
o Games--Alpha Go, Atari
o Robotics
o Web System Configuration
o Chemistry
o Personalized Recommendations
o Bidding and Advertising
o Resources management in computer clusters
o Traffic Light Control
o Self Driving Cars
o Power Systems
o …

AI for sequential decisions: Reinforcement Learning (RL)
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Introduction to Reinforcement Learning—traditional approach

Bellman’s Principle of Optimality: 
``An optimal policy has the property that 
whatever the initial state and initial 
decision are, the remaining decisions 
must constitute an optimal policy with 
regard to the state resulting from the first 
decision." (See Bellman, 1957, Chap. III.3.

States s
Action x
Reward [cost] r(s)   [c(s)]
Transition s’=T(s,x), or P(s’|s,x)
Discount factor     γ
Policy     π
Value Function V(s)
Q-Function Q(s,a)

TD learning:

“DQN”: (sort of supervised) train neural network so that
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RL with linear policy and “random search”

Here we will use a MUCH simpler approach to RL

RL is “just” global optimization: minimize 

Augmented Random Search (ARS):
“Simple random search provides a competitive approach to 
reinforcement learning” (https://arxiv.org/pdf/1803.07055.pdf)
B. Recht et al, UC Berkeley

~Algorithm computes finite difference directional derivatives in 
random directions and follows the most promising. ~

LINEAR  policy. Action is a linear function of state

No Bellman equation, just optimize ”episode” cost

https://arxiv.org/pdf/1803.07055.pdf
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Introduction to ADMM

Alternating Direction Method of Multipliers (ADMM) solves problems of the form:

Boyd et al, “Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”

Of particular interest for us is when f(x) is additive:

Origins:
Dual Decomposition    – parallelism for constrained additive objectives
Method of Multipliers – improved convergence via smooth (quadratic) penalty

The method: Write “augmented Lagrangian”

Solve iteratively:
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Structure of ADMM and ADMM-RL

Sub-system 1 update
Sub-system 2 update

Sub-system N update

Shared 
variable
update

Lagrange 
multiplier 
update

Common framework for both optimization and learning based 
distributed controllers:
• ADMM: Subsystem updates are explicit optimization.
• ADMM-RL training: Subsystems updates are some number of RL 

training iterations.
• ADMM-RL operating: Subsystem updates fill in optimal control 

action from learned RL controller.
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ADMM “consensus”, e.g., distributed wind farm control

To  apply ADMM, we imagine N copies of x and introduce auxiliary variable z, at which 
point the problem can be written

Seemingly over-complex restatement of the problem, but: 
• replace  single large optimization problem with N smaller ones, 
• and these can each be solved in parallel. 
The price we pay is that now we have to iterate the process to self-consistency (``global 
consensus"); but this is frequently a worthwhile tradeoff. 

We employ this “consensus” formulation for distributed wind farm yaw control.

The consensus formulation: 
applicable to any objective 
function that can be written in 
the form
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ADMM for wind farm for yaw control

(Following Boyd, section 7.1, after employing several straightforward 
simplifications), wind turbine yaw control global consensus problem is 

Here, y is a Lagrange multiplier that enforces the global consensus, 
and ρ is the Lagrangian penalty parameter.
Overbars indicate averages over all the wind turbines
No “g” term.

Wind farm yaw control problem is a consensus problem:
• Partitioning set of turbines into disjoint groups. Intuition -- depending on wind 

direction, there is a natural partitioning into groups of turbines whose wakes 
affect each other strongly, with less strong wake interaction between groups. 

• There remains non-zero interaction between groups.  The problem is not 
completely decoupled.  Solve with ADMM by solving for each group 
independently, and iterating to self-consistency:
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ADMM “sharing”, e.g. grid-award demand response aggregation

The ``sharing" problem:
• x can be partitioned into sub-vectors x_i
• function f is a sum of terms f_i that only depend on x_i, 
• overall objective contains an additional term g  that is a function of ALL the component of 

x_i.  That is, if we have

where the x_i make up a partition of x,

we can ``implement" this in ADMM as

which allows for decoupling of the x_i minimization problems.  

water heater example: ADMM updates of each iteration will involve 
• minimization over x_i for each water heater separately and thus easily parallelizable—this 

stage optimizes each water heater for comfort and cost, 
• a single minimization over z—this stage ensures we don’t use more power than is globally 

available.
• and a final update of the Lagrange multiplier that links x and z.  
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ADMM for water heater demand response aggregation

In scaled form, and having employed simplifications (as describe in BoydADMM, section 7.3), 
the ADMM algorithm is

where u is the scaled Lagrange multiplier, ρ is the augmented Lagrangian parameter, and N is 
the number of water heaters.  

Here we have used the fact that the collective power overuse function g, above, is actually a
function of the average x_i,  thus (assuming the condition x=z is met),

The symbol xk
I is the vector whose components are the decisions at each time step.



20

• For scalability and autonomy of AES, distributed control 
is key.

• We have developed a new mathematical technique that 
combines two powerful methods: Alternating Direction 
Method of Multipliers (ADMM), and Reinforcement 
Learning (RL). 

• It has the potential benefit of 1) enabling the 
construction of distributed controllers in the most 
complex cases; 2) increasing the efficacy of the deployed 
distributed devices by orders of magnitude.

• We have preliminary demonstrations of these benefits
in 1) distributed wind farm yaw control, 2) demand 
response aggregation of a standard water heater model.

ADMM-RL
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• Running several steps of learning (e.g., ARS) to 
improve the policy is like approximately solving the 
ADMM subproblem. 

• So let us replace one of the subproblems with some 
number of ARS iterations. 

• An attractive combination:
o employ learning myopically in the targeted context of each 

subsystem on its own, and 
o employ formally convergent ADMM updates to achieve 

global convergence. 

ADMM-RL Concepts
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ADMM-RL steps

Consensus (e.g. wind farm)

Sharing (e.g. water heater)
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Wind farm 1: central RL and “tricking” FLORIS

RL inherently plans over time.  Much harder to do with 
explicit optimization when the model is nonlinear

A random 5 turbine configuration and its learning curve

Tricking Floris
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Wind farm 2: Distributed yaw control with ADMM-RL

Floris unconstrained (81.6 Mw) (not realistic, but upper bound)

Floris constrained (79.0) RL-central (78.7) ADMM-RL (77.5)
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Demand response aggregation—a “sharing” problem

Water 
heater 1

Water 
heater 2

Water 
heater 3

Water 
heater 4

Objective: no 
cold showers

Aggregation
Objective: don’t use 
too much power

ADMM                           ADMM-RL training       ADMM-operation

Parallel speedup provided by ADMM
Agent level speedup provided by learned RL controllers

5x Speed up on mac, theoretical speedup is huge
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• Energy systems rapidly becoming too complex to 
control optimally via real-time optimization.

• Reinforcement learning has potential to bypass 
online optimization and enable control of highly 
nonlinear stochastic systems.

• ADMM-RL extends RL to distributed control 
context.

• Proof of concept demonstrated on wind farm yaw 
control and demand response aggregation.

Summary
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• Every day is not the same!  We have not addressed 
uncertainty and stochasticity

• What is the role of models? We should not just 
abandon what we already know.

• Tackling harder (sub-) problems with RL.
• More complex networks.
• Software infrastructure 

incorporating simulation, 
control, and learning.

Swept under the rug / next steps

Wind Plant Controls
to AES

Buildings to AES

Vehicle to AES
Thank you for having me!
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