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Design and Implementation of Ecological Adaptive Cruise Control for
Autonomous Driving with Communication to Traffic Lights

Sangjae Bae!, Yeojun Kim?, Jacopo Guanetti2, Francesco Borrelli?, and Scott Moura®

Abstract— This paper presents the design and implementa-
tion results of an ecological adaptive cruise controller (ECO-
ACC) which exploits driving automation and connectivity. The
controller avoids front collisions and traffic light violations,
and is designed to reduce the energy consumption of connected
automated vehicles by utilizing historical and real-time signal
phase and timing data of traffic lights that adapt to the current
traffic conditions. We propose an optimization-based generation
of a reference velocity, and a velocity-tracking model predictive
controller that avoids front collisions and violations. We present
an experimental setup encompassing the real vehicle and
controller in the loop, and an environment simulator in which
the traffic flow and the traffic light patterns are calibrated
on real-world data. We present and analyze simulation and
experimental results, finding a significant potential for energy
consumption reduction, even in the presence of traffic.

I. INTRODUCTION

Advanced Driving Assistance Systems (ADAS) represent
the first mass deployment of driving automation technolo-
gies to the mass market. Adaptive Cruise Control (ACC),
autonomous emergency braking, and lane keeping assistance
are examples of widely deployed functions in today’s cars.
These technologies are already included in vehicles with so-
called Level 2 automation [1].

Driver comfort and safety are the main goals and mo-
tivations behind ADAS. Current research in this area is
focused on cooperation [2], [3], personalization [4], and
vehicle performance [5]. The performance and safety gap
with human drivers can be further improved via connectivity
to other vehicles and to the infrastructure, which drastically
increases information available to the vehicle.

Longitudinal control has long been studied in the control
literature as a way to reduce energy consumption. Several
ACC designs have been proposed, which aim at preventing
energy-wasteful behaviors, such as unnecessary braking and
throttling based on the perception of the immediate surround-
ings [6], [7]. On a related front, finding the optimal speed
trajectory from an origin to a destination, given the road
topology, is a classical optimal control application that is
often labeled as “Eco-driving” [8]. In simplified settings,
one can find the optimal policy analytically (e.g. the “pulse
and glide” solution [8]). In reality, real roadways impose
complex constraints, notably stop signs and traffic lights,
which in general require numerical methods (see e.g. [8]—
[10]). In particular, the presence of signalized intersections
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along the path introduces non-convex constraints in the
optimization problem. On the other hand, “green waving”
through traffic lights pledges significant energy savings. A
more detailed survey of the state-of-the-art on this topic can
be found at Section 5.2 of [10]. Our recent work [11] focused
on the Eco-driving problem through signalized intersections
with uncertain effective red light duration. Since the corre-
sponding optimization problem is uncertain, the crossing of
intersections during green lights was formulated as a chance
constraint, to be satisfied with high probability. Then the op-
timization problem was parametrized using historical signal
phase and timing data, and solved by Dynamic Programming
(DP). Simulations showed potential fuel savings up to 40%,
compared to a modified intelligent driver model [12].

While there is an extensive literature on the potential
energy benefits of ADAS and Eco-driving, limited exper-
imental validation has been produced so far (mostly as
enhanced cruise control systems, see e.g. [8]). Since Eco-
driving problems often have a long time/space horizon, only
a portion of the obstacles can be considered in practice,
both to reduce the problem complexity and because the
actual obstacles may be unknown. Thorough experimental
validation is needed to evaluate the performance gap between
the ideal setting (e.g. the vehicle driving in free flow, and
no model mismatch, and the reference velocity is perfectly
tracked) and the real world. The integration of ADAS (short-
sighted, but aware of traffic and sudden phase changes) and
Eco-driving (long-sighted, but only aware of static or slowly
changing information) is expected to play an important role
in this sense, and needs to be carefully crafted. Another
challenge is that various aspects of road experiments are
not reproducible, most notably the surrounding traffic. To
this end, we recently presented a vehicle-in-the-loop setup
to test Connected and Automated Vehicles (CAVs) in real-
world traffic conditions [13].

The main contributions of this paper are two-fold. (i)
We first propose a control framework that systematically
balances energy consumption and travel time, for arterial
roads with signalized intersections. The framework includes
a robust Eco-driving control, which minimizes energy con-
sumption and incorporates effective red light duration uncer-
tainty, and an ACC that avoids frontal collisions and obeys
traffic signals. These two controls can conflict, and therefore
their integration is carefully examined. (ii) We then present a
novel hardware and software setup to implement and test the
online controller. Simulations and dynamometer experiments
are described which reproduce real-world signal phase and
timing and traffic data from Arcadia, California. In total, this



work is comprised of algorithms with rigorous theoretical
foundations in combination with a unique hardware-in-the-
loop experiment for controller prototyping.

The paper is organized in the following manner. Section
describes the mathematical formulation of the proposed
control framework. Section details the hardware and
software setup to implement the control system. Section
presents and analyzes simulation and experiments results.
Section [V| summarizes the paper’s contributions.

II. CONTROLLER DESIGN

In this section, we described the proposed ECO-ACC
controller. The goal of this control system is to automate
the longitudinal control of a vehicle driving through one
or more signalized intersections. The controller avoids front
collisions, obeys traffic signals, and aims at minimizing
a convex combination of energy consumption and travel
time by cruising through the green phases of the various
intersections.

To enhance the energy performance, the control system
can access information on the Signal Phase and Timing
(SPaT) of the traffic lights along the route, as well as in-
formation on the corresponding vehicle queues. The method
proposed in this paper works also when the traffic light tim-
ing is not fixed a priori, but changes depending on the traffic
level (e.g. if vehicles are queued at a specific lane). Historical
data are available for both the vehicle queue lengths and
the traffic lights SPaT, providing empirical probabilistic
information on the variable red light durations and vehicle
queue lengths. In real-time, the current SPaT for each traffic
light can be accessed through Vehicle-to-Infrastructure (V2I)
communication; moreover, the radar and camera systems
provide information about the front obstacles.

In other words, the ECO-ACC controller has two horizons:
(1) a slow and long-sighted horizon, where the scope is the
overall trip and only slowly changing information (such as
historical or probabilistic data) can be taken into account;
and (ii) a fast and short sighted horizon, where the scope is
the immediately upcoming portion of the trip, and dynamic
information (such as real-time traffic light or obstacles) can
be taken into account.

In sum, the ECO-ACC controller encompasses two com-
ponents, visualized in Fig. |1} (i) An Eco-driving controller,
which computes a reference velocity trajectory from the
current location to destination, aimed at minimizing energy
based on the probabilistic information on SPaT and vehicle
queues. (ii)) An Adaptive Cruise Controller (ACC), which
computes the wheel torque required to follow the reference
velocity, yet guarantee safety — i.e. collision avoidance and
traffic signal compliance — in spite of the presence of traffic
on the road. This time scale separation also makes intuitive
sense to tame the computational complexity of the overall
control task, as we will more precisely explain in the rest of
the section.

A. Eco-driving Control

We apply the optimal Eco-driving algorithm proposed by
Sun et al. in [11]. The algorithm determines the optimal
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state and control trajectories to minimize fuel consumption,
in the presence of uncertain red light duration. This is
mathematically formulated as a chance constrained optimal
control problem, using empirical statistics on the red light
duration. For completeness we summarize the Eco-driving
controller here, but readers should refer to [11] for details.
1) Vehicle Dynamics: Consider the longitudinal vehicle
dynamics where the longitudinal acceleration a is

_ TgpTeng = Tork pACa

v?,

ey
where m is the vehicle mass, rg is the product of the
gearbox and final drive ratio, T, is the internal combustion
engine output torque, R,, is the wheel rolling radius, 6 is
road grade, p is the air density, A is the front cross-sectional
area, and Cjy is the air drag coefficient. The rolling resistance
coefficient C,. is

— g (cos(8)C, — sin(9)) —

mR,,

Cr = Crl + CTQUa (2)

where C.; and C,5 are constants. We consider the velocity
v(k) and travel time t(k) as states at position kAs. Conse-
quently, the system dynamics can be written as

a(k)As
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——— N — v(k)
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where k € {0,---, N —1}, As is the position step size. It is
important to note that the dynamics are difference equations
in space, not time. Interested readers are referred to [11] for
more details.

2) Problem Formulation: The objective of the online Eco-
driving controller is to minimize a convex combination of
the energy consumption and of the travel time, over the
remaining portion of the trip, from the current position
and time. As a proxy for fuel consumption in the online
implementation, we utilize squared wheel torque, where the
wheel torque is written

Tngeng - Tbrk

Zu =
Ry,

“4)



The objective function is then represented in the (discrete)
spatial domain as

2 1 2 2
J= ZNl} (Tw(k) +A (v(k)) )As .5

ke{0,...,

with the regularization parameter A. The control variable wuy
is the wheel torque T, (k), which is a weighted sum of the
engine and brake torqueﬂ The constraints are

o < T(k) < TV k € {0,--- , N}, (6)
a™ < a(k) <a™ vV ke{0,---,N}, (7
o™ < (k) <V™(k),V k€ {0,--- N}, ®)
t(N) < ty, )

where the inequality constraints (), (@), (8). and (9) ensure
the wheel torque, acceleration, velocity, and travel time,
respectively, are lower and upper bounded by appropriate
values, which are given and known. Particularly, the wheel
torque 7', is lower-bounded by the maximum brake torque
Tmin — —TI@% and upper-bounded by the maximum engine

>
w
max
Tng

torque 1'% = <29 The maximum acceleration a™®* is
set to a physically feasible limit, and the maximum velocity
V™% ig set to the maximum speed limit on the road.

3) Chance Constraints for Uncertain Effective Red Light
Duration: We assume perfect communication between the
subject vehicle and traffic signals, i.e., the controller knows
the traffic signal’s current phase, timing, and cycle length.
If the cycle time and red light duration are fixed, the Eco-
driving controller can ensure that the vehicle strictly obeys
the traffic signals at all times, i.e. it always stops at red lights
and only passes through green lights. This can be modeled
by the inequality constraints

max

ch(v(k), t(k), T (k)) > ci(t(k)),

P

(10)

where ¢ (v(k), t(k), T,y(k)) is the cycle time at which the
subject vehicle passes through the i-th intersection and
ci(t(k)) is the remaining red light duration at the i-th
intersection. Inequality (I0), however, does not model the
effect of traffic queues and other unplanned delays at the
intersections, which can prevent crossing the intersection
even during a green light; moreover, inequality (I0) cannot
be enforced if the red light duration is not fixed, which is
the case in adaptive traffic light controllers. To account for
such cases, we introduce the random variables o, i.e.

cp(v(k), t(k), T (k) = cr.(t(k)) + o,

an

where o € [0,c}] and ¢ is the green light duration at the
i-th intersection. The green light length cg is assumed to be
known for all intersections. Finally, in the optimization we
enforce the chance constraints

cp(v(k), t(k), Tu(k)) > c.(t(k)) + F~H(1 = n),

: (12)

'We do not have to separate the wheel torque into the engine and
brake torques, by assuming that the subject vehicle does not simultaneously
accelerate and decelerate.

where F'~1(1—n) denotes the inverse cumulative distribution
function (CDF)| of ' with a desired reliability 1 € [0, 1].
Interested readers are referred to [11] for details.

4) Dynamic Programming (DP): We apply DP to solve
the minimization problem with the objective function (3)),

> (Tw(k)2 + A (v(lk)>2> As? (13)

ke{0,...,N—1}

min
T.,ERN

with the system dynamics (@) and constraints (6)-(@) and
(12). Bellman’s equation Vi (z(k)) is written

Tw ()
+ Vi1 (f(z(k), Tw(k)))}

where f(-) denotes the system dynamics (3) with the termi-
2

nal condition Vi (z(N)) = T,(N)? + A (ﬁ) . Finally,

solving (T4) backward in position step k gives us the optimal

wheel torque for each state.

Vi(z(k)) = min {Tw(k)2 A (11(1k)>

(14)

B. ACC Controller

In this section we present our Adaptive Cruise Controller
(ACC) as depicted in Fig. [l The objective of our ACC
is twofold: (i) Track the reference velocity computed by
the higher level Eco-driving Controller. (ii) Enforces vehicle
safety, such as collision avoidance with a leading vehicle,
and non-violation of traffic light laws regardless of the
front vehicle’s future behavior and traffic light dynamics. To
enforce safety at all times, we use robust model predictive
control for our ACC. This approach has been shown effective
in longitudinal vehicle dynamics control [14].

1) Simplified Longitudinal Vehicle Dynamics: In ACC
controller, we use the vehicle dynamics based on time step
t instead of the dynamics based on position step k (3). The
states of our model, z, include distance to the upcoming
traffic light drr, the distance to the front vehicle dy, and the
vehicle velocity v. The input to the model, u, is the wheel
torque T),. At time step t, the system dynamics discretized
with the sampling time ¢ is expressed as

dTL(t + 1) dTL<t) - tsv(t)
dp(t+1) | = | de() +ts(ve(t) —v(t)) |, (15)
o(t + 1) u(t) + L (58 — Tp(1))
z(t+1) Fla(t),u(t),vp(t))

where vy is the front vehicle velocity and T'g is the resistance
torque approximated as
1
Tr(t) = mgC, + apAC’dv(t)z7 (16)
where we assume that the road is flat at all times. Moreover,
we denote by ager and tg" the maximum deceleration
which the vehicle is capable of at any time and the maximum

2F(-) is assumed to be known and bijective.



time required for the vehicle to come to a full stop from any
initial velocity, respectively. They can be expressed as

Tmin
agX = 2 — gC,, 17)
T mR, "
pmax
t;&‘;x =——. (18)
Adec

2) Safety Constraints: The safety constraints are related
to avoiding collision with the front vehicle, stopping at the
red light, and obeying speed limits of the road. They can be
written together as

d™™ < dg(t), (19)
0 < drr(t), if p*P(t) = red, (20)
0 < drr(t) + ¢(t), if p™(t) = yellow,  (21)
Vi < p(t) < ™, (22)

where p"P(t) denotes the phase of the upcoming traffic light
at time step t; ¢(t) denotes the slack variable, ¢(t) > 0.
Here, we assume that the yellow light phase is long enough
for the vehicle to come to a full stop with the maximum

deceleration (T7); i.e., tYe!lov > thwsr. This assumption with

the soft constraint in (ZI) ensures that the vehicle is either
capable of the full stop before the traffic light or passes the
light when the traffic light turns to red from yellow.

3) Problem Formulation: In our ACC we compute the
optimal input trajectories u*(-|t) by solving at time ¢ the
following finite time-horizon optimal control problem:

t+N,
T =3 No(lft) = veerllyy,
o=t
t+Np—1
+ > ul@b)lly,
o=t

t+Np—1

+ > ) = u(t =10y, (230
(=t+1
t+Np—1

3 160y,

r=t+1

w0+ 116) = F(l8), u(tlt), vs(l | 1),
d™ <dg(l]|t),

0<drp(¢|t)
{o < dru(e] ) +6(¢ |1
M < gl ] t) < o™
TIn < T (0| 1) < T
z(tft) = =(t),

z(t+ Nplt) € Cr
{x(t + Nplt) € Cy

min

(23a)
u(:[t)

(23b)

(23d)

subject to

if p*(t) = red,
if p"P(t) = yellow,

if p"P(t) = red,

. (23e)
otherwise,

for all £ € {¢t,....t + N, — 1} where z({ | t) and u(¢ | t)
are the predicted states and input at time ¢ based on the
measurements and predictions at time ¢, respectively; N,
denotes the prediction horizon of our problem; v is the

desired optimal velocity reference obtained from the wheel
torque of the Eco-driving controller and the dynamics (T3).
The cost function J includes a penalty for deviating from
vrer (232), a penalty on input torques (23b), a penalty for
jertk @3c), and, finally, a penalty for violating the soft
yellow light constraint (23d). The weights for each penalty
are W,, Wy, Wa,, and W, respectively. The polytopic
constraint (23¢)) enforces the terminal state to lie inside the
robust control invariant sets defined in [14] for recursive
feasibility of our finite horizon optimal control problem. To
construct these sets, we assume the linear uncertain version
of our dynamics model (T3)) by considering the nonlinear air
drag term, $pACyv(t)?%, as a linear addictive and bounded
uncertainty. The first input usl , 1s applied to the system
during the time interval [t,¢ + 1) and at the next time step
t+1, a finite horizon optimal control problem (23) with new
state measurements, is solved over a shifted horizon, yielding
a moving or receding horizon control strategy.

C. Integration of Eco-driving control and ACC

The Eco-driving controller can conflict with the ACC, in
the sense that the ACC can cause the vehicle to deviate from
the optimal velocity profile computed by the Eco-driving
controller. The ACC takes into account the actual traffic
around the vehicle and robust avoidance of front collisions.
The Eco-driving controller only accounts for the long-term
traffic signal timing and essentially assumes free-flow con-
ditionsﬂ However, if we removed the Eco-driving controller
and just used ACC (with constant velocity tracking), this
would lead to a less energy efficient behavior, as shown
below. In order to mitigate this issue, the ACC Controller also
penalizes jerk (i.e. the derivative of acceleration), as a trade-
off with velocity tracking. This yields smoother reference
velocity tracking in the presence of surrounding traffic. We
tune the weights in and based on experimental
results to achieve a balance of smooth reference velocity
tracking and collision avoidance.

III. HARDWARE IN THE LOOP SETUP

Our setup consists of four main components communi-
cating over CAN bus, as depicted in Fig. [2} (i) the subject
vehicle, a Plug-in Hybrid Electric Vehicle (PHEV), placed
on a dynamometer; (ii) a desktop computer, running the
simulator of the environment surrounding the vehicle; (iii) a
dSPACE MicroAutoBox II, running the ACC software; (iv)
an Adlink Matrix embedded PC, running the Eco-driving
control software. The basic specifications of the above com-
ponents are provided in Table [} Readers are referred to [13]
for more details.

A. Environment model

The environment model, including the traffic lights and
the road and intersections geometry, is constructed using
PreScan [15]. The density and velocity of the other vehicles
on the road in the PreScan environment is determined by

3Even though the historical data of vehicle queue length is considered,
this information is essentially modeled as a longer red light.



Item Specifications

Intel(R) Core(TM) i7-7700KK CPU @

Desktop 4.20Hz with NVIDIA GeForce GTX 1080
Matrix embedded MXC-6101D/M4G with Intel Core
PC-Adlink i7-620LE 2.0 GHz processor
dSpace .
MicroAutoBox IBM PowerPC 750FX processor, 800 MHz

Plug-in Hybrid

Electric Vehicle 8.89 kWh of battery capacity

TABLE I
SPECIFICATIONS OF HARDWARE AND SOFTWARE IN THE
IMPLEMENTATION SETUP

PTV Vissim [16], a state-of-the-art traffic microsimulator.
PreScan and Vissim interact in such a way that the motion
of vehicles in PreScan respects the trajectories generated by
Vissim, and the trajectories in Vissim are adapted to the
motion of the subject vehicle as simulated in PreScan.

In this paper, we consider a scenario of automated driving
along the Live Oak Avenue in Arcadia, CA, USA. The
driving route, depicted in Fig. [3] is 2.6 km long and has
8 signalized intersections. The Vissim model takes the route
inflows and outflows as inputs; these parameters were mea-
sured on the actual road, by means of vehicle detectors.
At the intersections, the vehicles generated by the Vissim
model can either turn or continue along Live Oak Avenue,
according to a probabilistic turn policy; such policy is
also parametrized by the recorded aggregate traffic volume
and turn counts data [13]. Because no vehicle-to-vehicle
communication is assumed, the behavior of the surrounding
vehicles, e.g. decelerations or lane changes, are unpredictable
for the subject vehicle. Such uncertainty is dealt with by
the ACC system. The Signal Phase and Timing (SPaT) data
of the traffic lights are input to both PreScan and Vissim,
as they affect both the subject vehicle and the traffic. For
each intersection, we first compute an empirical probability
mass function (PMF) based on the corresponding historical
SPaT data, collected over the month of July 2018. For
the experiments presented in this paper, the traffic light
patterns are sampled from such functions. The corresponding
Cumulative Density Function (CDF) is used to parametrize
the chance constraints (I2). Fig. ] shows the PMF and CDF
for the 7" intersection from the origin, as an example; at 6
pm at this intersection, vehicles wait 1.96 seconds on average
with a standard deviation of 1.033 seconds.

B. Controller implementation

The Eco-driving controller implements two concurring
tasks. One task updates continuously the DP solution solving
problem (13)), from the current state until the end of the trip;
The other task, every 200 ms, outputs a reference velocity
for the ACC; this is obtained querying, with the current state,
the optimal control policy computed by the most recent DP
run. The Eco-driving controller is implemented in ROS and
the computations are performed calling Matlab; we utilize
the Matlab Parallel Computing Toolbox [17] to assign the
update of the DP solution to one worker and the update of

Synchronization!
A4

WORKER 2

Update DP solutions

Desktop PHEV
Prescan Vehicle
& Vissim Dynamics
A
\Cliulrre_?t Control Signal
‘elocity
Digtua:izt Current (Wheel Torque)
Time Velocity
e y i'"CANBUS----------- SR -
Reference Control Signal
i Wheel Torque
Current | | Velocity ( que)
Distance, Time,
MATRIX Velocity Reference
Velcoity
E Eco-driving '
:Controller (in ROS '
I ( ) i dSpace vy
! WORKER1 ;
E Publish a reference E ACC
: velocity ' Controller

Fig. 2. Diagram for the implementation setup of the ECO-ACC controller
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Fig. 3. Test route on the Live Oak corridor in Arcadia, CA, USA.

The 8 signalized intersections, marked by yellow triangles, are located
respectively at {42,351, 610, 1190, 1509, 1764, 2050, 2456} meter from
the route origin.

the reference velocity to another worker. The MPC-based
ACC is implemented solving the nonlinear optimization
problem every 200 ms with NPSOL [18].

IV. IMPLEMENTATION RESULT

In this section, we present and discuss the results of
an experiment performed on the setup described above. In
particular, we compare the performance of the ECO-ACC
controller to a baseline: the ACC controller without the Eco-
driving controller (denoted as ACC-Only controller). In the
implementation of the baseline controller (ACC-Only), we
set the reference velocity to a constant 15 m/s, which is the
speed limit along the route.

A. Energy Performance of the ECO-ACC Controller

Fig. 5] shows the cumulative equivalent fuel consumption
over the travel time as an area chart.The equivalent fuel
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Fig. 5. Area chart for the cumulative equivalent fuel consumption. We
calculate that 33.7 kilowatt-hours of electricity is equivalent to one gallon
of gas [19]. The values with percentage in parentheses indicate the relative
reduction of equivalent fuel consumption compared to that of the ACC
controller without the Eco-driving controller.

consumption evaluates both gas and battery consumption, as
explained in the caption of Fig. 5] The ECO-ACC controller
significantly reduces (41.0%) the equivalent fuel consump-
tion compared to the ACC, for the given route and traffic;
this improvement can be attributed to the use of the SPaT
information by the Eco-driving controller.

Because of the presence of traffic on the road, the travel
time along the route cannot be exactly fixed for two different
experiments; as a consequence, the energy performance must
be evaluated along with the travel time. Fig. [§] illustrates the
trade-off between the total wheel energy and the travel time
for various experiments and simulations. The stars in green
and dark blue show the performance of the ECO-ACC and
ACC-Only controllers in the experiments just discussed. The

ECO-ACC controller uses 0.1951 (kWh) of wheel energy,
which is 32.91% less than the ACC-Only controller; on the
other hand, the ACC-Only controller takes 6% less travel
time (260.6 seconds) than the ECO-ACC controller (277.4
seconds).

In general, the trade-off between travel time and energy
consumption depends on the traffic and can be empirically
adjusted, in the Eco-driving controller, by tuning the pa-
rameter A in (3). To investigate this trade-off, we analyze
experiments and simulations, also summarized in Fig. [6]
The stars in yellow and light blue represent the performance
of the ECO-ACC and ACC-Only controllers in another
set of experiments, conducted in the same conditions but
without traffic; we observe similar gaps between the two
controllers, for both energy consumption and travel time.
The red dots represent the performance of the ECO-ACC
controller obtained in simulation, under the same traffic and
traffic light conditions used for the experiments; different
points correspond to different values of A. The dotted line
simply provides a visual grouping, and does not represent
a continuous relationship between wheel energy and total
travel time. As expected, the wheel energy tends to increase
as A (i.e., the penalty on the total travel time) increases. We
observe two clusters of red points, i.e. there is a “jump”
in performance for a small variation of A (from A = 65
to A = 70); this is because there are fixed, discrete time
windows where the vehicle can pass through the intersec-
tions. In Fig.[8] the time windows are illustrated as time gaps
between the red dashes. We also notice that the wheel energy
obtained from the ECO-ACC controller with the the PHEV is
slightly lower than that obtained with a mathematical vehicle
model. We conjecture the simulations over-predict wheel
energy consumption due to model mismatch. Nevertheless,
the experimental performance of the ECO-ACC controller
seems fairly close to the optimal Pareto curve found in sim-
ulation, whereas the ACC-Only controller seems significantly
suboptimal.

B. Wheel Torque and SOC Profile

The top plot in Fig. [7] shows the wheel torque profile
applied on vehicle. The trajectory is more aggressive in
the ACC-Only case, which tries to keep a constant 15 m/s
velocity, ignoring the future traffic lights. This is consistent
with the higher wheel energy consumption observed in
Fig. [f] The bottom plot of Fig. [7] shows that the SOC
level remains almost constant throughout the trip for both
controllers (the steps correspond to 0.5% variations). In terms
of equivalent fuel, the battery energy accounts for 0.618
(g) in the ECO-ACC case and for 0.556 (g) for the ACC-
Only case; consequently, battery energy consumption plays
a relatively small role in this experiment.

C. Velocity Profile and Travel Time

Fig. [§] shows the speed and travel time profiles over travel
distance. The velocity profile of the ECO-ACC controller
never gets to zero once the trip starts, although it gets close
to zero (0.762 m/s). In other words, the vehicle does not
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stop at any red light from the start to the end of the trip. The
bottom plot in the same figure verifies that the ECO-ACC
controller passes through all the intersections without having
to stop at the red lights. We also found that the mean and
standard deviation of speed are reduced by 0.73 m/s and 1.16
m/s, respectively with the ECO-ACC controller.

D. Impact of Traffic on Velocity Profile

We further investigate how the velocity profile varies if
there is no traffic, i.e., free-flow. Fig. [0] shows the velocity
profiles of the ACC controller with three types ECO-ACC
controllers: (i) online planning with traffic (green); (ii) online
planning without traffic (purple); and (iii) offline planning
without traffic (orange). The online controllers solve the
Eco-driving optimal control problem as the vehicle drives
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Fig. 8. Velocity (top) and travel time (bottom) profiles over travel distance.
The red dashed lines represent the red light periods. The chattering in the
velocity profiles occurs as the ACC controller balances speed with distance
from the front vehicle.

and receives updated SPaT information. The offline case
computes the Eco-driving control solution once prior to the
trip start, and does not recalculate it again. In free-flow
conditions (no traffic), the online and offline velocity tra-
jectories are very similar. However, with traffic, the velocity
profile deviates significantly due to delays caused by other
vehicles cutting in the lane or driving slowly. Consequently,
the trip takes an additional 50 seconds more. As a side
note, we also implemented the case of an offline ECO-ACC
controller with traffic. The trip, however, did not succeed and
the vehicle ended up stranded in the middle of the route.
That is because the offline Eco-driving plan is not robust to
unexpected delays from neighboring vehicles. This, in fact,
provides excellent motivation for integrating Eco-driving
with adaptive cruise control real-time. Their combination is
necessary to achieve the safety, energy economy, and quality
of service we desire.

E. Limitations & Future works

There exist some limitations to the proposed control
designs and implementation. One limitation is that the Eco-
driving controller provides a spatially-varying control policy
for the entire trip, which could be computationally intractable
for long trips. Moreover, in practice a vehicle will only be
able to receive information from upcoming traffic signals that
are a limited distance away. A receding horizon controller
can be used to address these issue. Additionally, the proposed
Eco-driving controller exclusively plans a velocity profile on
a single lane. An extension of this work can incorporate
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multilane driving [20]) and left/right turns.

V. CONCLUSION

This paper provides a formalized mathematical control
design and experimental implementation of an online Eco-
logical Adaptive Cruise (ECO-ACC) control architecture. Its
overall objective is to minimize energy consumption while
avoiding collisions and complying with traffic signals. Our
proposed control architecture consists of the two levels of
real-time controllers; Eco-driving controller and ACC con-
troller. In the higher level, the Eco-driving controller com-
putes the energy-optimal velocity reference incorporating
stochastic red light duration delays via chance-constrained
optimal control. In the lower level, the ACC controller
ensures safety against collision with front vehicles and obey-
ing traffic light rules. Our control design is experimentally
validated through a recently developed hardware-in-the-loop
setup, which consists of a Plug-in Hybrid Electric Vehicle.
Case studies are performed along a 2.6 km route with
eight signalized intersections. The environment and traffic is
calibrated to mimic Live Oak Avenue in Arcadia, CA, USA.
The experiments reveal a fuel savings 41% for the ECO-
ACC controller, relative to a ACC-Only controller. Future
work includes extending the controller with a receding dis-
tance horizon formulation, to address limited communication
distances and computation.
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