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Abstract— In this paper an output-feedback model-based
reinforcement learning (MBRL) method for a class of second-
order nonlinear systems is developed. The control technique
uses exact model knowledge and integrates a dynamic state
estimator within the model-based reinforcement learning frame-
work to achieve output-feedback MBRL. Simulation results
demonstrate the efficacy of the developed method.

I. INTRODUCTION

Over the past decade, online reinforcement learning algo-
rithms that guarantee stability during the learning phase have
been developed for deterministic systems [1]–[15]; however,
stability and convergence are established under restrictive
persistence of excitation (PE) conditions which are difficult,
if not impossible, to verify. To soften the PE condition,
data-driven methods that employ experience replay have
been utilized in results such as [13], [16]–[21]; however,
since the data is collected along the system trajectory, added
exploration signals are often required to achieve convergence.
The need for PE and exploration signals is a result of sample
inefficiency, and is a significant drawback of the existing
model-free RL-based online optimal control methods.

Model-based reinforcement learning (MBRL) algorithms
learn a model of the system from observations using super-
vised learning and employ the model to learn the policies.
Several different MBRL approaches have been developed in
the literature over the last few decades. Imaginary roll-outs,
i.e., the use of a model as a proxy for the real world to
evaluate temporal difference errors (referred to as Bellman
errors (BEs) in this paper) are explored in results such as [22]
and [23]. While the sample efficiency is of the policy learning
algorithms is improved, the performance of the method in
[22] decays rapidly with model mismatch, and the method
in [23] relies on fitting neural networks to dynamics, which
is typically data-intensive, nullifying the sample efficiency
gain in the policy learning algorithm.

Policy gradient methods that rely on backpropagation
through the model to compute the gradient of the state or the
action value function with respect to the policy parameters
are developed in results such as [24]–[27]; however, policy
gradient methods are often iterative in nature and typically
do not study stability during the learning phase, and as a
result, are not suitable for real-time simultaneous learning
and execution. MBRL methods with provable sample effi-
ciency bounds have been developed in results such as [28]–
[34]; however, the theoretical guarantees are obtained under
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discretization of the continuous state space into finitely many
discrete states and a finite action space, and as such, are
not directly applicable to systems with continuous state and
action spaces.

The MBRL technique developed by the authors in [35]–
[40] for continuous time and continuous space systems
softens the excitation requirements used in results such as
[1]–[15], [41]–[45] by utilizing a model of the system to
simulate exploration, where the stability and the performance
of the closed-loop system critically depends on the accuracy
of the estimated model. A significant drawback of the online
optimal control methods mentioned so far is that they require
full state measurements.

While model-based and model-free reinforcement learning
can be achieved using output feedback instead of state feed-
back by making use of partially observable Markov decision
processes (POMDPs), in general, POMDPs are undecidable
if the objective is to find an optimal solution, and finding a
near-optimal solution can also be NP-hard [46], [47]. In this
paper, the problem is formulated as a state estimation based
reinforcement learning problem, and for a specific class
of systems, an online solution is obtained that guarantees
stability during the learning phase.

A recent result in [48], presents an offline model-free al-
gorithm for linear systems to achieve optimality using output
feedback. The objective in this paper is to develop an output-
feedback model-based reinforcement learning method for a
class of nonlinear systems under exact model knowledge.
While the developed results can be extended to systems with
uncertain models using model-learning methods such as [49],
such extension is not a focus of this work.

The paper is organized as follows. A detailed description
of the problem under consideration is provided in Section
I. To facilitate the subsequent analysis of the developed
technique, section III examines the stability properties of
optimal controllers under semidefinite cost functions for the
class of systems under consideration. Section IV describes
the state estimator used in the design. Section V describes the
developed MBRL method. Section VI presents a Lyapunov-
based stability analysis, Section VII presents simulation
results, and Section VIII concludes the paper.

II. PROBLEM DESCRIPTION

Consider a second order nonlinear system of the form

ṗ = q,

q̇ = f (x) + g (x)u,

y = p, (1)
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where p ∈ Rn and q ∈ Rn denote the generalized position
states and the generalized velocity states, respectively, x :=[
pT qT

]T
is the system state, f : R2n → Rn is locally

Lipschitz continuous, f (0) = 0, and y ∈ Rn denotes the
output. The drift dynamics f are unknown and the control
effectiveness g : R2n → Rn×m is known and locally
Lipschitz. Systems of the form (1) encompass second-order
linear systems and Euler-Lagrange models with known iner-
tial matrices, and hence, represent a wide class of physical
plants, including, but not limited to, robotic manipulators and
autonomous ground, aerial, and underwater vehicles.

The objective is to design an adaptive estimator to estimate
the state x, online, using input-output measurements and
to simultaneously estimate and utilize the optimal feedback
controller that minimizes the cost functional

J (x (·) , u (·)) =

∫ ∞
0

r (x (τ) , u (τ)) dτ, (2)

while maintaining system stability during the learning phase.
The function r : Rn×m → R is defined as r (x, u) := Q (x)+
uTRu, where Q : Rn → R is continuous, R ∈ Rm×m is a
constant positive definite matrix, and γ ≥ 0 is the discount
factor.

Assumption 1. One of the following is true:
(a) Q is positive definite.
(b) Q is positive semidefinite and p 7→ Q (x) is positive

definite for all nonzero q ∈ Rn.
(c) Q is positive semidefinite, q 7→ Q (x) is positive definite

for all nonzero p ∈ Rn and f (x) 6= 0 whenever p 6= 0.

To facilitate control design, the stability properties of the
closed-loop system under optimal feedback are examined.

III. STABILITY UNDER OPTIMAL STATE FEEDBACK

The following theorem establishes global asymptotic sta-
bility of the closed-loop system under optimal state feedback.

Theorem 1. If the optimal state feedback controller u∗ :
R2n → Rm that minimizes the cost function in (2) exists and
if the corresponding optimal value function V : R2n → R is
continuously differentiable and radially unbounded, then the
origin of closed-loop system

ẏ = q,

q̇ = f (x) + g (x)u∗ (x) , (3)

is globally asymptotically stable.

Proof. Under the hypothesis of Theorem 1, the optimal
value function is the unique solution of the Hamilton-Jacobi-
Bellman equation [50, pp. 164]

Vy (x) q + Vq (x) (f (x) + g (x)u∗ (x)) + r (y, u∗ (x)) = 0,
(4)

with
u∗ (x) = −1

2
R−1gT (x)Vq (x) , (5)

where the notation xy denotes the partial derivative of x
with respect to y. The function V is positive semidefinite

by definition. Since the solutions of (3) are continuous, if

V

([
y
q

])
= 0 for some x 6= 0, it can be concluded that

Q (φ (t;x, u∗ (·))) = 0,∀t ≥ 0, and u∗ (φ (t;x, u∗ (·))) =
0,∀t ≥ 0, where φ (t, x, u (·)) denotes the trajectory of
(1), evaluated at time t, starting from the state x and
under the controller u (·). If Assumption 1-(a) holds then
φ (t;x, u∗ (·)) = 0,∀t ≥ 0, which contradicts x 6= 0. If
Assumption 1-(b) holds, then p (t;x, u∗ (·)) = 0,∀t ≥ 0. As
a result, φ (t;x, u∗ (·)) = 0,∀t ≥ 0, which contradicts x 6= 0.
If Assumption 1-(c) holds, then q (t;x, u∗ (·)) = 0,∀t ≥ 0.
As a result, p (t;x, u∗ (·)) = c,∀t ≥ 0 for some constant
c ∈ Rn. Since f (x) 6= 0 if p 6= 0, it can be concluded
that c = 0, which contradicts x 6= 0. Hence, V (x) cannot
be zero for a nonzero x. Furthermore, since f (0) = 0, the
zero controller is clearly the optimal controller starting from
x = 0. That is, V (0) = 0, and as a result, V : R2n → R is
positive definite.

Using V as a candidate Lyapunov function and using the
HJB equation in (4), it can be concluded that

Vy (x) q + Vq (x) (f (x) + g (x)u∗ (x)) ≤ −Q (x) ,

∀x ∈ R2n. If Assumption 1-(a) holds, then the proof is com-
plete using Lyapunov’s direct method. If Assumption 1-(b)
holds, then using the fact that if the output is identically zero
then so is the state, the invariance principle [51, Corollary
4.2] can be invoked to complete the proof. If Assumption
1-(c) holds, then finiteness of the value function everywhere
implies that the origin is the only equilibrium point of the
closed-loop system. As a result, the invariance principle can
be invoked to complete the proof.

Using Theorem 1 and the converse Lyapunov theorem for
asymptotic stability [51, Theorem 4.17], the existence of a
radially unbounded positive definite function V : R2n → R
and a positive definite function W : R2n → R is guaranteed
such that

Vy (x) q + Vq (x) (f (x) + g (x)u∗ (x)) ≤ −W (x) , (6)

∀x ∈ R2n. The functions V and W are utilized to analyze
the stability of the output feedback approximate optimal
controller.

IV. VELOCITY ESTIMATOR DESIGN

To generate estimates of the generalized velocity, a veloc-
ity estimator inspired by [52] is developed. The estimator is
given by

˙̂p = q̂,

˙̂q = f (x̂) + g (x̂)u+ ν, (7)

where x̂, p̂, and q̂ are estimates of x, p, and q, respectively,
and ν is a feedback term designed in the following.

To facilitate the design of ν, let p̃ = p− p̂, q̃ = q− q̂, and
let

r = ˙̃p+ αp̃+ η, (8)

where the signal η is added to compensate for the fact that
the generalized velocity state, q, is not measurable. Based on



the subsequent stability analysis, the signal η is designed as
the output of the dynamic filter

η̇ = −βη − kr − αq̃, η (T0) = 0, (9)

where α, k, and β are positive constants and the feedback
component ν is designed as

ν = α2p̃− (k + α+ β) η. (10)

The design of the signals η and ν to estimate the state from
output measurements is inspired by the p−filter [53]. Using
the fact that p̃ (0) = 0, the signal η can be implemented via
the integral form

η (t) = −
t∫

T0

(β + k) η (τ) dτ−
t∫

T0

kαp̃ (τ) dτ−(k + α) p̃ (t) .

(11)

V. MODEL-BASED REINFORCEMENT LEARNING

To estimate the optimal state feedback policy, the optimal
value function, defined as

V (x) := min
u(·)

∞∫
t

r (φ (τ, x, u (·)) , u (·)) dτ.

The optimal value function V and the optimal policy u∗ are
approximated using parametric approximators V̂ : R2n ×
RL → R and û : R2n × RL → Rm defined as

V̂ (x,Wc) := WT
c σ (x) , and (12)

û (x,Wa) := −1

2
R−1gT (x)σTx (x)Wa, (13)

where σ := [σ1 · · · , σL], σi : R2n → R for all i is
the vector of basis functions and Wc ∈ RL and Wa ∈
RL are estimates of the ideal parameters W ∈ RL. The
corresponding approximation error ε : R2n → R is defined
as ε (x) := V (x) − V̂ (x,W ). Provided the basis functions
are selected from an appropriate class of functions, for any
given compact ball B (0, χ) ⊂ R2n, and any given ε there
exists L ∈ N, a set of basis functions {σ1, · · · , σL}, and
W ∈ RL such that ‖ε‖χ < ε and ‖εx‖χ < ε, where ‖ε‖χ
denotes supx∈B(0,χ) ‖ε (x)‖ (see [54]–[56]).

Substituting the estimates V̂ , û, and x̂ in (4), the Bellman
error δ : R2n × RL × RL → R is obtained as

δ (x̂,Wc,Wa) = V̂q (x̂,Wc) (f (x̂) + g (x̂) û (x̂,Wa))

+ V̂y (x̂,Wc) q̂ + r (ŷ, û (x̂,Wa)) , (14)

Similar to [36], the technique developed in this result
implements simulation of experience in a model-based RL
scheme by using the system model to extrapolate the ap-
proximate BE to unexplored areas of the state space. In
the following, the trajectories of the state and the weight
estimates Wc and Wa, evaluated at time t starting from
appropriate initial conditions are denoted by x (t), Wc (t) and
Wa (t), respectively. The notation1 δt : R≥0 → R denotes the

1For a ∈ R, the notation R≥a denotes the interval [a,∞) and the
notation R>a denotes the interval (a,∞).

BE in (14), evaluated along the trajectories of the state and
the weight estimates as δt (t) := δ

(
x̂ (t) , Ŵc (t) , Ŵa (t)

)
and δti : R≥0 → R denotes BE extrapolated along the
trajectories of the weight estimates and a predefined set of
trajectories {xi : R≥0 → Rn | i = 1, · · · , N} as δti (t) :=

δ
(
xi (t) , Ŵc (t) , Ŵa (t)

)
. A least-squares update law for

the value function weights is designed based on the sub-
sequent stability analysis as

˙̂
Wc = −kc

N
Γ

N∑
i=1

ωi
ρi
δti, (15)

Γ̇ = βΓ− kc
N

Γ

N∑
i=1

ωiω
T
i

ρ2i
Γ, (16)

Γ (t0) = Γ0, where Γ : R≥t0 → RL×L is a time-varying
least-squares gain matrix, ωi (t) := σp (xi (t)) qi (t) +
σq (xi (t)) (f (xi (t)) + g (xi (t)) û (xi (t) ,Wa (t))) ,
ρi (t) := 1 + γ1ω

T
i (t)ωi (t), where γ1 ∈ R is a constant

positive normalization gain, β > 0 ∈ R is a constant
forgetting factor, and kc > 0 ∈ R is a constant adaptation
gain.

The policy weights are updated to follow the value func-
tion weights as

Ẇa = −ka1 (Wa −Wc)− ka2Wa

+

N∑
i=1

kcG
T
i Waω

T
i

4Nρi
Wc, (17)

where ka1, ka2 ∈ R are positive constant adaptation gains,
Gi (t) := σxi (t) gi (t)R−1gTi (t)σTxi (t) ∈ RL×L, gi (t) =
g (xi (t)) and σxi (t) = σx (xi (t)). The following rank
condition facilitates the subsequent analysis.

Assumption 2. There exists a finite set of trajectories
{xi : R≥t0 → Rn | i = 1, · · · , N} and a constant T ∈ R>0

such that

c1IL ≤ inf
t∈R≥t0

(
1

N

N∑
i=1

ωi (t)ωTi (t)

ρ2i (t)

)
, (18)

c2IL ≤
1

N

t+T∫
t

(
N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)

)
dτ, ∀t ∈ R≥t0 , (19)

where, at least one of the nonnegative constants c1 and c2 is
strictly positive.

The rank conditions in (18) and (19) depend on the
estimates Wa; hence, in general, they are impossible to
guarantee a priori. However, unlike traditional adaptive dy-
namic programming literature that assumes that a regressor
similar to ωi evaluated along the system trajectories is PE,
Assumption 2 only requires the regressor ωi to be persistently
exciting. When the regressor is evaluated along the system
state x excitation in the regressor vanishes as the system
states converge. Hence, in general, it is unlikely that a
regressor evaluated along the system trajectories will be PE.
However, the regressor ωi depends on xi, which can be



designed independent of the system state x. Hence, c2 can
be made strictly positive if the signal xi contains enough
frequencies, and c1 can be made strictly positive by selecting
a sufficient number of extrapolation trajectories, i.e., N � L.
It is established in [38, Lemma 1] that under Assumption
2 and provided λmin

{
Γ−10

}
> 0, the update law in (16)

ensures that the least squares gain matrix satisfies

ΓIL ≤ Γ (t) ≤ ΓIL, (20)

∀t ∈ R≥0 and for some Γ,Γ > 0.

VI. ANALYSIS

The approximate BE, evaluated along the selected trajec-
tories {xi | i = 1, · · · , N}, can be expressed as

δti = −ωTi W̃c +
1

4
W̃T
a GσiW̃a + ∆i, (21)

where∇εi = ∇ε (xi), fi = f (xi), Gi := giR
−1gTi ∈ Rn×n,

∆i := 1
2W

T∇σiGi∇εTi + 1
4Gεi −∇εifi ∈ R is a constant,

Gεi := ∇εiGi∇εTi ∈ R, and Gσi was introduced in (17).
Using (21), the time-derivative of the Lyapunov function
introduced in (6) along the trajectories of (1) under the
controller u (t) = û

(
ˆx (t),Wa (t)

)
is given by

V̇ (x, t) = Vy (x) q + Vq (x) (f (x) + g (x̂) û (x̂,Wa))

Adding and subtracting Vq (x) (g (x)u∗ (x)),

V̇ (x, t) = Vy (x) q + Vq (x) (f (x) + g (x)u∗ (x))

+ Vq (x) (g (x̂) û (x̂,Wa)− g (x)u∗ (x))

Using (6), the fact that g is bounded, the basis functions σ
are bounded, and that the value function approximation error
ε and its derivative with respect to x are bounded on compact
sets, the time-derivative can be bounded as

V̇ (x, t) ≤ −W (x)+ι1ε+ι2 ‖x̃‖
∥∥∥W̃a

∥∥∥+ι3

∥∥∥W̃a

∥∥∥+ι4 ‖x̃‖ ,

for all t ≥ 0 and for all x ∈ B (0, χ) and x̂ ∈ R2n, where
χ ⊂ R2n is a compact set, ι1, · · · , ι4 are positive constants,
and x̃ := x− x̂.

Let Θ
(
W̃c, W̃a, t

)
:= 1

2W̃
T
c Γ−1 (t) W̃c + 1

2W̃
T
a W̃a The

time-derivative of Θ along the trajectories of (15)-(17) is
given by

Θ̇
(
W̃c, W̃a, t

)
= −W̃T

c Γ−1

(
−kc
N

Γ

N∑
i=1

ωi
ρi
δti

)

− 1

2
W̃T
c

(
Γ−1β − kc

N

N∑
i=1

ωiω
T
i

ρ2i

)
W̃c

−W̃T
a

(
−ka1 (Wa −Wc)− ka2Wa +

N∑
i=1

kcG
T
i Waω

T
i

4Nρi
Wc

)
Using (14),

Θ̇
(
W̃c, W̃a, t

)
≤ −kcc

∥∥∥W̃c

∥∥∥2 − (ka1 + ka2)
∥∥∥W̃a

∥∥∥2
+ kcι8ε

∥∥∥W̃c

∥∥∥+ kcι5

∥∥∥W̃a

∥∥∥2 + (kcι6 + ka1)
∥∥∥W̃c

∥∥∥∥∥∥W̃a

∥∥∥
+
(
kcι7 + ka2W

) ∥∥∥W̃a

∥∥∥ ,

for all t ≥ 0 and for all x ∈ B (0, χ), where
ι5, · · · , ι8 are positive constants that are independent
of the learning gains, W denotes an upper bound
on the norm of the ideal weights W , and c =

mint≥0 λmin

{(
β

2kc
Γ−1 (t) + 1

2N

∑N
i=1

ωiω
T
i

ρi

)}
. Assump-

tion 2 and (20) guarantee that c > 0.
Let Φ (p̃, r, η) := α2

2 p̃
T p̃ + 1

2r
T r + 1

2η
T η. The time-

derivative of Φ along the trajectories of (1) and (7)-(10) is
given by

Φ̇ (p̃, r, η, t) = α2p̃T (r − αp̃− η) + η (−βη − kr − αq̃)

+rT
(
f̃ (x, x̂) + g̃ (x, x̂) û (x̂,Wa)− α2p̃− kr + kη + αη

)
,

where f̃ (x, x̂) := f (x)−f (x̂) and g̃ (x, x̂) := g (x)−g (x̂).
The time derivative of Φ can be bounded above as

Φ̇ (p̃, r, η, t) ≤ −α3 ‖p̃‖2− (k −$1) ‖r‖2− (β − α) ‖η‖2

+$1 (1 + α) ‖r‖ ‖p̃‖+$1 ‖r‖ ‖η‖+$3 ‖r‖+$2 ‖r‖
∥∥∥W̃a

∥∥∥
for all t ≥ 0 and for all x, x̃ ∈ B (0, χ), where $1, · · · , $3

are positive constants that are independent of the learning
gains.

The candidate Lyapunov function for the overall system
is then defined as V (Z, t) = V (x) + Θ

(
W̃c, W̃a, t

)
+

Φ (p̃, r, η), where Z :=
[
xT p̃T rT ηT W̃T

c W̃T
a

]T
.

The time derivative of the candidate Lyapunov function can
be bounded as

˙V (Z, t) ≤ −W (x)− zT
(
M +MT

2

)
z + Pz + ι1ε,

where z :=
[∥∥∥W̃c

∥∥∥ ∥∥∥W̃a

∥∥∥ ‖p̃‖ ‖r‖ ‖η‖
]T

, P =[
kcι8ε

(
kcι7 + ι3 + ka2W

)
ι4 (1 + α) ($3 + ι4) ι4

]
M =
kcc − (kcι6 + ka1) 0 0 0
0 (ka1 + ka2 − kcι5) −ι2 (1 + α) − (ι2 +$2) −ι2
0 0 α3 −$1 (1 + α) 0
0 0 0 (k −$1) −$1

0 0 0 0 (β − α)

 .
Provided the matrix M +MT is positive definite,

˙V (Z, t) ≤ −W (x)−M ‖z‖2 + P ‖z‖+ ι1ε,

where M := λmin

{
M+MT

2

}
. Letting M =: M1 + M2

and letting W : R5∗n+2∗L → R be defined as W (Z) =
−W (x)−M1 ‖z‖

2, the bound

˙V (Z, t) ≤ −W (Z) ,∀ ‖Z‖ ≥ µ,Z ∈ B

(
0,

χ

3 (1 + α)

)
,

(22)
for all t ≥ 0.

Using the bound in (20) and the fact that the converse
Lyapunov function is guaranteed to be time-independent,
radially unbounded, and positive definite, Lemma 4.3 can
be invoked to conclude that

v (‖Z‖) ≤ VL (Z, t) ≤ v (‖Z‖) , (23)
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Fig. 1. System state trajectories generated using the developed technique.
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Fig. 2. Control trajectories generated using the developed technique.

for all t ∈ R≥0 and for all Z ∈ R5n+2L, where v, v : R≥0 →
R≥0 are class K functions.

Provided the learning gains, the domain radius χ, and the
basis functions for function approximation are selected such
that M+MT is positive definite and µ < v−1

(
v
(

χ
4(1+α)

))
,

Theorem 4.18 in [51] can be invoked to conclude that Z
is uniformly ultimately bounded. Since the estimates Wa

approximate the ideal weights W , the policy û approximates
the optimal policy u∗.

VII. SIMULATION RESULTS

The performance of the developed controller is demon-
strated by simulating a nonlinear, control affine system with
a two dimensional state x = [x1, x2]T . The system dynamics

0 2 4 6 8 10
Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 3. Critic weight estimates generated using the developed technique,
and compared to the ideal values (marked with dashed lines).
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Fig. 4. Actor weight estimates generated using the developed technique,
and compared to the ideal values (marked with dashed lines).

are described by (1) where

f (x) = −x1 −
1

2
x2

(
1− (cos (2x1) + 2)

2
)

g (x) = cos (2x1) + 2.

The origin is an unstable equilibrium point of the unforced
system ẋ = f (x). The control objective is to minimize the
cost in (2), where Q (x) = q2 and R = 1. For comparison
purposes, the optimal value function for this problem is
computed using the converse method in [57] as V ∗ (x) =
x21 + x22.

The basis function σ : R2 → R3 for value function
approximation is selected as σ =

[
x21, x1x2, x

2
2

]T
. Based on

the analytical solution, the ideal weights are W = [1, 0, 1]
T .

The data points for the simulation of experience in the
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Fig. 5. State estimation error.

update law (15) are selected to be on a 5 × 5 grid around
the origin. The learning gains are selected as kc = 0.2,
ka1 = 100, ka2 = 0.1, βγ = 3, and ν = 0.005. The gains
for the state estimator are selected as k = 5, α = 0.2, and
β = 5. The initial conditions are selected as x (0) = [1, 1]T ,
x̂ (0) = [−1,−1]T , Wa (0) = Wc (0) = [0.5, 0.5, 0.5]T , and
Γ (0) = 50 I3.

Figs. 1-5 demonstrates that the system state is regulated to
the origin, the generalized velocities are identified, and the
actor and the critic weights converge to their true values.
Furthermore, unlike previous results, a probing signal to
ensure persistence of excitation is not required.

VIII. CONCLUSION

An output-feedback MBRL method is developed for a
class of second-order nonlinear systems. The control tech-
nique uses exact model knowledge and integrates a dy-
namic state estimator within the model-based reinforcement
learning framework to achieve output-feedback MBRL. Sim-
ulation results demonstrate the efficacy of the developed
method. Integration of simultaneous state and parameter
estimation methods such as [49] with the MBRL method
to achieve output-feedback MBRL using uncertain models
is a topic for future research.
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