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Abstract— This paper presents a landing controller for a
fixed-wing aircraft during the landing phase, ensuring the
aircraft reaches the touchdown point smoothly. The landing
problem is converted to a finite-time linear quadratic tracking
(LQT) problem in which an aircraft needs to track desired
landing path in the longitudinal-vertical plane while satisfying
performance requirements and flight constraints. First, we
design a smooth trajectory that meets flight performance
requirements and constraints. Then, an optimal controller is de-
signed to minimize the tracking error, while landing the aircraft
within the desired time-frame. For this purpose, a linearized
model of an aircraft developed used under the assumption of a
constant approach airspeed, is used. The resulting Differential
Riccati equation is solved backward in time using the Dormand
Prince algorithm. Simulation results show a good tracking
performance and the finite-time convergence of tracking errors
for different initial conditions of the flare-out phase of landing.

I. INTRODUCTION

One of the most difficult tasks in aircraft control is achiev-
ing a safe and comfortable landing. A review of accident
statistics indicates that over 45 percent of all general aviation
accidents occur during the approach and landing phases of a
flight [1]. A closer look shows that the cause of over 90
percent of those cases was pilot related. Loss of control
was also a major contributing factor in 33 percent of these
cases. In many cases, the accidents have happened due to not
landing within a targeted landing time [2]. Aircraft landing
has fives phases: the base leg, the glide slope, the flare-out,
the touchdown, and the after-landing roll. The glide slope and
the flare-out are the most crucial phases. In the glide slope
phase the aircraft descends along a predefined straight line at
a steady state descent angle; whereas, in the flare-out phase
the aircraft gradually raises its nose while landing. There are
several performance requirements and constraints associated
with aircraft landing. The aircraft needs to follow the desired
trajectory and land smoothly within a targeted landing time.
In addition, the aircraft landing controller should be robust to
wind turbulence, measurement noise, and actuator failures.

Many researchers have applied various control techniques
to design an automatic aircraft landing control system.
Different control methods such as classical control [3],
[4], optimal control [2], [5]–[7], adaptive control [8], [9],
nonlinear control [10], [11], and intelligent control [12]–
[14] have been used to solve the automatic aircraft landing
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problem. In [15], the flare-out maneuver control was suc-
cessfully implemented using the classical feedback control
method. [3] implemented a PID controller combined with an
evolutionary technique to tune control gains. Generally, clas-
sical controllers often lack optimality in achieving desired
performances. [2] applied an optimization technique called
the parametric expansion method to synthesize a linear time-
varying aircraft landing controller. In [5], [13], [16]–[18]
issues such as robustness to measurement noise, actuator
faults, wind disturbances, and flight uncertainties were in-
vestigated and H2, H∞, LQR/LQG, mixed H2/H∞ control
techniques were employed to design optimal and robust
aircraft landing controllers. Recently, concepts from adaptive
control and intelligent control such as adaptive synthesis
based on dynamic inversion theory [10], [13], [19], neural
networks [14], quantitative feedback theory [9], sliding mode
control [8], structured singular value µ-synthesis, or fuzzy
techniques [20] were used to design automatic aircraft land-
ing controllers. In [8], [11], [18] nonlinear control techniques
were applied to improve the control performance of the
landing controller. Most of the aforementioned techniques
are based on the asymptotic convergence of tracking errors.
This does not guarantee a safe, smooth, and comfortable
landing, which often requires the aircraft to accurately track a
particular landing profile while landing within a given period
of time and satisfying performance requirements and flight
constraints.

The contribution of this paper is, therefore, designing an
optimal controller that guarantees the finite-time convergence
of the landing trajectory tracking errors. For this purpose,
we first design the desired landing path which satisfies
performance requirements and flight constraints. The flare-
out maneuver phase is designed as an exponential path,
which connects end point of glide slope phase and the
touchdown point on the runway. Furthermore, the touchdown
point is captured as a boundary condition. In addition, per-
formance requirements and constraints on control input and
output signals are determined. Subsequently, we formulate
the tracking problem by designing a performance index
which should be minimized in a targeted landing time. We
then have converted the aircraft landing problem to a Linear
Quadratic Tracking (LQT) problem where we minimize the
designed cost function for a linear model of the aircraft
respecting boundary conditions. Control gains are found
by solving differential Riccati equations backward in time
using the Dormand Prince algorithm. The simulation results
are analyzed to show that the developed trajectory tracking
system can handle a range of angle of attack and headwind
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disturbances.
In the remainder of this paper, in Section II, the aircraft

landing problem is formulated. In Section III, the desired tra-
jectory and performance index are designed by incorporating
the performance requirements and flight constraints. An LQT
controller is developed for aircraft landing by minimizing the
designed performance index to guide the aircraft to follow
the desired landing trajectory. In Section IV, the proposed
flight controller is simulated and the results are discussed.
Finally, Section V concludes this paper.

II. PROBLEM FORMULATION

The aircraft landing process is described in Figure 1. The
glide slope phase and flare-out phase are the most critical
steps. After the base leg, the aircraft should descend towards
the runway center-line with the flight path angle ν between
2.5 to 3.5 deg. As the aircraft descends to a certain altitude
above the ground, the flare-out phase begins. In the flare-out
phase of landing, the pitch angle θ of the airplane must be
gradually adjusted to have a value between 0 to 10 deg, and
the aircraft should approach the touchdown point smoothly.
The flare-out phase is the most difficult part of the landing
maneuver, as the run-way is not in the pilot’s field of view
and the touchdown point has to be accurately reached within
a targeted time smoothly, following the landing trajectory.
In this paper, we assume that the lateral and longitudinal
dynamics of the aircraft are decoupled, and the lateral
controller [21] takes care of the lateral deviations from the
center line of the runway. The focus of this paper, therefore,
is on the design of a longitudinal controller to track the
desired landing trajectory. The longitudinal motion of the

Fig. 1: An aircraft landing phases: the base leg, the glide slope, the
flare-out, the touchdown, and the after-landing roll.

aircraft is governed entirely by the elevator deflection angle
δe(t). The longitudinal dynamics of an aircraft is given by the
so-called short period equation of motion [2] of the aircraft:

θ̇(s) =
Ks(Tss+ 1)

( s
2

ω2
s

+ 2ζs
ωs

+ 1)
δe(s) (1)

where θ̇ is pitch rate, Ks is short period gain, Ts is path
time constant, ωs is short period resonant frequency, and ζ
is short period damping factor. Assuming the velocity V of
the aircraft to be constant, pitch angle rate θ̇ and altitude h
are related [2] through vertical acceleration ḧ as:

ḧ(s) =
V

Tss+ 1
θ̇(s) (2)

Fig. 2: Definition of aircraft coordinates and angles [2]. α is the
angle of attack, θ is the pitch angle, ν is the flight path angle.

Combining (1) and (2), a fourth-order linear differential
equation is found:

h(4)(t) + 2ζωsh
(3)(t) + ω2

s ḧ(t) = KsV ω
2
sδe(t) (3)

Substituting

ḧ(t) =
V

Ts
θ(t)− 1

Ts
ḣ(t), h(3)(t)) =

V

Ts
θ̇(t)− 1

Ts
ḧ(t) (4a)

h(4)(t) =
V

Ts
θ̈(t)− 1

Ts
h(3)(t) (4b)

in (3), the new aircraft equation of motion becomes
V

Ts
θ̈(t)− (

V

T 2
s

− 2ζωs
V

Ts
)θ̇(t)− (2ζωs

V

T 2
s

− ω2
s
V

T 2
s

− V

T 3
s

)θ(t)− (
1

T 3
s

− 2ζωs
1

T 2
s

+
ω2
s

Ts
)ḣ(t) = KsV ω

2
sδe(t)

(5)

from which one can derive, the state space representation of
the aircraft’s model as:

ẋ(t) = Ax(t) +Bδe(t) (6a)
y = Cx(t) (6b)

where x(t) =
[
h(t) ḣ(t) θ(t) θ̇(t)

]T
, B =

[
0 0 0 b4

]T
,

A =

[
0 1 0 0
0 a22 a23 0
0 0 0 1
0 a42 a43 a44

]
, a22 = −1

Ts
, a23 = V

Ts
, a42 = 1

vT 2
s
−

2 ζωs

vTs
+

ω2
s

v , a43 = 2 ζωs

Ts
− ω2

s − 1
T 2
s

, a44 = 1
Ts
− 2ζωs,

b4 = ω2
sksTs and C is the identity matrix.

Our aim is to design a controller for the aircraft to follow
the landing trajectory with the minimum tracking error e(t)
given as:

e(t) = x(t)− r(t) (7)

where r(t) ∈ R4 is the desired landing trajectory over the
landing time interval [t0, tf ]. Then, given an aircraft model in
(6) and boundary conditions as x(t0) = x0 and x(tf ) = xf ,
we address the following problems for the aircraft landing:

Problem 1: Design a desired landing flight trajectory r(t)
which captures performance requirements and flight con-
straints.

Problem 2: Design a performance index J to capture
performance requirements and constraints

Problem 3: Design a controller that tracks the desired tra-
jectory r(t) and satisfies the given performance requirements
and constraints.



III. LANDING TRAJECTORY TRACKING

A. Trajectory design

The aircraft landing trajectory is the desired aircraft land-
ing path, which the aircraft follows over a specified period
of time [t0, tf ]. Landing trajectory must ensure safe and
comfortable landing. The desired landing path is expressed
as a desired altitude which is a function of forward distance.
Its important phases are the glide slope phase and flare-out
phase as shown in Figure 3. The glide slope phase is the
first part of a landing path. It is modeled as a straight line
path whose slope is given in terms of the flight path angle ν.
The other part is the flare-out path which is initiated when
the aircraft reaches to a certain height hf 0 above the landing
surface. Flare-out path is an exponential path with a near
zero flight path angle at touchdown. In Figure 3, the desired
landing path is shown in forward distance (X)-altitude (h)-
plane.

h

X

(Xg0
; hg0

)

ν

(Xgf
; hgf

)

(0; 0)

(Xt; 0) (X1; hc)

(Xf 0
; hf 0

)

Runway

end-point

Glide slope path

Flare-out path

Touch-down point

Fig. 3: An aircraft landing path where (Xg0, hg0) and (Xgf , hgf )
are the beginning and the endpoint of the glide slope path;
(Xf 0, hf 0) and (Xt, 0) are the beginning and the endpoint of the
flare-out path; (0, 0) is the origin of X-h plane, and (X∞, hc) is the
final point on the flare-out path usually defined below the ground.
The origin of the X-h plane is assumed to be at the beginning of the
runway and the aircraft must land within one-third of the runway.

In the glide slope phase the aircraft tracks a straight
line path pointing toward the beginning of the runway. The
desired altitude, hd, is computed based on a given flight path
angle ν:

hd = −tan(νd)(X −Xg0) + hg0 (8)

As soon as the flare-out phase starts, the desired altitude hd

is computed as:

hd = −hc + (hf 0 + hc)e
−Kx(X−Xf 0

) (9)

where Kx is a constant which defines the curvature of flare-
out maneuver path, depending on the distance between the
origin of X-h plane and the touchdown point.

The objective of a good, stabilized final approach is to
descend at an angle and airspeed that permits the airplane to
reach the desired touchdown point with minimum floating;
in essence, a semi-stalled condition [1]. To accomplish this,
it is essential that both the descent angle and the airspeed be

accurately controlled. Since on a normal approach the power
setting is not fixed as in a power-off approach, the power
and pitch attitude are adjusted simultaneously as necessary
to control the airspeed and the descent angle, or to attain the
desired altitudes along the approach path. In this paper, we
focus on the flare-out phase to achieve a safe and comfortable
landing. In (9), Xf 0, hc and Kx are unknowns. We can solve
for these unknowns from tan(νd), hf 0, and Xt under the
following constraints:
• Slope continuity constraint: For a smooth phase change,

the slope at the beginning of the flare-out path should
be equal to the slope of the glide slope path. Thus, the
slope of glide slope path can be calculated as

ḣd = − tan(νd) (10)

Similarly, the slope at the beginning of flare-out path is

ḣd = −Kx(hf 0 + hc)e
−Kx(X−Xf 0

)|X=Xf 0
(11)

Using (10) and (11), Kx is computed as

Kx =
tan(νd)

hf 0 + hc
(12)

• Path continuity constraint: This constraint guarantees
the continuity of the path when transiting from the glide
slope phase to the flare-out phase. By design, we have
Xf 0 = Xgf . We then need to ensure that hd at Xgf

given in (8) is the same as hd at Xf 0 given in (9)
resulting in

Xf 0 =
hg0 − hf 0
tan(νd)

+Xg0 (13)

• Touchdown constraint: The landing path intersects the
ground at the touchdown point Xt. Thus, at touchdown
point we have

− hc + (hf 0 + hc)e
−Kx(Xt−Xf 0

) = 0 (14)

Finally, Kx and hc are found by solving (12), (13) and
(14).

Under the assumption of constant aircraft forward velocity
Ẋ , at any time moment t > t0, the forward distance X on
the flare-out curve will be approximately

X = Xf 0 + Ẋ(t− t0) (15)

Substituting X−Xf 0 from (15) in (9), the landing trajectory
in flare-out phase is governed by

hd = −hc + (hf 0 + hc)e
−K(t−t0) (16)

where K = KxẊ . By differentiating (16), the desired rate
of descent in flare-out phase is:

ḣd = −K(hf 0 + hc)e
−K(t−t0) (17)

The value of the pitch angle is crucial only during the last
few sec of landing before the touchdown point. In flare-out
maneuver phase, the desired pitch angle, θd, is::

θd = 0 (18)

Also, for a safe and comfortable landing, the pitch rate θ̇d
should be:

θ̇d = 0 (19)



B. Performance requirements

The following landing requirements and flight constraints
are considered for the aircraft landing in this paper:
C1: The landing path should be an exponential path such

that it ensures a safe and comfortable landing.
C2: The rate of descent ḣ should be non-zero in order to

avoid overshooting. In addition, the rate of descent at
touchdown should be a small negative value in order
to prevent over stressing of landing gear. Requirements
to avoid undesirable behaviors such as landing gear
over stress, aircraft floating down runway and aircraft
overshooting runway are captured by magnitude of rate
of descent at touchdown point. Typically based on type
of the aircraft, a value between 60 to 180 ft/min is
considered as an ideal rate of descent at touchdown
point.

C3: The lower limit on the pitch angle θ should be 0◦ in
order to prevent the nose wheel of an aircraft from
touching down first, and the upper limit on the pitch
angle θ should be 10◦ to prevent the tail gear from
touching down first:

C4: During landing, in the flare-out maneuver phase, the
angle of attack must remain below 80 percent of the
stall value. The stall value is assumed to be 18◦ [2].
Hence, the rate of change of angle attack is restricted
to a value less than 20 percent of the stall value:

C5: The longitudinal motion control is mainly executed
by the elevator. To avoid saturation, the elevator is
not permitted to operate against the mechanical stops
during the landing process. Thus, the deflection of the
elevator is restricted between −35◦ and +15◦.

In addition, the aircraft should follow the designed landing
trajectory and reduce the tracking error within the targeted
landing time tf with minimum control effort δe(t). This can
be captured by the following performance index:

J = [Cx(tf )− r(tf )]TP [Cx(tf )− r(tf )]+∫ tf

t0

{[Cx(τ)− r(τ)]TQ[Cx(τ)− r(τ)] + δTe (τ)Rδe(τ)}dτ

(20)

where P ≥ 0, Q ≥ 0, R > 0, are all symmetric weighting
parameters. The terms outside the integral ensure that the
states are close to the desired values at the touchdown point,
avoiding an early or a late landing. On the other hand, the
terms inside the integral push the aircraft to track the desired
landing trajectory with minimum control effort in the landing
time [t0, tf ].

C. Controller design based on linear quadratic tracking

Given the aircraft model in (6) and the boundary conditions
x(t0) = x0 =

[
h(t0)=hf 0

ḣ(t0) θ(t0) θ̇(t0)
]T

and x(tf ) =

xf =
[
0 0 0 0

]T
, our aim is to find an optimal control

δ∗e (t) that guides the aircraft to follow the desired landing
trajectory r(t) over the time interval [t0, tf ], minimizing the
performance index in (20), as described below:

min
∀t∈[t0 tf ]

J (21)

subject to 
ẋ(t) = Ax(t) +Bδe(t)

x(t0) = x0

x(tf ) = xf

Defining the co-state vector λ(t) = S(t)x(t) − v(t), where
S(t) = CTP (t)C(t) and v(t) = CTPr(t), and defining
the Hamiltonian function H = 1

2
[Cx(t) − r(t)]TQ[Cx(t) −

r(t)] + 1
2
δTe (t)Rδe(t) + λT (Ax(t) + Bδe(t)), the constrained

optimization in (21) will be converted to

min
∀t∈[t0 tf ]

J̄ = [Cx(tf )− r(tf )]TP [Cx(tf )− r(tf )]+∫ tf

t0

(H − λT ẋ(t))dτ
(22)

whose solution can be found from δJ(x(t)) = 0, where
δJ is the variation of the functional J . The optimal control
function will be

δ∗e (t) = −K(t)x(t) +R−1BT v(t) (23a)

K(t) = R−1BTS(t) (23b)

in which S(t) and v(t) can be found by solving the follow-
ing differential equations in a backward way with a given
boundary conditions:

−Ṡ = ATS + SA− SBR−1BTS + CTQC (24a)

−v̇ = (A−BK)T v + CTQr (24b)

S(tf ) = CTPC (24c)

v(tf ) = CTPr(tf ) (24d)

IV. SIMULATION

A simulation environment is set up by integrating the
MATLAB and FlightGear simulation Software in which we
simulated an aircraft landing from the altitude of 95 ft to the
runway 10L of San Francisco airport. The information on the
approach plate (see Table II) of runway 10L of the airport is
used to design a safe and comfortable landing trajectory for
an aircraft with model parameters given in Table I. Table II
summarizes parameters extracted from the approach plate.
Similarly, assuming this particular aircraft has a nominal
initial altitude hf 0 of 100 ft, the desired flight path angle
ν of 3 deg, and the pitch angle θ of 0 deg, then using (12)
to (15), we found the desired landing trajectory parameters
Xf 0, Kx, hc, K, as shown in Table III.

The designed desired landing trajectory is plotted in Figure
4 in solid blue. The desired altitude hd(t) and the desired
altitude rate ḣd(t) are exponential functions while the desired
pitch angle θd and the desired pitch rate θ̇d are constant
functions. Both exponential functions and constant functions
have derivatives of all orders. Therefore, the designed landing
trajectory is a smooth landing trajectory.

N0 Symbol Parameter
value

1 Ks -0.95 sec−1

2 Ts 40 sec
3 ωs 1 rad/sec
4 ζ 0.5

TABLE I: The aircraft model
parameters

P =

[
0.9 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 1

]
Q =

[
0.00067 0 0 0

0 0.0265 0 0
0 0 150 0
0 0 0 65

]
R = 1

(25)



N0 Name Parameter
value

1 Xg0 -34346 ft
2 hg0 1800 ft
3 Xt 3957 ft

TABLE II: Parameters extracted
from the approach plate

N0 Name Parameter
value

1 Kx 0.00049
2 Ẋ 256 ft/sec
3 K 0.1385
4 hc 6.68 ft
5 Xf 0

-1908 ft

TABLE III: The designed land-
ing trajectory parameters

N0 Parameter
Name

Parameter
value

1 t0 0 sec
2 tf 20 sec
3 h0 95 ft
4 ḣ0 -14 ft/sec
5 θ0 -0.05 rad
6 θ̇0 0 rad/sec
7 hf 0 ft
8 ḣf 0 ft/sec
9 θf 0 rad
10 θ̇f 0 rad/sec

TABLE IV: Simulation param-
eters: Initial and final condi-
tions for case I
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Fig. 4: The desired smooth landing trajectories (solid blue) and the
simulated aircraft landing trajectories (solid red).

A. Case I: Simulation results for the initial condition given
in Table IV

For the given initial conditions in Table IV, the simulated
aircraft landing trajectory is shown in Figure 4 in red. The
controller gain is found solving (24d) in a backward way us-
ing the Dormand-Prince algorithm. To respect the Constrains
C1-C5 in Section III-B, we have tuned the performance index
parameters R, Q, and P to values in (25). Comparing the
desired altitude hd(t), the desired altitude rate ḣd(t), and
their respective simulation values in Figure 4, we can see
that the aircraft has accurately tracked the desired landing
trajectory in a desired landing time of 20 sec satisfying
Constraints C1-C5 in Section III-B. This comparison is
summarized in Table V.

B. Case II: Simulation results for different initial conditions

Head wind and deviation of a desired flight path angle from
a desired value of 3 deg introduces a deviation in the gliding
distance and the pitch angle which in turn give rise to a
deviation in the initial altitude of the flare-out phase as shown
in Figure 7. However, the designed controller can handle
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Fig. 5: The trajectory tracking error for the flight simulation results
in Fig. 4
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Fig. 6: Optimal controller gains for the flight simulation results in
Fig. 4

Runway

Xf 0

hf 0

Xg0

hg0

∆hf 0

∆Xg

∆ν

Increased airspeed

flight path

Normal glide speed

flight path

Fig. 7: The deviations in the gliding distance and the pitch angle
due to head wind disturbances cause deviations in the initial altitude
of the flare-out phase.

these deviations in the initial altitude ∆hf 0 and pitch angle
∆θ by adjusting control input in order to maintain the rate
of descent and the desired approach airspeed, while avoiding
the saturation region of the elevator actuator (Constraint
C5) . Acceptable deviations in the initial altitude and pitch
angle around the desired landing trajectory is determined
by varying them correlationally until the control limiting
values are attained instantaneously. Accordingly, ∆hf 0 and
∆θ are found to be 20 ft and 1 deg respectively, and the
corresponding region of operation is shown in Figure 8 in
green.



N0 Constraint Constraint validation based
on simulated flight data

C1 Exponential (smooth) trajectory Satisfied by design in (9)
C2 60 ≤ ‖ḣd(tf )‖ ≤ 180ft/min ‖ḣd(tf )‖ = 62.7 ft/min
C3 0◦ ≤ θ(tf ) ≤ +10◦ θ(tf ) ≈ 0

C4
α(t) < 18◦

∆α(t) < 3.6◦
Satisfied through

θ ≈ 0 and θ̇ ≈ 0

C5 −35◦ ≤ δe(t) ≤ +15◦ −22.3◦ ≤ δe(t) ≤ +2.4◦

TABLE V: Landing constraints C1-C5 validation for the given initial
conditions in Table IV

Fig. 8: Trajectory tracking performance for different initial condi-
tions of the flare-out phase.

0 2 4 6 8 10 12 14 16 18 20 22

time in sec
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-0.5

-0.4
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0
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d
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Fig. 9: The control input signal for the flight simulation results for
case I (left) and case II (right).

V. CONCLUSION

In this paper, a smooth trajectory tracking system was de-
signed for a fixed-wing aircraft landing. The aircraft landing
problem was converted to a finite-time LQT problem. Infor-
mation on the approach plate of the runway was employed
to design a desired smooth landing trajectory. We considered
multiple performance requirements and constraints to design
an optimal controller which minimizes the trajectory tracking
error. The designed controller gives an accurate tracking
performance for the flare-out phase of aircraft landing. The
simulation result demonstrated the finite-time convergence
of the trajectory tracking error. Moreover, the robustness
of the designed controller was evaluated against different
initial conditions due to the headwind disturbances. This
work can be extended by employing a nonlinear model of an
aircraft in the presence of turbulent crosswinds and system

uncertainties.
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