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Abstract— Glucose-insulin metabolism models are useful
tools for research on diabetes, in development of diabetes-
related medical devices like artificial pancreas systems, insulin
pumps and continuous glucose monitors, and may also play
a role in personalized decision support tools for people with
diabetes. Such models are often highly nonlinear with many
parameters that are person dependent. An example is the model
used in the UVa/Padova T1DM simulator, which has a large
number of states and parameters. It is desirable to be able
to personalize such models through parameter identification
based on limited glucose, meal and insulin data obtainable from
free-living settings, as opposed to clinical research settings that
have traditionally been required. In this paper we use the UVa-
Padova T1DM simulator model in a case study to investigate
observability of the model under different measurements, and
the identifiability of its parameters as a function of the model’s
inputs and outputs. Structural identifiability is discussed and
briefly investigated using the nonlinear Observability Rank
Condition. Practical identifiability is discussed and investigated
using sensitivity and Fisher information matrix analysis. We
show how such analyses can be used to guide model reduction
for improved identifiability, or to select the most proper subset
of parameters to estimate.

I. INTRODUCTION

Diabetes is a disease affecting a large portion of the
world’s population, with a global prevalence of 9% and rising
[1]. Once a person is diagnosed with diabetes, control of the
blood glucose level to within a normal range is required to
avoid acute and chronic consequences of the disease. In Type
1 Diabetes Mellitus (T1DM) this control is achieved by using
injections of insulin, either by using syringes, insulin pens or
insulin pumps, however the control problem is not trivial and
many diabetes patients suffer from poor glycemic control.
The most dangerous acute consequences of poor control are
severe hypoglycemia or ketoacidosis, both of which can be
fatal. The diabetes patient is also at increased risk of long
term adverse effects like cardiovascular disease, neuropathy
(nerve damage), retinopathy (damage to the retina, causing
blindness) and kidney failure.

Glucose-insulin metabolism models describe the interplay
between blood glucose, insulin and other relevant variables in
humans. The UVa/Padova T1DM S2013 simulator (T1DMS)
is based on one such model [2], [3]. T1DMS has been
accepted by the US Food and Drug Administration (FDA) for
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use in simulation studies of equipment that measures and/or
manipulates the blood glucose level, e.g. sensor augmented
insulin pumps and artificial pancreas systems. Such in silico
studies may be performed in addition to or in place of some
of the in vivo animal or human clinical studies required to
approve a new medical device or equipment. This benefits
device manufacturers and people with diabetes by cutting
costs and time to market of such equipment. The simulator
has 300 predefined parameter sets, called virtual patients,
grouped into 100 adults, 100 adolescents and 100 children.
The parameter set for each virtual patient has been drawn
randomly from a joint parameter distribution describing
each group [3]. This parameter distribution has been found
through more than 30 years of medical experiments using
measurements of plasma glucose, insulin and glucagon,
including use of radioactive tracer labeling techniques to
identify subsystems within the model. Such detailed data are
called ”clinical research data” in the following.

For simulation use, the T1DMS model is fit for purpose, as
the parameters are considered known once a virtual patient
is selected. Other uses of the model are possible, and in
principle the model parameters can be adapted to patient
data to get personalized models. Such a model could be
incorporated into medical devices that control blood glucose,
like sensor augmented insulin pumps or artificial pancreas
systems, to provide glucose predictions that can be used
to compute optimal insulin inputs. A model well fitted
to an individual could also be used in decision support
tools for individuals that do not use insulin pumps, e.g. by
giving advice about the insulin dosage, or tracking patient
parameters over time. In order for such personalization to
be practically feasible, the parameters must be possible to
identify based on obtainable measurements in free-living set-
tings. Such data are called ”free-living data” in the following,
and comprise of infrequent glucose measurements obtained
through Self Monitoring of Blood Glucose (SMBG) meters
and/or frequent glucose measurements from a Continuous
Glucose Monitor (CGM), insulin dosages (basal and bolus)
and meal information.

The intended use of the T1DMS model is simulation, and
the model is generally considered unidentifiable from free-
living data [4]. It is possible that a personalized model with
good prediction ability can be achieved by an identification
procedure that first performs a classification of the glucose
data to select an initial parameter set (i.e. select the prede-
fined virtual patient that best fits the data), then optimizes
a small subset of parameters in the vicinity of the initial
parameter set. In this use case it is important to know which
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parameters are possible to estimate from the data, and which
parameters are best to fix or compute from other patient
measurements, e.g. body mass.

This paper discusses methods for investigating identifiabil-
ity of parameters in nonlinear state-space models, using the
T1DMS model as a case study. It is shown how the methods
can be used to guide model reduction, or select a subset of
parameters to estimate.

II. UVA/PADOVA T1DM SIMULATOR MODEL OVERVIEW

We used the S2013 version of the T1DMS model, which
is described in slightly differing ways in the literature [3],
[4]. A short introduction to the model is given here, for more
details see the references. A useful overview of the model
equations is given in Fig. 2 of [5]. We provide an inference
graph representation of the T1DMS model in Fig. 1.

The model is a compartmental model with plasma, liver,
subcutaneous (SC) and utilization tissue compartments. The
main variables modeled are
• Glucose, the ’universal fuel’ of the body
• Insulin, a hormone with a blood glucose lowering effect
• Glucagon, a hormone with a blood glucose raising

effect.

A. System equations

The T1DMS model is of the form:

ẋ = f(x,p) + g(u,p) (1)

where x is the state, u is the input and p is a vector of
parameters. The state vector x and input vector u of the
model are:

x =



Gp

Gt

Gs

Ip
H
Il
I ′

Isc1
Isc2
X
XL

Hsc1

Hsc2

SRs
H

XH

Qsto1

Qsto2

Qgut



- Plasma glucose [mg/kg]
- Tissue glucose [mg/kg]
- Subcutaneous glucose [mg/dL]
- Plasma insulin [pmol/kg]
- Plasma glucagon [ng/L]
- Liver insulin [pmol/kg]
- Intermediate insulin conc. [pmol/L]
- SC insulin compartment 1 [pmol/kg]
- SC insulin compartment 2 [pmol/kg]
- Insulin action in tissue [pmol/L]
- Insulin action in liver [pmol/L]
- SC glucagon compartment 1 [ng/L]
- SC glucagon compartment 2 [ng/L]
- Glucagon secretion [ng/L min]
- Glucagon action [ng/L]
- Glucose content in upper stomach [mg]
- Glucose content in lower stomach [mg]
- Glucose content in gut [mg]

u =

 D
IIR
Hinf

 - Meal glucose intake [mg]
- Insulin infusion rate [pmol/kg min]
- Glucagon infusion rate [ng/L min]

The three inputs affect one state each, Qsto1, Isc1 and
Hsc1, respectively, in an additive and linear fashion. A
special feature of the meal glucose intake D is its use

as a kind of parameter affecting the computation of Qsto2

and Qgut through the function kempt. This lets the model
remember the size of the last meal (see [3] for details).

Gp Gt X Ip

XL I ′ Il Isc2 Isc1

IIR

Gs Qgut Qsto2 Qsto1 D

XH HSRS
H

Hsc1/2 Hinf

Fig. 1. Inference graph representation of the T1DMS model. White and red
circles are states. Dark red states can be measured in a free-living setting,
light red states can be measured in research settings. Blue circles are inputs.
An edge in the graph from state A to state B signifies that the differential
equation governing A has terms containing B, implying that information
about B can be inferred by monitoring A [6]. All states are self-referencing,
but the loop edges usually signifying this has been removed from the graph
to reduce clutter.

The state transition functions f = [f1 · · · f18]> are not
repeated here. For the discussion in this paper it is relevant to
mention that less than half of the functions in f are nonlinear.
The nonlinear functions are those describing the dynamics of
states Gp, Gt, Qsto2, Qgut, XH , H and SRs

H . The nature of
the nonlinearities include ramp functions, rational functions
of the states (Michaelis-Menten kinetics), logarithms and
hyperbolic tangent functions. Ramp functions are zero when
some quantity is less than a threshold, and linear when above
the threshold. An example of a ramp function is the function
for renal excretion which is part of the equation for Ġp, given
by:

E = −ke1 max[(Gp(t)− ke2), 0] (2)

B. Measurement equations

The measurements that can be done relatively easily on
this system in a clinical experiment setting are discrete time
measurements of the plasma glucose, Gp, plasma insulin, Ip,
and plasma glucagon, H . These measurements can in theory
be taken quite frequently, but a practical lower sampling
interval limit is one sample every 5 minutes for short periods,
usually a longer sampling interval is used. The measurements
are normally performed through venous blood sampling
analyzed using laboratory analyzers, and are affected by
noise.

Outside clinical research settings, a person with diabetes
measures his/her blood glucose level using a SMBG meter,
using finger capillary blood and getting a result within
seconds. SMBGs are less accurate than laboratory blood
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glucose methods. Another drawback of such measurements
in a parameter identifiability context is that they are usually
not performed often, the sampling frequency varies from
person to person, and can be as seldom as once a day.

Continuous glucose monitors (CGMs) alleviate this prob-
lem by providing a new glucose estimate frequently, typically
every 5 minutes. CGMs have a small electrochemical glucose
sensor inserted subcutaneously. The glucose level in the SC
space is modeled by the state Gs in the T1DMS model,
which is delayed compared to the Gp state through first order
linear dynamics:

Ġs = − 1

Ts
(Gs −

Gp

VG
) (3)

where VG is one of the parameters in p.
The fact that CGM measurements are not a direct mea-

surement of the plasma glucose has implications for the
observability/identifiability when using CGM signals as the
measurement.

To summarize the measurement equation, it is linear,
discrete-time of the form yk = h(x(tk),p) = H(p)x(tk).
If all possible measurements are performed, we have

y =


ypg
ysg
ypi
yph


- Plasma glucose [mg/dL]
- SC glucose [mg/dL]
- Plasma insulin [pmol/L]
- Plasma glucagon [ng/L]

H =


1
VG

0 0 0 0 0 0 · · · 0

0 0 1 0 0 0 0 · · · 0
0 0 0 1

VI
0 0 0 · · · 0

0 0 0 0 1 0 0 · · · 0


The two last rows of H and y are only present in a clinical

experiment setting, since insulin and glucagon measurements
can only be measured using laboratory methods.

C. Parameters

The parameters of the model are many, and they span
a range of uncertainty and dynamics. Some parameters
are nearly constant across individuals, others are person-
dependent but constant, and some are time-varying [7], and
can even be situation dependent. Some parameters are more
related to the last ingested meal than to the person, and some
are directly measurable, e.g. body weight.

III. OBSERVABILITY AND IDENTIFIABILITY

When a system is observable one is able to infer the initial
state given the inputs and outputs (measurements) since the
initial time. When a system is identifiable it is possible to
identify the values of the parameters of the system from
the same data. Any system with parameters given by the
parameter vector p can be transformed into a new system
where the parameters are made part of an augmented state
vector consisting of the states and the parameters, xa =
[x> p>]>, where the parameters are often assumed to have
no dynamics, i.e. ṗ = 0. This means that any identifiability

problem can be considered a special case of an observability
problem [8].

A. Structural observability

For linear systems, observability at at a point p in pa-
rameter space is determined by the Kalman rank condition,
i.e. computing the observability matrix of the system and
checking that is has rank equal to the dimension of the state
vector. The nonlinear counterpart to this is the Nonlinear
observability rank condition (NORC) [8], [9].

A system may be non-observable due to structural causes,
but also due to specific parameter values. As an example
of the latter, the following system with two states and one
measurement[

ẋ1

ẋ2

]
=

[
−1 1

0 −a

][
x1

x2

]
, y = x1 + x2 (4)

is observable except if a=2, for this exact value of a the
rank of the observability matrix collapses to 1. A system
like this, which is observable except in a set of Lebesgue
measure zero in parameter space, is said to be structurally
observable. If a system is structurally unobservable there are
fundamental observability problems in the model due to its
structure, and it is impossible and thus meaningless to try to
estimate its states and parameters, regardless of the parameter
values. Structural observability in nonlinear systems can be
determined using graph theory as described in [6]. From the
inference graph of the T1DMS model shown in Fig. 1 we
see that all states except Gs influence Gp. This means that
the model is structurally observable when Gp and Gs are
measured. The minimal sensor setup that gives a structurally
observable system is to measure only Gs.

B. Practical observability

The question of practical observability is different from
structural observability, as it is based on a set of input and
output data, where the measurements can be infrequent and
noisy. It is also called a posteriori observability, reflecting
its use after data has been collected from the system. Note
that data collection can be and is often done synthetically
through simulation of the system.

IV. METHODS

This section gives an introduction to the methods used to
investigate the observability and identifiability of the T1DMS
model in this work.

A. Nominal trajectory

Some of the methods to be presented require a nominal
trajectory to base the observability and identifiability analysis
on. The nominal trajectory we used in this study was
constructed from data from patient 559 in the OhioT1DM
dataset [10], and a scenario spanning two days was used.
Nominal parameters p0 were found through manual tuning
to make the simulated curve approximate the measurements.
While this method for choosing the nominal trajectory is
somewhat ad hoc, it makes sure that the nominal trajectory
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and parameter set that we base the sensitivity analysis on is
realistic and relevant to describe the patient.

B. Nonlinear observability rank condition

NORC is computed by finding Lie derivatives of the output
function. If the measurement equation is time invariant and
independent of the control inputs the Lie derivative is

Lf = f>
∂

∂x
(5)

The following matrix of Lie derivatives must be computed
for the system, and the rank of the matrix must be deter-
mined:

dO =



∂h
∂x1

· · · ∂h
∂xn

∂Lfh
∂x1

· · · ∂Lfh
∂xn

...
...

...
∂Ln−1

f h

∂x1
· · · ∂Ln−1

f h

∂xn


(6)

In general the terms of the matrix will contain the states
and the parameters of the system, meaning that the rank of
the matrix and therefore also the observability of the system
is dependent on the state and parameter vectors. Therefore
one may use it to determine the observability given some
state x and parameter vector p.

The NORC answers the question of whether it is theoreti-
cally possible to identify the values of the states when given
complete, noise free and continuous data. All these prereq-
uisites are obviously never satisfied in the glucose/insulin
system. This means that even if the NORC analysis con-
cludes that the structure is observable, it may still not be
practically observable; to determine that, the methods of the
next section are needed. Nevertheless, the NORC analysis
may still provide some insights into the system.

C. Sensitivity analysis

Sensitivity analysis can be used to determine practical
identifiability of parameters. A nominal trajectory starting
at initial state x0 using a nominal parameter vector p0

and a scenario of inputs {uk} is used to investigate the
identifiability locally around this trajectory.

The method starts by computing Sx(k), the nx × np
parameter-to-state sensitivity matrix ∂x

∂p>
for each time step

k along the nominal trajectory. Sx can be found through
numerical integration over a time interval that spans the
available measurements, with initial values x(0) = x0 and
Sx(0) = 0:

Ṡx =
∂f

∂x>
Sx +

∂f

∂p>
(7)

where (7) follows from differentiating (1) with respect to p
[11]. The discrete-time version is:

Sx(k + 1) =

(
I +

df

dx>
∆t

)
Sx(k) +

df

dp>
∆t (8)

where ∆t is the time step of the simulation. In this work we
found the matrices df

dx>
and df

dp>
using finite differences at

each simulation step, using perturbations of the parameters
that are based on a fraction of the range of values the
parameter can take.

The parameter-to-output sensitivity matrix Sy is con-
structed row by row, with row k given by HSx(k). This
matrix has a row for every step of the simulation. A smaller
Sy,meas matrix is also computed that only contains the
rows of Sy corresponding to times where a measurement
is available (every 5 minutes in our scenario).

Once Sy has been found we can analyze it as follows:

1) If there are columns in Sy containing all zeros, there
is no information about the corresponding parameter,
and it is therefore not identifiable from the data. We
call these ”no-information parameters”.

2) If all values in a column of Sy are small, there is
little hope of identifying the corresponding parameter
from real data. The limit for what ”small” is depends
on the noise of the measurement system. For glucose
measurements, any change of glucose concentration
less than 5 mg/dL (0.28 mmol/L) is not reliably
discernible with an SMBG or CGM measurement, and
we have used this as a lower threshold. Any column in
Sy having max absolute value lower than this threshold
are considered ”low-information parameters”.

3) Sreduced
y is constructed from Sy by removing ”no-

information” and ”low-information” columns
4) Singular value decomposition (SVD) of the Sreduced

y

matrix generates a set of singular values (SV) and
corresponding right singular vectors (RSV) that can be
analyzed as in Stigter et al. [12], by looking for a gap in
the singular values. The column removal done to pro-
duce Sreduced

y makes it likely that several of the SVs
that would otherwise be near zero have already been
eliminated. The RSV corresponding to the smallest SV
contains information about the linear combination of
parameters that is most unidentifiable. Parameters with
strong linear correlation in the Sreduced

y need to be
reduced from the model by being combined or fixed
or otherwise eliminated.

5) The reduction is performed, new S matrices are com-
puted, and the analysis is performed again.

6) When to stop the process is not clear. It can be done
by analyzing the variance of parameter estimates [13].
Other studies have used thresholds for the SVs, [14],
stopping when the smallest SV is larger that a given
limit. In our work we focused on the smallest SVs,
which lead to those parameters that are most clearly
unidentifiable, to find the first parameters to reduce
from the model.

We call the no-information, low-information and linearly
correlated parameters found through SVD analysis the ”iden-
tifiability signature”, following Stigter et al [12]. The above
method also has many similarities with the methods pre-
sented by other researchers in this area [15], [13], [14].
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D. Fisher Information Matrix analysis

Fisher’s Information Matrix (FIM) is given by

FIM = E

{(
∂ ln p(z|p)

∂p

)(
∂ ln p(z|p)

∂p

)>}
= −E

{
∂

∂p

(
∂ ln p(z|p)

∂p

)} (9)

where z is the measurement, p is the parameter vector and
p(z|p) is the likelihood function. A practical approximation
of the FIM is [11]:

FIM =

N∑
k=1

Sx(k)>H>R−1HSx(k) (10)

where R is the covariance matrix of the measurement(s).
As with Sy we can compute the FIM for all time steps of

the simulation or only for those where measurements are
available. The inverse of the FIM is a covariance matrix
called the Cramer-Rao Lower Bound (CRLB). The CRLB
can be used to determine the theoretical lower limit of
covariance that can be achieved for each parameter given
the measured data. When the FIM is noninvertible, rows or
columns that are zero signify that there was no information in
the measurements about the corresponding parameter. Also,
further insights can be gained by computing the correlation
coefficients from the CRLB. The condition number of the
FIM can be used to determine how close it is to singularity,
and eigenvalues and eigenvectors of the FIM can be used
to determine which parameters that are highly correlated or
what combination of parameters that are most estimable. The
scaling by R−1 adds the possibility of investigating different
sensor noises and their influence on parameter identifiability.

The FIM and Sy matrix analyses give similar insights
about unidentifiable parameters. We based our analysis
mainly on the sensitivity matrix, as we found it to be more
intuitively interpretable than the FIM. Stigter et al. [12] also
claim that rank tests based on the FIM is less precise than
rank tests based directly on the sensitivity matrix.

The T1DMS model was implemented based on the ref-
erenced articles, and a framework for simulating it and
computing sensitivity matrices and FIM was implemented.

V. RESULTS

A. NORC analysis of the T1DMS model

The beginning of the dO matrix was computed for
the T1DMS model system equations using the unaug-
mented state vector and only ygp measurements, i.e. H =
[ 1
VG

0 0 0 · · · 0]. The computed matrix is quite sparse for
the top rows, then gets more and more dense with more and
more complex terms as the level of differentiation increases.

We observed that the computation of the dO matrix
branches several times due to the ramp-like nonlinearities of
the model, meaning that dO and its rank differs throughout
the state space depending on which side of the ramps we
are. For example, the value of Gp divides the state space
into at least 4 parts, since the renal excretion function E and
the insulin dependent glucose utilization function Uid include

conditionals on the value of Gp. It was found that the matrix
is different for the Gp intervals (0,VGGth), (VGGth,Gpb),
(Gpb,ke2) and (ke2, Gmax). Similar effects occur also for
other variables, e.g. XH . These state space ’dividing lines’
are possible to read out of the model equations directly.

It is intuitive that parameters that are only in effect when
a ramp is active, are unobservable when the system is in an
area of state space where the ramp is inactive, since those
parameters are then multiplied by zero and cannot affect the
output. An example of this is given by the equation for renal
excretion in (2), where neither ke1 nor ke2 is observable
when Gp < ke2.

Another observation is that the column in the dO matrix
corresponding to Gs has all zero elements, indicating that
Gs is unobservable when only plasma glucose is measured.
This is obviously true, since the Gs state only exists in
order to model the CGM measurement, and does not affect
any other state. When both SMBG and CGM measurements
are available, the Gs state obviously is observable, as it is
directly measured by ycgm. This can also be seen directly
from the graph in Fig. 1, as Gs has information about Gp

but not the other way around.

B. Model reduction based on sensitivity analysis

When Sy was computed for the chosen nominal trajectory,
we saw that it provided no information about parameters
δ, kh1, kh2, and kh3, seen as all zeroes in columns of Sy

corresponding to these parameters. The kh1, kh2, and kh3
parameters get zero information by running our scenario
because they are part of the SC glucagon subsystem and
no SC glucagon was given in the scenario. Adjusting the
scenario to include such inputs makes Sy have values also
for these parameters.

The δ parameter is part of the glucagon kinetics and secre-
tion equations of the T1DMS model, affecting the glucose
through XH and H . The reason why we got zero information
about δ from the tested scenario, is more involved: H is
only affected by δ when plasma glucose is decreasing, and
H in turn only affects XH if H > Hb. Thus the scenario
must produce a situation where H > Hb and Ġp > 0
simultaneously for δ to have any effect on the output. The
tested scenario did not provide this.

In initial testing with a data set with glucose values less
than 180 mg/dL, we also found zero information about pa-
rameters ke1 and ke2. The scenario-dependent identifiability
of these parameters was also seen in the NORC analysis of
Sec. V-A. The renal excretion threshold was not exceeded
by the nominal trajectory in the initial tests. Adjusting the
scenario by increasing meal doses raised plasma glucose
above the ke2 threshold for parts of the trajectory, and
recomputing Sy for this adjusted scenario resulted in non-
zero columns corresponding to ke1 and ke2. This illustrates
that parameter identifiability depends on which parts of
the state space has been visited, which again depends on
which inputs have been applied to the system. Sensitivity
analysis can point out problems with the input data related to
parameter identifiability. Importantly, the nominal parameter
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Fig. 2. Top: Singular values (SV) of the Sreduced
y matrix. Bottom: Right singular vector (RSV) corresponding to the smallest singular value. The RSV has

values for kp1 and Fcns, indicating that these parameters are highly correlated and cannot be individually identified. The selected SV and the significant
elements of the corresponding RSV are marked in red.

vector also influences the analysis. If for instance the nominal
parameter vector has a very high value for ke2, this could
cause ke1 and ke2 to be flagged as having no information in
the sensitivity analysis.

The parameters that never go above sensitivities of 5
mg/dL per parameter unit were considered to have too low
information to be possible to estimate from real data; these
were kH , Km0, r1, ke2, n, ρ, Gth, Ts and SRb

H . These
parameters should be set to fixed values, and values for some
of these are suggested in the literature, e.g. Gth = 60 mg/dL.

The plot of SVs and the RSVs corresponding to the
smallest SV is given in Fig. 2. We see that the smallest
SV is significantly lower than the rest. The parameters kp1
and Fcns make up the RSV of the smallest SV. Looking
at the sensitivity curves, i.e. the data in the columns of
Sy corresponding to these parameters, we see that they are
perfectly anti-correlated. Looking at the system equation
for these two parameters we can see why: They are both
additive parameters in different parts of the equation for
Ġp. They can not be separately distinguished in the output,
only their sum can be estimated. Fcns was fixed to the
literature default value (1.0) and removed from the set of
considered parameters. The analysis was repeated to produce
a new set of SVs and RSVs, and the new smallest SV
and its corresponding RSV was analyzed. Continuing this
process points to several other combinations of parameters
that are difficult or impossible to distinguish using only free-
living data. Initial findings from the sensitivity analysis and
suggested model reductions to move towards identifiability
from free-living data are given in Table I.

C. Other findings from sensitivity and FIM analysis

We performed tests where we varied some of the inputs
to the sensitivity calculation. Firstly we checked the influ-
ence of using sensitivity data only at the times of CGM
measurements (every 5 minutes), by analyzing the Sy,meas

TABLE I
INDISTINGUISHABLE PARAMETERS FOUND THROUGH SVD ANALYSIS

OF THE SENSITIVITY MATRIX Sy

Parameter Suggested model reduction
combination
kp1, Fcns Nominal value for Fcns

m1,m2, Use nominal values or eliminate Il
m3,m4 (The Il state is governed by m1 to m4 [4])
r1, r2 Use nominal values

ka2, ka1, kd Combine to one common time constant

matrix instead of the full Sy . We found through similar
analysis as reported above that reducing the sampling to once
every 5 minutes did not alter the identifiability signature.
This indicates that the 5 minute sampling rate of most CGM
systems is sufficiently frequent to allow identification.

We also tried to switch to measuring Gp instead of
Gs, this emulates using SMBG data instead of CGM data.
We kept the sampling interval of 5 minutes also for the
SMBG measurements. While such frequent SMBG data
are unrealistic in real life, it was done here to investigate
whether something can be gained identifiability-wise by
having a more direct measurement of the plasma glucose.
Said differently; we would like to investigate whether the
slight low-pass filtering of the Gp to Gs dynamics that
blurs some of the details of the glucose signal, has an
impact on parameter identification. Redoing the sensitivity
analysis based on SMBG measurements Gp we saw that
Ts from Eq. 3 was flagged as ”no information”, and VG
is flagged as a ”low information” parameter. This is natural
given that we no longer measure Gs and thus Ts cannot
influence our measurement. Otherwise, the same identifi-
ability signature as with CGM measurement was found,
suggesting that measuring SMBG is not clearly superior to
measuring CGM with regards to identification of the most
identifiable parameters when using free-living data. This is
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reassuring given that free-living SMBG measurements are
quite infrequent and basing identification on frequent SMBG
would be impractical.

By varying the parameter Ts in the nominal parameter set
we could investigate the effect of having CGM measurements
with more or less physiological lag, which is interesting
since this parameter is known to have between-individual
and between-sensor variations [16]. Even with large values
of Ts (60 minutes) we see surprisingly similar identification
signatures, and if we compute the trace of the FIM matrix for
the different Ts values we see that it decreases only slightly
with increasing Ts. This is an indication that many of the
most identifiable parameters in the T1DMS model affect
mean glucose level and long-term varying dynamics, and
these are roughly as identifiable using CGM measurements
as when we use frequent SMBG measurements.

The final input variation we investigated was the influence
of scenario length. We expanded the two-day scenario we had
been looking at to include three more days, then re-ran the
analysis, getting the same results in terms of identifiability
signature as with two days. Reducing the scenario to only
include 1 day resulted in more low-information parameters.
This is because one day of data may well lead to a trajectory
that does not go into certain areas of state space. As an
example, r1 and r2 show up as identifiable for some scenario
lengths and not identifiable from others. Looking at the
equations for r1 and r2 [4] we see that they are related to the
so-called risk function controlling endogenous glucose pro-
duction during hypoglycemia or near-hypoglycemia. These
parameters only affect the output when plasma glucose is
below a threshold Gb. I.e. r1 and r2 are only identifiable in
scenarios that include hypoglycemic or near-hypoglycemic
episodes. A longer scenario that spans more days increases
the probability that such areas of the state space are explored.

VI. DISCUSSION

The NORC analysis provides some insights, but the full
resulting dO matrix is difficult to compute and interpret. In
our view the NORC analysis is fundamentally unsatisfactory,
as it only gives a yes/no answer to the observability question
if we have continuous, perfect measurements. This makes
it less applicable to use in a glucose/insulin model, where
measurements are infrequent and noisy.

Sensitivity and FIM analyses are more relevant to the prob-
lem at hand, and provides useful information about uniden-
tifiable parameters in the T1DMS model when attempting to
use only free-living data for identification. The information
can be used to eliminate the unidentifiable aspects of the
model by reducing it. We imagine that an iterative process
of reformulation and new sensitivity analysis is needed to
guide the model reduction towards a model that is identifiable
from free-living data. It must be emphasized that some of
the model reductions suggested in this work will have no
influence on the simulation results (e.g. fixing Fcns) while
others represent a fundamental change to the model that will
necessarily decrease the detail level and fidelity of the model
(e.g. the suggested elimination of the Il state).

Parameters found to be unidentifiable should be excluded
from identification, but the best way to eliminate or exclude a
parameter is not always clear, and it usually requires detailed
knowledge about the model and the system it represents. In
the case of Fcns and kp1 we may choose to use nominal
values for one of them or to combine them into a new
parameter. Fcns describes the energy consumption of the
central nervous system, a fairly fixed quantity across indi-
viduals, while kp1 describes the basal endogenous glucose
production, which is likely to vary more across individuals.
In this case it makes sense to fix Fcns. In other cases,
where the between-individual parameter variation is similar
for the parameters considered for elimination, or unknown,
a combined parameter may be more appropriate. In this case
it is likely better to create one new parameter that gets a
new physiological meaning, than to fix one parameter and
estimate the other, ending up with two parameters having
”wrong” values.

The sensitivity and FIM analysis relies on a nominal
trajectory based on a set of inputs and a nominal param-
eter set, and the conclusions of the analysis is applicable
in the vicinity of that trajectory. We based our nominal
trajectory on real data, as explained in Sec. IV-A. There
are many parameter sets that would provide as good a fit
as the one we selected, and since the values of the nominal
parameter set has an impact on the analysis, an unfortunate
choice of nominal parameters may cause false conclusions
on parameter identifiability. This is also commented by
Stigter et al. [12] and they demonstrate that combining the
sensitivity matrices from several trajectories using different
nominal parameter vectors results in improved detection of
unidentifiable parameters. This will be further investigated,
along with automation of the generation of feasible nominal
trajectories and parameter vectors from real data sets, instead
of the manual process we employed here. The fact that the
analysis is scenario-dependent implies that it is sensible to
use data from several individuals in the sensitivity analysis
that guides the model reduction, to ensure that model features
that are needed to describe some patient subgroups are not
eliminated by the model reduction. The initial findings on
possible model reduction and influence of experiment factors
we found in Sec. V-C should be re-investigated using more
trajectories.

The T1DMS model is a complex use case for the identi-
fiability methods discussed. Finding an identifiable version
of this model through systematic model reduction is an
interesting alternative to the more minimal models recently
presented [17], since the T1DMS model is backed by large
amounts of data and studies, whereas the more minimal
models have less physiological evidence.

A. Other applications of the method

The sensitivity and FIM analysis method we describe has
several other possible applications. The method can be used
to:
• Judge the suitability of a data set for parameter identi-

fication, to decide if parameter identification should be
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attempted or not
• Detect that a dataset contains too little information to

identify all parameters of a model, and guide the choice
of which parameters to keep out of the identification
procedure. This could be advantageous to reduce the
computation time, since it reduces the dimension of
the optimization problem. It is also better to leave
unidentifiable parameters at nominal values than to
identify more or less random values for them based on
data that did not really contain information about them.

• Design physical experiments for parameter estimation,
in that it points to regions of state space that should
be avoided or visited, as well as measurements that
should be included, in order to yield identifiability
of a given model. It can guide experiment design to
produce the most information-rich data set for parameter
identification, given a set of constraints like session
length, patient safety and input limitations.

An example of the last point could be to design the optimal
parameter identification experiment for initial adaptation of
a glucose-insulin model in an artificial pancreas system.

Although the sensitivity and FIM analysis methods we
presented here were applied to glucose-insulin metabolism
modeling, the method is generic and should be transferable
and relevant to many other areas where complex state-space
models are employed.

VII. CONCLUSION

Methods for investigating observability and identifiability
in nonlinear systems were discussed and demonstrated on the
UVa/Padova T1DM simulator model. Sensitivity analysis and
Fisher Information Matrix analysis is a practical and readily
applicable way to determine which parameters are indistin-
guishable from each other under a given input scenario and
measurement regime, following a nominal trajectory of inter-
est. The analysis has pointed to parameters and combinations
of parameters in the model that need to be reduced in order
to move towards identifiability from free-living data (CGM,
SMBG, meal and insulin data), and we have shown how
sensitivity and FIM analysis can guide model reduction. A
simplified model that can be identified from free-living data
and is backed by the physiological evidence embedded in
the UVa/Padova T1DM simulator model would be useful in
many applications, including artificial pancreas. Further work
will further develop the methods presented here to produce
a reduced T1DMS model and investigate the advantages of
such a model compared to other models.
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