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A Networked SIS Disease Dynamics Model with a Waterborne Pathogen

Ji Liu Philip E. Paré Erhu Du Zhiyong Sun

Abstract— This paper proposes a distributed continuous-time
epidemic model, called networked SIWS (Susceptible-Infected-
Water-Susceptible) model, for an SIS type waterborne disease
spreading over a network of multiple groups of individuals
sharing a water source. A sufficient condition is obtained for
the healthy state, at which all individuals are not infected and
the water is not contaminated, to be globally asymptotically
stable. The effects of the shared water source on the disease
spreading are analyzed through the comparison of the basic
reproduction number with the networked SIS model without
water and demonstrated via simulations.

I. INTRODUCTION

The progress of an epidemic in a large population is an
important issue for humans and a widely studied area in epi-
demiology [1]. Various epidemic models have been proposed
to model such a process. Notable examples include SIS,
SIR, and SEIR models [2]–[4]. Networked SIS models have
recently received increasing attention [5]–[8], particularly in
the control systems literature [9]–[13], to name a few. There
are two types of networked SIS models. One type is called
multi-group SIS epidemic models which have been studied
in [6], [8]. The other type considers a system consisting
of multiple interactive individuals, instead of groups, and
studies the evolution of each individual’s probability of being
infected. Such models are described by either a discrete-time
system [9], [14], [15] or a continuous-time system [5], [7],
[12]. In [6], a continuous-time multi-group SIS model was
proposed and studied for strongly connected graphs. The
work of [7] proposed a networked Markov chain model,
whose mean-field approximation is the same as the model
in [6], and studied the case of undirected graphs. The same
model over directed graphs was studied in [12] for both
strongly and weakly connected graphs. For a survey of recent
development of networked epidemic models, see [16].

Waterborne pathogens have caused diseases and other
health problems worldwide, especially in developing coun-
tries [17]. Water systems (e.g., rivers, groundwater, and
reservoirs) are important pathways for transmitting pathogens
[18]. Therefore, some recent studies have considered the
role of a water compartment in epidemic dynamic processes.
For example, the paper [19] developed the SIWR model
by adding a water compartment W in the classical SIR
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model. The result in [19] shows that the SIWR model can
better predict the infectious period than the SIR model.
Following this approach, the work of [20] developed a
cholera model considering both direct and indirect disease
transmission pathways via a water compartment. The work
of [21] proposed a reaction-diffusion waterborne pathogen
model and investigated the role of the reproduction number
in epidemic dynamics. The paper [22] evaluated how the
reproduction number affects the global dynamics behaviors
in the reaction-diffusion waterborne pathogen model, and
the paper [23] modeled disease dynamics of a waterborne
pathogen on a random network.

In this paper, we propose an extension of the networked
SIS model by adding a water compartment W, in which both
person-person and person-water-person transmissions exist,
and thus we call it the networked SIWS model. There are
two ways to model and interpret a networked SIS model. One
way is to regard each agent as a group of fully connected
individuals and each agent’s variable represents the propor-
tion of infected individuals in the corresponding group. The
other way is to treat each agent as a computer and its variable
means the probability of the corresponding computer being
infected. In both ways, the variables take values between
zero and one. In this paper, since we are interested in
studying the epidemic spreading of a waterborne disease over
multiple groups of individuals, the first interpretation and its
corresponding model derivation better fit our purpose.

The main contributions of this paper are three-fold. First,
we propose a networked model for SIS-type waterborne
diseases, called networked SIWS model, for a systme con-
sisting of multiple groups of individuals with a shared water
resource. Second, we obtain a sufficient condition for the
healthy state to be globally asymptotically stable. Third, we
compare the basic reproduction number of the networked
SIWS model with that of the networked SIS model for
non-waterborne diseases, and provide a set of simulations
to demonstrate the behavior of the networked SIWS model
differing from the networked SIS model.

The remainder of the paper is organized as follows. We
begin with some notation in Subsection I-A which will be
used throughout the paper. We present a multi-group deriva-
tion of the model in Section II. In Section III, we present
stability analysis of the origin, or healthy state, providing a
sufficient condition for convergence to the healthy state, and
discuss the relationship between the sufficient condition and
the basic reproduction number from the existing literature.
In Section IV, we provide a set of simulations that illustrate
the behavior of the model, consistent with the analysis as
well as a surprising simulation which shows that, unlike the
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existing SIS-type epidemic models, the sufficient condition
is not necessary for convergence to the healthy state. We
conclude with some remarks in Section V.

A. Notation

For any positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. The ith entry of a vector x will be denoted by
xi. We use 0 and 1 to denote the vectors whose entries all
equal 0 and 1, respectively, and use I to denote the identity
matrix, while the sizes of the vectors and matrix are to be
understood from the context. For any two sets A and B, we
use A \ B to denote the set of elements in A but not in
B. For any two real vectors a, b ∈ IRn, we write a ≥ b if
ai ≥ bi for all i ∈ [n], a > b if a ≥ b and a 6= b, and
a � b if ai > bi for all i ∈ [n]. For a real square matrix
M , we use σ(M) to denote the spectrum of M , use ρ(M)
to denote the spectral radius of M , and s(M) to denote the
largest real part among the eigenvalues of M , i.e., s(M) =
max {Re(λ) : λ ∈ σ(M)}.

II. THE MODEL

In this section, we propose a distributed continuous-time
waterborne pathogen model, called networked SIWS model,
as follows. The model follows the ideas in [6] and [19].

Consider an SIS type waterborne disease spreading over
a network consisting of n > 1 groups of individuals,
labeled 1 to n, and a water compartment shared among
the n groups. The water compartment can be contaminated
by infected individuals shedding the pathogen into it. We
simulate the water compartment W as a reservoir-like water
system with homogeneous water quality, assuming instanta-
neous pathogen diffusion process in W. An individual may
be infected either by contact with contaminated water or
by contact with infected individuals only in its own and
neighboring groups. Neighbor relationships among the n
groups are described by a directed graph G on n vertices
with an arc (or a directed edge) from vertex j to vertex i
whenever the individuals in group i can be infected by those
in group j. Thus, the neighbor graph G has self-arcs at all
n vertices, and the directions of arcs in G represent the
directions of epidemic contagion. It is assumed that G is
strongly connected. We also assume that each group has
bidirectional connection with the water compartment, which
implies that each group can contaminate the water if it has
infected individuals, and the individuals in each group can
in turn get infected by the water if it is contaminated.

Let Ii(t) and Si(t) respectively denote the number of
infected and susceptible individuals in group i at time t ≥ 0.
We assume that the total number of individuals in each
group i, denoted by Ni, does not change over time. In other
words, Si(t) + Ii(t) = Ni for all i ∈ [n] and t ≥ 0,
which implies that the birth and death rates for each group
are equal. Such an assumption simplifies the model and has
been adopted in [6]. We leave the relaxed, and more realistic,
scenarios without this assumption as future work.

Associate with each group i several parameters: curing rate
γi, birth rate µi, death rate µ̄i, person-to-person infection

rates αij (with the understanding that αij > 0 whenever
group j is a neighbor of group i and αij = 0 otherwise),
and water-to-person infection rates αiw. As discussed earlier,
since Ni is constant, there holds µ̄i = µi. We assume
that individuals are susceptible at birth even if their parents
are infected. The evolution of the numbers of infected and
susceptible individuals in each group i is as follows:

Ṡi(t) = µiNi − µ̄iSi(t) + γiIi(t)−
n∑
j=1

αij
Si(t)

Ni
Ij(t)

−αiwW (t)Si(t)

= (µi + γi)Ii(t)−
n∑
j=1

αij
Si(t)

Ni
Ij(t)

−αiwW (t)Si(t), (1)

İi(t) = −γiIi(t)− µ̄iIi(t) +

n∑
j=1

αij
Si(t)

Ni
Ij(t)

+αiwW (t)Si(t)

= (−γi − µi)Ii(t) +

n∑
j=1

αij
Si(t)

Ni
Ij(t)

+αiwW (t)Si(t), (2)

where W (t) denotes the pathogen concentration in the water
reservoir which evolves as

Ẇ (t) = −δwW (t) +

n∑
k=1

ζkIk(t), (3)

where δw denotes the decay rate of pathogen in the water,
and ζk denotes the person-water contact rate of group k.
Note that (1) and (2) implies that Ṡi(t) + İi(t) = 0, which
is consistent with the assumption that Ni is a constant.

To simplify the model and for the purpose of analysis,
we change the variables of the model as follows. First, we
denote the portion of infected individuals in each group i by
xi(t), and thus,

xi(t) =
Ii(t)

Ni
.

Second, define a new variable as

z(t) =
δw∑n

k=1 ζkNk
W (t),

which can be regarded as an index describing the waterborne
pathogen concentration. Set the following parameters:

δi = γi + µi, βij = αij
Nj
Ni
, βiw =

αiw
δw

n∑
k=1

ζkNk.

Then, from (1) and (2), it follows that

ẋi(t) = −δixi(t) + (1− xi(t))

 n∑
j=1

βijxj(t) + βiwz(t)

 .

(4)
To proceed, let

ci =
ζiNi∑n
k=1 ζkNk

. (5)



Then, from (3), it follows that

ż(t) = δw

(
−z(t) +

n∑
k=1

ckxk(t)

)
. (6)

This paper deals with the systems given by (4) and (6). We
impose the following assumptions on the system parameters.

Assumption 1: Suppose that δi > 0 for all i ∈ [n], δw > 0,
βij ≥ 0 for all i, j ∈ [n], βij > 0 whenever group j is a
neighbor of group i, the matrix B = [βij ]n×n is irreducible,
βiw > 0 for all i ∈ [n], and ci > 0 for all i ∈ [n].

It is worth noting that the assumption of an irreducible
matrix B is equivalent to that the neighbor graph G is
strongly connected.1 From (5), it is clear that all ci, i ∈ [n],
form a set of convex combination weights.

Since each xi represents the proportion of infected indi-
viduals in group i, it is natural to assume that the initial value
of xi is in [0, 1], or the value of xi will lack physical meaning
of the epidemic model considered here. Similarly, it is also
natural to assume that the initial value of z is nonnegative.

Lemma 1: Suppose that Assumption 1 holds. Suppose that
xi(0) ∈ [0, 1] for all i ∈ [n] and z(0) ≥ 0. Then, xi(t) ∈
[0, 1] for all i ∈ [n] and z(t) ≥ 0 for all t ≥ 0.

Proof: Suppose that at some time τ , there holds xi(τ) ∈
[0, 1] for all i ∈ [n] and z(t) ≥ 0. First consider z(t). If
xi(τ) = 0, then from (6) and Assumption 1, ż(τ) ≥ 0. It
follows that z(t) ≥ 0 for all times t ≥ τ . Next consider any
index i ∈ [n]. If xi(τ) = 0, then from (4) and Assumption 1,
ẋi(τ) ≥ 0. If xi(τ) = 1, then again from (4) and Assumption
1, ẋi(τ) < 0. It follows that xi(t) will be in [0, 1] for all
times t ≥ τ . Since the above arguments hold for any i ∈ [n],
we have that xi(t) ∈ [0, 1] for all i ∈ [n] and t ≥ τ . Since it
is assumed that xi(0) ∈ [0, 1] for all i ∈ [n] and z(0) ≥ 0,
the lemma follows by taking τ = 0.

More can be said.
Lemma 2: Suppose that Assumption 1 holds. Suppose that

xi(0) ∈ [0, 1] for all i ∈ [n] and z(0) ≥ 0. Then, for any
ε > 0, there exists a finite time Tε for which z(t) < 1 + ε
for all t ≥ Tε.

Proof: From Lemma 1, xk(t) ∈ [0, 1] for all k ∈ [n] and t.
Since

∑n
k=1 ckxk(t) is a convex combination of xk(t), k ∈

[n], it follows that
∑n
k=1 ckxk(t) ≤ 1 for all t. Suppose that

z(0) ≥ 1+ε for some ε > 0. Then, −z(0)+
∑n
k=1 ckxk(0) ≤

−ε, which implies that z(t) will decrease as δw > 0. At any
time t, as long as z(t) ≥ 1 + ε, from (6), ż(t) ≤ −εδw,
which implies that z(t) < z(0)− εδwt. Set Tε = (z(0)−1−
ε)/(εδw). Then, z(Tε) < 1 + ε.

Lemma 2 implies that at any possible equilibrium, the
value of z can only be equal to or less than one. We claim that
z = 1 cannot hold at any equilibrium. To see this, suppose
to the contrary that there exists an equilibrium at which
z = 1. From (6) and Assumptions 1, since

∑n
k=1 ckxk is

a convex combination of all xk, the equilibrium condition∑n
k=1 ckxk = z = 1 implies that all xk = 1 at this

equilibrium. But it conflicts (4) at the equilibrium. Therefore,

1 A directed graph is strongly connected if there is a directed path between
each pair of ordered distinct vertices.

z must be strictly less than one at any equilibrium. The
following lemma shows that z(t) is positively invariant in
the set [0, 1].

Lemma 3: Suppose that Assumption 1 holds, and that
xi(0) ∈ [0, 1] for all i ∈ [n] and z(0) ≥ 0. Suppose that
at some time τ ≥ 0, z(τ) ∈ [0, 1]. Then, z(t) ∈ [0, 1] for all
t > τ .

Proof: Following similar analysis as in the proof of
Lemma 2, one can show that

∑n
k=1 ckxk(t) ∈ [0, 1] for all

t ≥ 0. Suppose that at time τ̄ > τ , there holds z(τ̄) = 1.
From (5), it follows that ż(τ̄) ≤ 0. Suppose that at time
τ > τ , there holds z(τ) = 0. Similarly, one can show that
ż(τ) ≥ 0. Thus, it follows that z(t) ∈ [0, 1] for all t > τ .

Motivated by the preceding discussion and without loss
of generality, we now study the following continuous-time
networked system with specified initial conditions:

ẋi(t) =− δixi(t) + (1− xi(t))

(
n∑
j=1

βijxj(t) + βiwz(t)

)
,

xi(0) ∈ [0, 1], i ∈ [n], (7)

ż(t) = δw

(
− z(t) +

n∑
k=1

ckxk(t)

)
, z(0) ∈ [0,∞), (8)

where δi, δw, βij , βiw, and ci are model parameters satisfy-
ing Assumption 1.

The above n + 1 differential equations can be combined
into one equation in a compact form. Toward this end, let
x(t) be the state vector in IRn whose ith entry is xi(t), D
be the n×n diagonal matrix whose ith diagonal entry is δi,
B be the n× n matrix whose ijth entry is βij , X(t) be the
n × n diagonal matrix whose ith diagonal entry is xi(t), b
be the vector in IRn whose ith entry is βiw, and c be the
vector in IRn whose ith entry is δwci. Then, from (7) and
(8), it can be verified that

ẋ(t) = (−D +B −X(t)B)x(t) + (I −X(t)) bz(t), (9)

ż(t) = −δwz(t) + c>x(t), (10)

which can be written as[
ẋ(t)
ż(t)

]
=

[
−D +B −X(t)B (I −X(t))b

c> −δw

] [
x(t)
z(t)

]
(11)

In the special case when z(t) = 0 for all t, or equivalently,
no water compartment exists, system (11) simplifies to

ẋ(t) = (−D +B −X(t)B)x(t), (12)

which is the networked SIS model studied in [6].
Lemma 1 implies that for the x system defined in (9),

the set [0, 1]n is positively invariant. Lemma 2 and the fact
that the value of z is strictly less than one at any equilibrium
imply that the z system defined in (10) will enter the interval
[0, 1] for any nonnegative initial value. Lemma 3 indicates
that z(t) is positively invariant in the set [0, 1]. Therefore,
the system (11) is positively invariant on the set [0, 1]n+1.



III. MAIN RESULTS

It can be seen that (x, z) = (0, 0) is an equilibrium of
the system (11), which implies that no individual is infected
and the water compartment is not contaminated. We call this
equilibrium the healthy state. In this section, we study the
stability of the healthy state. To state our main result, we
need the following concept and result.

Consider an autonomous system ẋ(t) = f(x(t)), where
f : D → IRn is a locally Lipschitz map from a domain
D ⊂ IRn into IRn. Let x∗ be an equilibrium of the system
and E ⊂ D be a domain containing x∗. The equilibrium x∗

is called asymptotically stable with the domain of attraction
E if for any x(0) ∈ E , there holds limt→∞ x(t) = x∗.

Proposition 1: Let x∗ be an equilibrium of ẋ(t) =
f(x(t)) and E ⊂ D be a bounded domain containing x∗.
Let V : E → IR be a continuously differentiable function
such that V (x∗) = 0, V (x) > 0 in E \ {x∗}, V̇ (x∗) = 0,
and V̇ (x) < 0 in E \ {x∗}. If E is an invariant set, then the
equilibrium x∗ is asymptotically stable with the domain of
attraction E .

The proposition can be proved using the same arguments
in the proof of Lyapunov’s stability theorem (see Theorem
4.1 and the discussion on page 122 in [24]).

To proceed, we define the following two matrices:

Dw =

[
D 0
0> δw

]
, Bw =

[
B b
c> 0

]
. (13)

From Assumption 1, it is clear that Dw is a positive diagonal
matrix, and that Bw is an irreducible nonnegative matrix,
which implies that (−Dw + Bw) is an irreducibel Metzler
matrix.2

A. Local Stability of the Healthy State

Let (x̃, z̃) be an equilibrium of (11). Then, the Jacobian
matrix of the equilibrium, denoted by J(x̃, z̃), is

J(x̃, z̃) =

[
−D +B − X̄B −H1 −H2 (I − X̄)b

c> −δw

]
,

where X̄,H1, H2 are diagonal matrices given by

X̄ = diag {x̄1, x̄2, · · · , x̄n} ,

H1 = diag

{
n∑
j=1

β1j x̄j ,

n∑
j=1

β2j x̄j , · · · ,
n∑
j=1

βnj x̄j

}
,

H2 = diag {β1wz̄, β2wz̄, · · · , βnwz̄} .

In the case when x̃ = 0 and z̃ = 0, i.e., at the healthy state,

J(0, 0) =

[
−D +B b
c> −δw

]
.

Note that J(0, 0) = −Dw + Bw where Dw and Bw are
given in (13). From Lemma 4, condition ρ(D−1w Bw) < 1
is equivalent to s(−Dw + Bw) < 0, which implies that
J(0, 0) is a continuous-time sable matrix. Thus, we have
the following result.

2A real square matrix is called Metzler if its off-diagonal entries are all
nonnegative.

Proposition 2: Let Assumption 1 hold. If ρ(D−1w Bw) <
1, then the healthy state (0, 0) of system (11) is locally
exponentially stable.

B. Global Stability of the Healthy State

The global stability of the healthy state is characterized
by the following theorem.

Theorem 1: Let Assumption 1 hold. If ρ(D−1w Bw) ≤ 1,
then the healthy state (0, 0) of system (11) is asymptotically
stable with the domain of attraction x ∈ [0, 1]n and z ∈
[0,∞).

To prove this theorem, we need the following properties
of Metzler matrices.

Lemma 4: [Proposition 1 in [25]] Suppose that Λ is a
negative diagonal matrix in IRn×n and N is an irreducible
nonnegative matrix in IRn×n. Let M = Λ + N . Then,
s(M) < 0 if and only if ρ(−Λ−1N) < 1, s(M) = 0 if
and only if ρ(−Λ−1N) = 1, and s(M) > 0 if and only if
ρ(−Λ−1N) > 1.

Lemma 5: [Lemma 2.3 in [26]] Suppose that M is an ir-
reducible Metzler matrix. Then, s(M) is a simple eigenvalue
of M and there exists a unique (up to scalar multiple) vector
x� 0 such that Mx = s(M)x.

Lemma 6: [Proposition 2 in [27]] Suppose that M is an
irreducible Metzler matrix such that s(M) < 0. Then, there
exists a positive diagonal matrix P such that M>P + PM
is negative definite.

Lemma 7: [Lemma A.1 in [12]] Suppose that M is an
irreducible Metzler matrix such that s(M) = 0. Then, there
exists a positive diagonal matrix P such that M>P + PM
is negative semi-definite.

Proof of Theorem 1: We first consider the case when
ρ(D−1w Bw) < 1. By Lemma 4, in this case, s(−Dw+Bw) <
0. Since (−Dw + Bw) is an irreducible Metzler matrix, by
Lemma 6, there exists a positive diagonal matrix P such
that (−Dw +Bw)>P +P (−Dw +Bw) is negative definite.
For convenience, define y(t) =

[
x(t)> z(t)

]>
. Consider the

Lyapunov function V (y(t)) = y(t)>Py(t). Then, from (11)
and (13), when y(t) 6= 0, we have

V̇ (y(t)) = 2y(t)>P ẏ(t)

= 2y(t)>P (−Dw +Bw)y(t)

+ 2y(t)>P

[
−X(t)B −X(t)b

0 0

]
y(t)

< −2y(t)>P

[
X(t)B X(t)b

0 0

]
y(t)

≤ 0.

Thus, in this case, V̇ (y(t)) < 0 if y(t) 6= 0. In the last
paragraph of Section II, we have shown that z(t) will enter
the interval [0, 1] for any nonnegative initial value, and
that system (11) is positively invariant on the set [0, 1]n+1.
From Lemma 1, Lemma 2, and Proposition 1, y = 0 is
asymptotically stable with the domain of attraction x ∈
[0, 1]n and z ∈ [0,∞).

Next we consider the case when ρ(D−1w Bw) = 1. By
Lemma 4, s(−Dw + Bw) = 0. Since (−Dw + Bw) is



an irreducible Metzler matrix, by Lemma 7, there exists a
positive diagonal matrix Q such that (−Dw + Bw)>Q +
Q(−Dw +Bw) is negative semi-definite. Consider the Lya-
punov function V (y(t)) = y(t)>Qy(t). Then, from (11) and
(13), we have

V̇ (y(t)) = 2y(t)>Q(−Dw +Bw)y(t)

+ 2y(t)>Q

[
−X(t)B −X(t)b

0 0

]
y(t)

≤ −2y(t)>Q

[
X(t)B X(t)b

0 0

]
y(t)

= −2y(t)>
[
Q̂ 0
0 q

] [
X(t)B X(t)b

0 0

]
y(t)

= −2
(
x(t)>Q̂X(t)Bx(t) + x(t)>Q̂X(t)bz(t)

)
≤ −2

(
x(t)>Q̂X(t)Bx(t)

)
≤ 0,

where Q̂ is the nth principal subarray of Q, which is an
n×n positive diagoal matrix, and q is the (n+1)th diagonal
entry of Q. We claim that V̇ (y(t)) < 0 if y(t) 6= 0.
To establish this claim, we first consider the case when
y(t) � 0, i.e., x(t) � 0 and z(t) > 0. Since B
is nonnegative and irreducible because of Assumption 1,
Bx(t)� 0. Since Q̂ is a positive diagonal matrix, it follows
that x(t)>Q̂X(t)Bx(t) > 0, so V̇ (y(t)) < 0. Next we
consider the case when y(t) > 0 and y(t) has at least
one zero entry. If (−Dw + Bw)>Q+Q(−Dw + Bw) does
not have an eigenvalue at zero, then (−Dw + Bw)>Q +
Q(−Dw + Bw) is negative definite, which implies that
y(t)>

(
(−Dw +Bw)>Q+Q(−Dw +Bw)

)
y(t) < 0 when

y(t) > 0 and, thus, in this case,

V̇ (y(t)) = 2y(t)>Q(−Dw +Bw)y(t)

+ 2y(t)>Q

[
−X(t)B −X(t)b

0 0

]
y(t)

≤ 2y(t)>Q(−Dw +Bw)y(t)

< 0.

Now suppose that (−Dw + Bw)>Q + Q(−Dw + Bw)
has an eigenvalue at zero. Since (−Dw + Bw) is an irre-
ducible Metzler matrix and Q is a positive diagonal matrix,
(−Dw+Bw)>Q+Q(−Dw+Bw) is a symmetric irreducible
Metzler matrix. Since (−Dw +Bw)>Q+Q(−Dw +Bw) is
negative semi-definite, it follows that s((−Dw +Bw)>Q+
Q(−Dw + Bw)) = 0. By Lemma 5, it follows that zero is
a simple eigenvalue of (−Dw + Bw)>Q + Q(−Dw + Bw)
and it has a unique (up to scalar multiple) strictly positive
eigenvector corresponding to the eigenvalue zero. Thus,
y(t)>

(
(−Dw +Bw)>Q+Q(−Dw +Bw)

)
y(t) < 0 when

y(t) > 0 and y(t) has at least one zero entry. Therefore,
V̇ (y(t)) < 0 if y(t) 6= 0. Using the same arguments used
in the case when ρ(D−1w Bw) < 1 and from Lemma 1,
Lemma 2, and Proposition 1, y = 0 is asymptotically stable
with the domain of attraction x ∈ [0, 1]n and z ∈ [0,∞).

C. Basic Reproduction Number

For the networked SIS model (12), ρ(D−1B) is called the
basic reproduction number. It has been shown in [6] that if
ρ(D−1B) ≤ 1, the model will asymptotically converge to the
healthy state for all initial conditions, and if ρ(D−1B) > 1,
the model will asymptotically converge to a unique epidemic
state for all initial conditions except for the healthy state.
For the networked SIWS model (11), Theorem 1 implies
that when ρ(D−1w Bw) ≤ 1, the model will asymptotically
converge to the healthy state for all initial conditions, which
implies that the healthy state is the unique equilibrium
in this case, and extensive simulations show that when
ρ(D−1w Bw) > 1, the model has an epidemic equilibrium.
Thus, we call ρ(D−1w Bw) the basic reproduction number of
the networked SIWS model (11), and compare its value with
that of the networked SIS model (12), ρ(D−1B), to reveal
the effect of the shared water compartment. Note that

D−1w Bw =

[
D−1 0
0> 1

δw

] [
B b
c> 0

]
=

[
D−1B D−1b
1
δw
c> 0

]
.

Since D−1w Bw is an irreducible nonnegative matrix by
Assumption 1, ρ(D−1w Bw) > ρ(D−1B) because of the
following lemma.

Lemma 8: [Lemma 2.6 in [26]] Suppose that N is an
irreducible nonnegative matrix. If M is a principal square
submatrix of N , then ρ(M) < ρ(N).

We thus have proved the following result.
Proposition 3: Suppose that Assumption 1 holds. Then,

the basic reproduction number of the networked SIWS model
(11) is greater than that of the networked SIS model (12).

The proposition implies that the shared water compartment
yields a more vulnerable system to SIS type diseases.

IV. SIMULATIONS

The Village of Richmond was the government center of
Staten Island for nearly two centuries. Now there is an
interactive museum/site called the Historic Richmond Town
[28]. We used a subset of the map of the current setting given
in Figure 1, excluding the smaller buildings, for the neighbor
graph in our simulations. Richmond Creek, which flows out
of Orbach Lake, is the water source for the simulations.

For the simulations we made the simplifying assumption
that the underlying interaction graph for each household is
determined by its nearest proximity neighbors, acknowledg-
ing that more general interaction graphs are also possible.
We set the infection rate matrix B as a binary matrix cor-
responding to the edges in Figure 2, i.e., βij = 1 whenever
j is a neighbor of i. Note that we chose an undirected
neighbor graph for convenience. The state of the system is
the proportion of the households that are infected with the
disease, and the dynamics follow (7) and (8).

For each node i representing the ith group of individuals,
we used the color blue (b = [0 0 1]) and red (r = [1 0 0])
to depict its completely healthy state (xi = 0, i.e., all its



Fig. 1. Map of Historic Richmond Town [28]

Fig. 2. The epidemic equilibrium when δi = 2, δw = 1, βiw = 1 and
ci = 1 for all i ∈ [n]. Note that all the households are at least somewhat
sick.

individuals are healthy) and completely epidemic state (xi =
1, i.e., all its individuals are infected), respectively. At each
time t, its color is given by

(1− xi(t))b+ xi(t)r.

Thus, any partially infected group will be depicted by a
purple node. In the sequel, we will present three simulations.

In the first simulation, we set δi = 2, δw = 1, βiw = 1
and ci = 1 for all i ∈ [n]. Then, ρ(D−1w Bw) > 1, and the
system converges to an epidemic equilibrium, as shown in
Figure 2. The equilibrium appears to be independent of initial
conditions, as long as one of the initial states is nonzero,
which implies that at least one household is (partially)

Fig. 3. The healthy equilibrium when δi = 10, δw = 1, βiw = 1 and
ci = 1 for all i ∈ [n].

infected, or the water source is (partially) contaminated.
In the second simulation, we set δi = 10, δw = 1, βiw = 1

and ci = 1 for all i ∈ [n]. Then, ρ(D−1w Bw) < 1, and the
system converges to the healthy state for all initial conditions,
as shown in Figure 3.

In the last simulation, we set δi = 8, δw = 1, βiw = 1 and
ck = 1 for all i ∈ [n]. Then, ρ(D−1w Bw) > 1, but the system
may still converge to the healthy state (the same as the second
simulation). However, the system appears to be dependent on
the initial conditions. For example, if x1(0) = .5 and the rest
of the states are initialized as zeros, the system converges
to the healthy state, but if z(0) = 1 and x(0) = 0, the
system converges to an epidemic equilibrium. This is a very
interesting behavior which is distinct from the networked SIS
model (12). It appears that the linear decay rate of the z state
can, in some cases, dominate the system when ρ(D−1w Bw) >
1. The behavior and observation add an intrigue that merits
future research.

V. CONCLUDING REMARKS

In this paper, we have proposed a network-dependent,
continuous-time SIWS epidemic model, which captures a
networked system of multiple groups of individuals with
a shared water source that can be contaminated. We have
obtained the basic reproduction number for the networked
model and shown that the healthy state is globally asymp-
totically stable if the number is less than or equal to one. We
have illustrated the behavior of the model via simulations on
a small population with a contaminated water source.

As an immediate future direction, we plan to extend the
model to reflect more realistic scenarios. For instance, the
decay rate parameter δw is assumed to be a positive constant
for the convenience of theoretical analysis. We remark that in
a more general sense, one can also consider time-varying or
even state-dependent decay rate δw(t). Time-varying or state-
dependent decay rate can be used to capture the interactions
between infected populations and self-cleaning capabilities in



water reservoir, which provides a better modelling for real-
life systems. We will show that, as long as δw(t) > 0, the
main results on equilibrium points and stability conclusions
are not affected.

For future work, we would like to analyze the stability of
epidemic equilibrium, which from the simulations appears
to be unique. We want to analyze the interesting case
illuminated in the simulations where ρ(D−1w Bw) > 1 but
the system still converges to the healthy state. We also want
to explore the possibility of allowing time-varying graph
structures in the model. Another interesting direction for
future work is to relax the assumption that each group has a
constant population, allowing sub-populations in each group
to flow between each other. We are currently developing
a SIWR (Susceptible-Infected-Water-Removed) model and
would like to develop new water models to capture inter-
actions in modern water systems, such as networked water
resources.
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