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Abstract—An image-based control strategy along with esti-
mation of target motion is developed to track dynamic targets
without motion constraints. To the best of our knowledge, this is
the first work that utilizes a bounding box as image features for
tracking control and estimation of dynamic target without mo-
tion constraint. The features generated from a You-Only-Look-
Once (YOLO) deep neural network can relax the assumption of
continuous availability of the feature points in most literature
and minimize the gap for applications. The challenges are that
the motion pattern of the target is unknown and modeling its
dynamics is infeasible. To resolve these issues, the dynamics
of the target is modeled by a constant-velocity model and is
employed as a process model in the Unscented Kalman Filter
(UKF), but process noise is uncertain and sensitive to system
instability. To ensure convergence of the estimate error, the
noise covariance matrix is estimated according to history data
within a moving window. The estimated motion from the UKF is
implemented as a feedforward term in the developed controller,
so that tracking performance is enhanced. Simulations are
demonstrated to verify the efficacy of the developed estimator
and controller.

Index Terms—Unscented Kalman Filter, Estimation, Track-
ing of moving targets, UAV

I. INTRODUCTION

Knowledge about the position and velocity of surrounding
objects is important to the booming fields such as self-driving
cars, target tracking and monitoring. In case of performing
an object tracking task, position and velocity of the tracking
target are typically assumed to be available to achieve
better control performance [1] and [2] using visual servo
controllers. When the target is not static, its velocity needs
be considered in the system dynamics as to eliminate the
tracking error and to calculate the accurate motion command
for the camera. However, obtaining the knowledge online
is challenging since the dynamics of the target might be
complicated and unknown. Moreover, there are instances
that the measurement can be unexpected. For example, the
target can exceed the field of view (FOV) of the camera, or
cannot be detected due to the unexpected occlusion. Several
approaches have been proposed for estimating position or
velocity of the target such as by using a fixed camera [3],
sensor networks [4]–[6], radar [7], and some known reference
information in the image scene [8]. In order to integrate
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with applications based on vision system such as target
tracking, exploration, visual servo control and navigation
[1] and [9]–[11], an algorithm for a monocular camera to
estimate position and velocity of a moving target is developed
in this work.

To continuously estimate the position or the velocity of a
target, it needs to remain in the field of view of the camera,
and therefore, motion of the target should be considered.
Structure from motion (SfM), Structure and Motion (SaM)
methods are usually used to reconstruct the relative position
and motion between the vision system and objects in many
applications [1] and [2]. With the knowledge of length be-
tween two feature points, [12] proposed methods to estimate
position of the stationary features. In [13], 3D Euclidean
structure of a static object is estimated based on the linear and
angular velocities of a single camera mounted on a mobile
platform, where the assumption is relaxed in [14]. However,
SfM can only estimate the position of the object and usually
the object is assumed to be stationary. In order to address
the problem to estimate motion of moving objects, SaM is
applied for estimation by using the knowledge of camera
motion. Nonlinear observers are proposed in [15] and [16] to
estimate the structure of a moving object with time-varying
velocities. The velocity of the object in [15] is assumed to be
constant, and [16] relaxes the constant-velocity assumption
to time-varying velocities for targets moving in a straight
line or on a ground plane. In practice, measurement can be
intermittent when the object is occluded, outside the camera
FOV, etc. [17]–[19] present the development of dwell time
conditions to guarantee that the state estimate error converges
to an ultimate bound under intermittent measurement. In
[17]–[19], the estimation is based on the knowledge about
the velocity of the moving object and the camera. However,
in practice the velocity of the target is usually unknown, and
modeling its dynamics is complicated and challenging.

In fact, the relationship between target motion estimator
and vision-based controller is inseparable. Specifically, out-
put from a high performance target motion estimator can be
used as a feedforward term for the controller to keep the
target in the field of view longer, which, in return, results
in a longer period for the estimate error to converge. In this
work, a dynamic monocular camera is employed to estimate
the position and velocity of a moving target. Compared to the
multi-camera system [20], using a monocular camera has the
advantage of reducing power consumption and the quantity
of image data. A You-Only-Look-Once (YOLO) deep neural
network [21] is applied in this work for target detection,
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which relaxes the assumption of continuous availability of
the feature point and minimizes the gap for applications,
but it also introduces some challenges. That is, the detected
box enclosing the target can lead to intermittent measure-
ment, and the probability distribution function of the noise
from inaccurate motion model may not follow the normal
distribution. An Unscented Kalman Filter (UKF) based al-
gorithm is developed in this work to deal with problems of
intermittent measurement and to obtain continuous estimate
the target motion even when it leaves the FOV. To deal
with the uncertain noise during the estimation, method in
[22] is applied to update the process noise covariance matrix
online to guarantee the convergence and the accuracy of the
estimation.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Kinematics Model

Fig. 1. Kinematics model.

Based on the model in [19], Fig. 1 depicts the relationship
between a moving target, a camera, and an image plane. The
camera is mounted on the multirotor without relative motion.
The subscript G denotes the inertial frame with its origin set
arbitrarily on the ground, and the subscript C represents the
body-fixed camera frame with its origin fixed at the principle
point of the camera, where Zc and Xc are axes with denoted
direction. The vectors rq =

[
xq yq zq

]T
denotes the

position of the feature point of the target, which is unknown
and to be estimated, rc =

[
xc yc zc

]T
denotes the posi-

tion of the camera, which can be measured by the embedded
GPS/Motion Capture Systems, and rq/c =

[
X Y Z

]T
denotes the relative position between the feature point and
the camera, all expressed in the camera frame. Their relation
can be written as

rq/c = rq − rc. (1)

Taking the time derivative on the both sides of (1) yields the
relative velocity as

ṙq/c = Vq − Vc − ωc × rq/c, (2)

where Vc ,
[
vcx vcy vcz

]T
is the linear velocity

of the camera, ωc ,
[
ωcx ωcy ωcz

]T
is the angular

velocity of the camera, both are the control command to
be designed. In (2), Vq =

[
vqx vqy vqz

]T
is the linear

velocity of the dynamic target, which is unknown and needs
to be estimated. To relax the limitation of existing results,
following assumption is made throughout this work.

Assumption 1. The trajectory of the target is unknown but
bounded.

Since the dynamics of the camera and the target are
coupled, the states of the overall system are defined as

x =
[
x1 x2 x3 xq yq zq vqx vqy vqz

]T
.
(3)

To estimate the position and velocity of the target, the
state

[
x1 x2 x3

]T
=
[

X
Z

Y
Z

1
Z

]T
is defined to

facilitate the subsequent analysis. Taking the time derivative
on the both sides of (3) and using (2) obtain a nonlinear
function that represents the dynamics of the overall system
as

ẋ =



vqxx3 − vqzx1x3 + ζ1 + η1
vqyx3 − vqzx2x3 + ζ2 + η2

−vqzx23 + vczx
2
3 − (ωcyx1 − ωcxx2)x3
Vq
0
0
0


,(4)

where ζ1, ζ2, η1, η2 ∈ R are defined as

ζ1 = ωczx2 − ωcy − ωcyx
2
1 + ωcxx1x2

ζ2 = −ωczx1 + ωcx + ωcxx
2
2 − ωcyx1x2

η1 = (vczx1 − vcx)x3
η2 = (vczx2 − vcy)x3. (5)

Remark 1. Since the trajectory and motion pattern of the
target is unknown, it is modeled by a zero acceleration
(i.e., constant velocity) dynamics as formulated in (4),
which is reasonable during a short sampling time with the
unneglectable mass of the moving target. The mismatch
between the true and modeled dynamics can be considered
as a process noise in an UKF developed in the subsequent
section.

B. Image Model

Fig. 2. The images of the dynamic targets are captured from an onboard
camera on the multirotor in the Gazebo simulator. Note that the center of the
bounding box is considered as a feature point for the subsequent analysis,
and the bounding boxes, enclosing the vehicles from different angles of
inclination, are obtained from a YOLO network that is trained for this work.



By projecting the feature point Q into the image frame
using the pinhole model yields the projection point q =[
x1 x2

]T ∈ R2 as

x1 = u−cu
fx

x2 = v−cv
fy

,
(6)

where [u, v]T denotes the position of the feature point in the
image frame, fx and fy are the focal length of pixel unit, and
[cu, cv]

T represents the position of the center of the image.
The area of the bounding box is defined as a , and based
on the pinhole model the relation between a and x3 can be
expressed as

a = Afxfyx
2
3 (7)

where A is the area of the target on the side, observed from
the camera1.

Assumption 2. The optical axis of the camera remains
perpendicular to A to ensure better detection accuracy from
YOLO.

Remark 2. To estimate x3 precisely from (7), A needs to
be accurate. Since A is a fixed value, the optical axis of the
camera needs to remain at fixed angle relative to the plane
of A.

C. Measurement Model
To correct the unobserved system states, the measurement

is defined as
z =

[
u v a rc

]T
,

where u, v and a can be obtained directly from the detected
bounding box, and rc is measurable as described in Section
II-A. By using (1), (6), and (7), the estimate measurement ẑ
for the UKF can be obtained as

ẑ =


fxx̂1 + cu
fyx̂2 + cv

Afxfyx̂
2
3sgn(x̂3)

r̂q − r̂q/c

 (8)

where sgn(· ) is a signum function, and (̂·) is the estimate
of the denoted argument obtained from the process step in
the UKF developed in the next section. In (7), the area of
bounding box a remains positive despite of the sign of x3,
which is positive since the depth is nonnegative. Therefore,
to ensure x̂3 converge to a positive value, the term sgn(x̂3)
is added to (8).
Remark 3. Despite the aforementioned advantages, bounding
boxes can lose unexpectedly, or the Intersection over Union
(IoU) may sometime decrease, leading to intermittent or
inaccurate measurements. These inherited defects from the
data-driven-based detection motivate the need of Kalman
filter for estimation. As the target velocity changes, state
predicted by the constant-velocity dynamics model can be
inaccurate, and the prediction error can considered as process
noise.

1Given a sedan as the target, the A is about 4.6m × 1.5m.

III. POSITION AND VELOCITY ESTIMATION

A. Unscented Kalman Filter

To estimate state of dynamic systems with noisy measure-
ment or intermittent measurement, Unscented Kalman Filter
[23] has been applied in this work. Based on (4) and (8), the
UKF for nonlinear dynamic system can be expressed as

xk+1 = F (xk) + wk, (9)
zk = H(xk) + vk, (10)

where wk and vk represent the process and measurement
noise, respectively, and F (·) and H(·) are the corresponding
nonlinear dynamics and measurement model defined in (4)
and (8), respectively.

Based on Remark 3, the YOLO detection might fail
incidentally, which makes the measurement correction step
in (10) unavailable. When it happens, the state is only
predicted by the dynamics model using (9), which is used
as a feedforward term to keep the target in the field of view,
which is reliable in a short period of time before the detection
is recovered.

B. Estimation of Noise Covariance Matrices

When applying Kalman filter, the process and measure-
ment noise covariance matrices are usually provided in prior.
As mentioned in Remark 3, the unmodeled dynamics model
can be considered as process noises, and the covariance
matrix is sensitive to the convergence of estimation. It has
been confirmed in our simulations that inaccurate constant
covariance matrices can lead to large estimate error or
converge failure. To dynamically estimate the process noise
covariance matrices, a method developed in [22] is applied
in this work to estimate and update the covariance matrices
online, so that a faster and reliable convergence performance
can be obtained. That is, the process noise wk is assumed to
be uncorrelated, time-varying, and nonzero means Gaussian
white noises that satisfies

Qkδkj = cov(wk, wj) (11)

where δkj is the Kronecker δ function. By selecting a window
of size N, the estimate of the process noise covariance matrix
Q̂k−1 ∈ Rm×m can be expressed as

Q̂k−1 =

N∑
j=1

vj
[
Pk−j +Kk−jεk−jε

T
k−jK

T
k−j (12)

−
2n∑
i=0

ωc
i

(
ξi,k−j/k−1−j − X̂k−j/k−1−j

)
×

(
ξi,k−j/k−1−j − X̂k−j/k−1−j

)T]
,

Since Q̂k−1 might not be a diagonal matrix and positive
definite, it is further converted to a diagonal, positive definite
matrix as

Q̂∗
k−1 = diag

{
|Q̂k−1(1)|, |Q̂k−1(2)|, · · · , |Q̂k−1(m)|

}
,

(13)



where Q̂k−1(i) is the i-th diagonal element of the matrix
Q̂k−1. On the other hand, the measurement noise can be
measured in advance.

IV. TRACKING CONTROL

In this section, a motion controller for the multirotor is
designed using vision feedback. Compared to the existing
Image-based Visual Servo (IBVS) control methods [24], the
controller developed in this work not only uses feedback but
also includes a feedforward term to compensate the target
motion and to ensure better tracking performance, where
the feedforward term is obtained from the UKF developed
in Section III-A. Most existing approaches either focus
on the estimate of target position/velocity or camera posi-
tion/velocity, but yet the controllers designed for the cameras
are rarely discussed, and vice versa. Additionally, the relation
between estimating the target motion and controlling the
camera are highly coupled. That is, a high performance
motion controller can minimizes the estimate error (i.e., the
camera is controlled to keep the target in the field-of-view
longer), which, in return, yields a precise feedforward term to
facilitate the tracking performance, and vice versa. Finally,
since YOLO deep neural network is employed to enclose
the target in the image, the envelop area is defined as a new
reference signal for the controller to track.

A. Target Recognition

YOLO [21] is a real-time object detection system with
reasonable accuracy after training. Our YOLO network is
trained by using a large number of dataset and the perfor-
mance is verified before implementation in this work.

B. Controller

The IBVS controller based on [25] is employed in this
work for achieving tracking control of dynamic targets. To
this end, a vector s (t) = [x1, x2, x3]

T
: [0, ∞) → R3

denoted a feature vector is defined as the control state which
is defined in (3). The visual error e(t) : [0, ∞)→ R3 to be
controlled is defined as

e = s− s∗ (14)

where s∗ ∈ R3 is a desired constant vector of the feature
vector predefined by the user (i.e., typically [x∗1, x

∗
2]

T is
selected as the center of the image and x∗3 is a function of the
expected distance to the target). Taking the time derivative
of (14) and using (4) yield the open-loop error system as

ė = ṡ = Le

[
Vc − Vq
ωc

]
,

where Vc and ωc are considered as the control inputs, Vq is
the feedforward term estimated by the UKF, and Le ∈ R3×6

is the interaction matrix defined as

Le = −x3 0 x1x3 x1x2 −
(
x21 + 1

)
x2

0 −x3 x2x3 (x22 + 1) −x1x2 −x1
0 0 x23 x2x3 −x1x3 0

 .
(15)

Note that as the error signal e converges to zero, the
position of the camera relative to the target is not unique,
due to the fact that the camera control input Vc and ωc

have a higher dimension compared to e. To keep the camera
staying on the left-hand-side of the target as to maintain high
detection accuracy from YOLO2, vcx is controlled to track
the moving target as to stay on the specified angle facing
toward the target as

vcx = −wimdexp(ψ − ψexp)

FOVu × fx
, (16)

where the design is inspired from [26]. In (16), wim is
the width of the image in pixel, dexp denotes the expected
distance to the target, FOVu is the horizontal field of view of
the camera, and ψ and ψexp are the current and the expected
angle of view with respect to the target, respectively. Since
vcx is specified in (16), the corresponding column in the
interaction matrix Le defined in (15) can be removed, which
gives the resultant matrix L̂e ∈ R3×5 as

L̂e = 0 x1x3 x1x2 −
(
x21 + 1

)
x2

−x3 x2x3 (x22 + 1) −x1x2 −x1
0 x23 x2x3 −x1x3 0

 . (17)

Using the Moore-Penrose pseudo-inverse of L̂e as well as
adding a feedforward term, the tracking controller for the
camera can be designed as

vcx = −wimdexp(ψ − ψexp)

FOVu × fx
+ vqx

vcy
vcz
ωcx

ωcy

ωcz

 = −λL̂+
e e+


vqy
vqz
0
0
0

 .
The block diagram of the controller is shown in Fig. 3.

V. SIMULATIONS

A. Environment Setup

In the simulation3, a car is considered as a moving
target and is tracked by a quadrotor, where the developed
controller as well as the UKF are implemented. A camera
is implemented on the quadrotor to provide visual feedback.
Specifically, bounding boxes are generated in the image to

2Pose estimate of the target at this angle can be achieved by a well-trained
YOLO, and the extension to multiple angles of view will be trained in the
future.

3https://goo.gl/93EDnd



Fig. 3. Block diagram of the controller.

enclose detected cars as shown in Fig. 2, which is achieved
by a pretrained YOLO deep neural network. The simulation
is conducted in the ROS framework (16.04, kinetic) with
Gazebo simulator. In the simulation environment, the value
of A = 4.6m × 1.5m, and the resolution of the image is
640x480 with 50 fps. The intrinsic parameters matrix of the
camera is

K =

 381.36 0 320.5
0 381.36 240.5
0 0 1

 .
which is obtained by calibration.

A time moving window of width N is set to be
150 with sampling rate of 50 sample/sec. The ini-
tial process and measurement noise covariance matrices
are selected as diag {[20, 20, 500, 0.0001, 0.0001, 0.0001]}
and diag

{
[0.08, 0.08, 0.02, 5, 5, 5, 1, 1, 1]× 10−2

}
, re-

spectively, and the process noise covariance matrix is es-
timated online using (13).

The initial location of the car and the drone are[
0 0 0

]T
and

[
0 5.5 1.0

]T
along with the initial

orientations
[
0 0 0

]T
and

[
0 0 −pi

2

]T
in radians,

respectively, all expressed in the global frame. The car is free
to move on the XY plane, and its velocity is specified based
on the real-time user command.

B. Simulation Results

Fig. 4 depicts the position estimate errors of the moving
vehicle with simulation period of 223 seconds. The position
estimate errors are reduced from 14% to 7% as the target
moves from time-varying velocity to constant velocity, de-
spite some noises. Note that in practice the drone may not
react fast enough to the rapid change of velocity, in which the
optical axis cannot remain facing right to the target, leading
to a slight deviation in the depth estimate (i.e., x3). Note
that the position estimate error in the Z-axis increases as the
velocity in the Y -axis increases. This can be attributed to
the fact that the increasing velocity of the vehicle in the Y -
axis causes the quadrotor to tilt forward for tracking, which
breaks the assumption 2 that the optical axis is facing toward
the side of the vehicle and leads to a large estimate error.
Remark 4. In Gazebo environment, the velocity of the car is
set below 4 m/s due to a large drag. As the speed of the car

increases, the quadrotor accelerates with a tilt angle, which
increases the chance of object detection failure. However, the
problem can be resolved by expanding the training dataset
with images from different angles of view, which will be part
of the future work.

Fig. 4. Estimate and ground truth of the target trajectory in the XY plane
in the global frame.

Fig. 5 depicts the velocity estimate errors of the moving
vehicle. The estimate performance is slightly compromised
when the vehicle is accelerated (i.e., due to the constant-
velocity model utilized in the UKF), but better estimate
performance can be expected by increasing the sensing rate
for the UKF measurement. The increase of the velocity
estimate error between 103-223 seconds can be attributed
to the acceleration of the target in the Y -direction.

Fig. 5. Estimate and ground truth of the target velocity in the X and Y
direction of the global frame.

Fig. 6 depicts the estimate error without process noise
estimation, where the constant covariance matrix Q is same
as the initial value. Compared to Fig. 5, using the estimated
noise covariance matrix developed in (13) yields a better
velocity estimate performance.

Fig. 6. Estimate and ground truth of the target velocity without estimation
of noise covariance matrix.



VI. CONCLUSION

In this work, a motion controller for a camera on an
UAV is developed to track a dynamic target with unknown
motion and without motion constraint. The unknown target
motion is estimated in the developed UKF with process noise
covariance matrix estimated based on the past data within a
moving window, and the intermittent measurement caused by
YOLO detection is addressed. The estimated target velocity
is then included as a feedforward term in the developed
controller to improve tracking performance. Compared to
the case without noise estimation, the developed approach
is proven to obtain better tracking performance. Although
Assumption 2 is rigorous in practice, this work is the first
one to prove the feasibility of the overall control architecture,
and future work will be relaxing the assumption by training
a YOLO network to detect the target from any angles.
Additionally, eliminating the knowledge of the ground truth
will be another future works.
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