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Abstract— This paper investigates the problem of energy-
optimal control for autonomous underwater vehicles (AUVs).
To improve the endurance of AUVs, we propose a novel energy-
optimal control scheme based on the economic model predictive
control (MPC) framework. We first formulate a cost function
that computes the energy spent for vehicle operation over a
finite-time prediction horizon. Then, to account for the energy
consumption beyond the prediction horizon, a terminal cost
that approximates the energy to reach the goal (energy-to-go)
is incorporated into the MPC cost function. To characterize
the energy-to-go, a thorough analysis has been conducted on
the globally optimized vehicle trajectory computed using the
direct collocation (DC) method for our test-bed AUV, DROP-
Sphere. Based on the two operation modes observed from our
analysis, the energy-to-go is decomposed into two components:
(i) dynamic and (ii) static costs. This breakdown facilitates
the estimation of the energy-to-go, improving the AUV en-
ergy efficiency. Simulation is conducted using a six-degrees-
of-freedom dynamic model identified from DROP-Sphere. The
proposed method for AUV control results in a near-optimal
energy consumption with considerably less computation time
compared to the DC method and substantial energy saving
compared to a line-of-sight based MPC method.

I. INTRODUCTION

The autonomous underwater vehicle (AUV) has become
an essential tool for long-range and deepwater underwater
missions. The scope of the missions is often restricted by
the endurance of AUVs. To improve AUV endurance, several
approaches through design modification have been proposed
(e.g., [1], [2]). However, considering the limited internal
space and desired performance requirements of the vehicle,
the improvement in AUV endurance achieved through design
modification is limited, thereby motivating the development
of energy-optimal control methods.

The existing literature on the energy-optimal control of
AUVs focuses primarily on utilizing the ocean currents in
the planning stage. In [3], the A∗ algorithm was used to
compute a horizontal energy-minimum path in a 2D ocean
environment with eddies by assuming that the energy cost is
equivalent to the traveling time. The genetic algorithm was
employed in [4] to calculate the optimal path in a spatio-
temporally varying current environment using a kinematic
model for predicting the energy consumption. However, due
to the expensive computations involved in these planning
algorithms [5], optimal paths have to be computed offline.
Execution-level controllers are then utilized to handle the
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internal and external uncertainties during real-time execution
of the planned optimal paths.

The energy-optimal control in the execution stage has also
been studied in [6], [7]. Given the planned references com-
puted in the planning stage, these energy-optimal execution-
level controllers achieve energy reduction by minimizing
a weighted sum of control efforts and path tracking er-
ror. However, the energy saving potential of these control
strategies decreases with the increase in the path tracking
error. Our previous work [8] studied the energy-optimal
control problem for the horizontal straight-line motion of
AUVs, where we proposed an execution-level controller
based on model predictive control (MPC). The proposed
controller addresses the real-time trajectory optimization and
energy management of AUVs without considering steering
and diving maneuvers.

In this paper, we generalize the previous approach in [8]
to the horizontal motion of an AUV that involves steering by
developing a controller based on economic model predictive
control (EMPC) [9]. The proposed EMPC formulation con-
sists of energy-dependent stage and terminal costs that take
into account the energy spent over the prediction horizon and
that beyond the prediction horizon (energy-to-go). To capture
the energy-to-go associated with the optimal maneuver, we
analyze the velocity and thrust profiles obtained by optimiz-
ing the global vehicle trajectory using the direct collocation
(DC) method. Based on the analysis, we decompose the
vehicle trajectory beyond the prediction horizon into the
dynamic and static stages to facilitate the estimation of
the energy-to-go. The effectiveness of our control design is
demonstrated through simulations.

II. AUV MODEL

A. DROP-Sphere Configuration

In this study, the DROP-Sphere platform, an open-source,
low-cost, 6000 m rated AUV developed by the DROP Lab
at the University of Michigan [10], is used for controller
development and demonstration. DROP-Sphere has an ellip-
tical body of 1 m length and 0.5 m width (see Fig. 1). The
weight and displacement of the vehicle are 20.42 kg and
20.57 kg, respectively. The vehicle is equipped with four
hub-less bi-directional thrusters for surge, heave, pitch, and
yaw controls. A transparent sphere with other mechanical
and electrical devices is placed at the center of the vehicle.

B. Mathematical Modeling

To model the motion of DROP-Sphere, we use a general
motion model for AUVs developed in [11]. The six-degrees-
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Fig. 1. Schematic of the DROP-Sphere

of-freedom (DOF) motion is described in a body-fixed coor-
dinate frame and an earth-fixed coordinate frame (see Fig. 2).
The vector of velocities denoted by ν, the vector of positions
and orientations denoted by η, and the vector of external
forces and moments denoted by τ are defined as

ν =
[
u v w p q r

]T
, (1)

η =
[
x y z φ θ ψ

]T
, (2)

τ =
[
X Y Z K M N

]T
, (3)

where the components of ν, η, and τ are illustrated in Fig. 2.

Fig. 2. Reference frames and notations

With the defined notations, the kinematic model of an
AUV, which relates the linear and angular velocities with
the positions and orientations, is described as

η̇ = J(η)ν, (4)

where J(η) is the coordinate transformation matrix.
The dynamic model of an AUV establishes the relationship

between external forces and vehicle states. The system
dynamics is expressed as

Mtν̇ + Fc(ν) + Fh(ν)ν + Fg(η) = τc, (5)

where Mt, Fc(ν), Fh(ν), Fg(η) and τc are the vehicle total
mass, the Coriolis and centripetal forces, the hydrodynamic
damping coefficients, the hydrostatic forces, and the control
inputs. In this study, only the diagonal terms in Mt and the
diagonal and quadratic terms in Fh(ν) are considered.

Based on the thruster allocation of DROP-Sphere, the
control input vector τc is defined as
τc =

[
Th 0 Ta + T f 0 Thl3 + l1(Ta − T f ) l2(T r − T l)

]T
, (6)

where, as shown in Fig. 1, T a, T f , T r, T l are the aft, fore,
right, and left thrusts, l1 is the distance between vertical
thrusters and the midship, and l2 is the distance between
horizontal thrusters and the center line. Th = T l + T r is
the total horizontal thrust. l3 is the vertical distance between
horizontal thrusters and the center of gravity. To facilitate the
energy consumption analysis, the power conversion relation-

ship P (T i) that converts the force from ith (i = {a, f, r, l})
thruster to the power consumption is adopted from [12].

III. ENERGY MANAGEMENT FOR AUVS

A. Problem Formulation

Let us assume that the vehicle operates in an obstacle-
free underwater environment without ocean currents. Define
`(T lk, T

r
k , T

f
k , T

a
k ) = P (T lk) + P (T rk ) + P (T fk ) + P (T ak ) as

the power consumption of all four thrusters. Then, the energy
management (EM) problem of an AUV is formulated as the
following optimal control problem:

min
{T l
k
},{Tr

k
},{Tf

k
},{Ta

k
}
J(χ0, χf , {T l

k}, {T r
k }, {T f

k }, {T
a
k })

=

Nf−1∑
k=0

`(T l
k, T

r
k , T

f
k , T

a
k )∆t,

(7)

subject to
χk+1 = f(χk, T

l
k, T

r
k , T

f
k , T

a
k ), χk ∈ X, χNf ∈ Xf ,

T lk ∈ U, T rk ∈ U, T fk ∈ U, T ak ∈ U,
(8)

where χ = [ν, η] is the states of the vehicle, χ0 and χf
are the initial and the desired final states, {T ik} is the input
sequence from the i thruster, Nf is the total number of time
steps, ∆t is the time step, and f(·) is the 6 DOF system
dynamics discretized from (4) and (5). X, U and Xf are the
constraints for the states, inputs and final state.

In this study, we consider the vehicle operation between
two horizontal waypoints, (x0,y0) and (xf ,yf ). The two
waypoints are selected such that the initial vehicle heading
(ψ0 = 0) is not pointing towards the final position. Thus,
steering maneuver is required to drive the vehicle to the
destination. The initial surge velocity u0 is set as the surge
velocity that optimizes the total energy consumption when
the yaw and pitch control energies are negligible [8]. This
selection of u0 represents an optimal straight-line cruising
condition of a vehicle before turning. The other velocities
and orientations for χ0 are set to zero, and the velocities
and orientations for χf are assumed to be unconstrained.

B. Horizontal Motion Optimization

To solve the EM problem in (7) and (8), DC, a numerical
method for solving the optimal control problems [13], can
be employed to optimize the vehicle trajectory globally. For
a specific example with (x0 = 0, y0 = 0) and (xf = 2,
yf = 2), a discretization with 100 intervals is used when
approximating the state and input trajectories with the trape-
zoid rule. The constraints include: X = {|z| ≤ 0.01, |φ| ≤
0.05, |θ| ≤ 0.05}, Xf = {(x − xf )2 + (y − yf )2 ≤ 0.052}
and U = {|T | ≤ 7.86}. The units for the variables are m
for positions, rad for orientations, and N for the thrusts.
The optimal trajectories resulted from DC are illustrated in
Fig. 3. It can be seen from Fig. 3 that the vehicle satisfies
all the constraints and reaches Xf in 21.33 s. However, the
computing time for DC to obtain this solution is 1181.04 s
on a 2.9 GHz Intel Core i5 processor with 8GB RAM. Thus,
during the execution stage, the DC method can only be used
as an open-loop control law, which makes it suffer from the
robustness issue against uncertainties.

2



Fig. 3. Position and orientation traces from direct collocation

As illustrated with the numerical example, intensive com-
putation of the DC method prohibits it from real-time im-
plementation, especially for resource-limited AUV platforms
such as DROP-Sphere. To facilitate the development of an
execution-level controller, the optimal solution obtained from
the DC method is analyzed to simplify the EM problem in (7)
and (8). The total energy consumption resulted from the DC
method is distributed for surge (33.52%), heave (60.84%),
yaw (5.54%) and pitch (0.11%) controls, which suggests that
the pitch control energy is negligible. In addition, considering
that the heave power is constant during most of the trajectory
(see Fig. 4), the heave energy will be a function of the vehicle
travel time in the horizontal plane. Then, pitch and heave
controls can be decoupled from (7) and (8), and performed by
PID controllers. Therefore, we can focus on the optimization
problem for the horizontal motion given as

min
{T lk},{T

r
k }
Jh(ζ0, ζf , {T lk}, {T rk }})

=

Nf−1∑
k=0

(`h(T lk, T
r
k ) + PPB)∆t,

(9)

subject to
ζk+1 = fh(ζk, T

l
k, T

r
k ), ζNf ∈ Xf , T lk ∈ U, T rk ∈ U, (10)

where ζ = [u, v, r, x, y, ψ] and ζf are the state vector and
the desired final state in the horizontal plane, `h(T lk, T

r
k ) =

P (T lk) +P (T rk ) is the power consumption of two horizontal
thrusters, PPB = 2P (B−W2 ) is the power consumed by two
vertical thrusters for nullifying the positive buoyancy [8],
and B and W are the vehicle buoyancy and weight. The
decoupled vehicle dynamics fh(·) is obtained by assuming
z, φ, θ to be constant within unit time step.

Fig. 4. Heave power history from direct collocation

IV. EMPC FOR AUV ENERGY MANAGEMENT

A. EMPC Formulation

To solve the optimization problem of horizontal motion
in (9) and (10), we can design a controller based on the
energy consumption of the thrusters as the stage cost under

the EMPC framework. However, this EMPC formulation will
not drive the vehicle to the destination unless the remaining
energy to reach the destination (energy-to-go) is included
into the optimization. Thus, a terminal cost reflecting the
energy-to-go is proposed, which leads to the following
EMPC formulation

min
{T l
k|t},{T

r
k|t}

JEMPC(ζ0, ζf , {T lk|t}, {T
r
k|t})

=

N−1∑
k=0

(`h(T lk|t, T
r
k|t) + PPB)∆t+Kh(ζN |t, ζf ),

(11)

subject to
ζk+1|t = fh(ζk|t, T

l
k|t, T

r
k|t), T

l
k|t ∈ U, T rk|t ∈ U, (12)

where N is the prediction horizon, (·)k|t is the k-step ahead
prediction made at time instant t. According to the Bellman’s
Equation, the optimal solution from solving (11) and (12)
will be equivalent to that of (9) and (10) if and only if the
following equality holds

Kh(ζN |t, ζf ) = J∗h(ζN |t, ζf , {T l}∗, {T r}∗), (13)

where J∗h denotes the minimal energy consumption to drive
the vehicle from ζN |t to ζf subject to the thruster input
constraints. {T i}∗ (i = {r, l}) is the corresponding optimal
thrust sequence. Therefore, in order to obtain a near-optimal
energy consumption from the EMPC, a terminal cost, which
approximates the optimal energy-to-go (J∗h), is required.

B. Two-stage Energy-to-go Approximation

To approximate the optimal energy-to-go, an extensive
analysis is conducted on the DC solution for understanding
the characteristics of the optimal maneuver of DROP-Sphere.
The optimal input sequences from two horizontal thrusters
and the heading error are shown in Fig. 5 for the case
study presented in Section. III-B. The heading error, which
represents the difference between current vehicle heading and
the desired vehicle heading, is defined as

∆ψk = tan−1 yf − yk
xf − xk

− tan−1 vk
uk
− ψk. (14)

where tan−1 yf−yk
xf−xk is the path-tangential angle between

vehicle and the final position, and tan−1 vk
uk

is the drift angle.
As illustrated in Fig. 5, the operation of the vehicle can be
divided into two stages, during which the difference between
the two thrusters in the first stage is larger than that in the
second stage. Considering the transformation between the
thrusts and the resulted forces and moments in (6), a larger
difference in horizontal thrusts leads to a larger yaw moment
for steering the vehicle, which is demonstrated by a larger
decrease in heading error during the first stage in Fig. 5.

Based on the characteristics of the DC solution, we
separate the vehicle trajectory beyond the prediction horizon
into dynamic and static stages by introducing an intermediate
state. Then, a two-stage energy-to-go approximation problem
can be formulated as

Kh(ζN|t, ζf ) = min
us,vs,rs,xs,ys

(Jd(ζN|t, ζs) + Js(ζs, ζf )), (15)

subject to

3



Fig. 5. Thrusts and heading error from direct collocation

ζk+1|t = fh(ζk|t, T
l
k|t, T

r
k|t), T

l
k|t ∈ U, T rk|t ∈ U,

∆ψs = tan−1 yf − ys
xf − xs

− tan−1 vs
us
− ψs ≈ 0.

(16)

where ζs = [us, vs, rs, xs, ys, ψs] is the intermediate state
with Jd and Js being the dynamic and the static cost, respec-
tively. The optimization of the intermediate state facilitates
the optimal energy-to-go approximation by adjusting the
durations of the dynamic and static stages.

1) Static Cost: Our previous analysis in [8] suggests that
the total energy consumption mainly consists of heave and
surge control energies when the yaw moment is negligible.
Based on this analysis, we propose the following model to
capture the energy use in the static stage

Js(us, vs, xs, ys, ζf ) =
d√

u2
s + v2

s

(PS + PPB), (17)

where d =
√

(xf − xs)2 + (yf − ys)2 is the horizontal
distance between ζs and ζf , and PS = 2P (

X|u|u|us|us
2 ) is

the power consumption from two horizontal thrusters. X|u|u
is the damping coefficient for the surge motion.

2) Dynamic Cost: For the dynamic cost, in addition to the
surge and heave control energies, the energy spent for yaw
control should be considered. Since the horizontal thrusters
are used for both surge and yaw controls, the surge and
yaw control energies can be obtained by summing up the
energy induced from the horizontal thrusters. To estimate
the energy from the two horizontal thrusters, we consider the
following surge and yaw equations of motion to parameterize
the horizontal thrust sequences

(m−Xu̇)u̇ =− (−vr + wq + Zgpr)m−X|u|u|u|u
− (W −B) sin θ + T l + T r,

(18)

(Iz−Nṙ)ṙ = −(Iy−Ix)pq−N|r|r|r|r+ l2(T r−T l), (19)

where m is the vehicle mass, Xu̇ and Nṙ are the added
mass, N|r|r is the hydrodynamic damping for yaw, zg is the
center of gravity in the z direction, and Ix, Iy and Iz are the
moment of inertia in x, y and z directions. Then, by omitting
the terms in (18) and (19) that have negligible effect on surge
and yaw dynamics during turning, following expressions are
derived to approximate the optimal horizontal thrusts

T̃ lk1 = 1
2 (X|u|uu

2
k1

+
(Iz−Nṙ)ṙk1+N|r|r|rk1 |rk1

l2
),

T̃ rk1 = 1
2 (X|u|uu

2
k1
− (Iz−Nṙ)ṙk1+N|r|r|rk1 |rk1

l2
),

(20)

where T̃ lk1 and T̃ rk1 are the approximated optimal inputs for
the left and right thrusters at time instant k1, and tk1 = k1∆t
represents the time within the dynamic stage.

To validate the approximation in (20), {T̃ lk1} and {T̃ rk1}
evaluated with the uk1 , rk1 , and ṙk1 from the DC method
are compared to the optimal thrust sequences obtained with
the DC method (Fig. 6). It can be seen from Fig. 6 that
{T̃ lk1} and {T̃ rk1} properly capture the optimal patterns of
the horizontal thrusters.

Fig. 6. Comparison of the approximated and optimal horizontal thrusts

To further simplify the dynamic cost, additional assump-
tions are made based on the velocity traces from the DC
solution given in Fig. 7: the surge velocity is assumed to be
constant, and the yaw velocity is modeled as

r̃k1 =


rN |t +

4(
ψd
td
−rN|t)

td
tk1 , for 0 ≤ tk1 ≤ td

2

ψd
td
, for tk1 >

td
2

(21)

where r̃k1 is the approximated yaw velocity, td is the duration
of the dynamic stage, and ψd = ψs − ψN |t is the heading
variation within the dynamic stage.

Fig. 7. Velocity traces from direct collocation

With these assumptions, the dynamic cost can be described
as

Jd(ζN |t, ψd, td) = (Ph + PPB) · td, (22)

where Ph = 1
4 (P (T̃ lt0) + P (T̃ rt0) + P (T̃ ltd/2) + P (T̃ rtd/2)) +

1
2 (P (T̃ ltd) +P (T̃ rtd)) is the estimated power consumption of
the horizontal thrusters based on (20) and (21).

C. Energy-optimal EMPC

With the estimated static and dynamic costs, the energy-
to-go approximation problem in (15) and (16) becomes

Kh(ζN |t, ζf , ψd, td) = min
td,ψd

(Jd(ζN |t, ψd, td)

+ Js(us, vs, xs, ys, ζf )),
(23)

subject to

∆ψs = tan−1 yf − ys
xf − xs

− tan−1 vs
us
− ψs ≈ 0. (24)
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Note that the approximated optimal thrust sequences in the
dynamic stage are functions of td and ψd. Then, by inte-
grating the system dynamics with the approximated optimal
thrust sequences, the intermediate state will also depend on
td and ψd. However, obtaining an analytical expression by
integrating the dynamics is nontrivial. Therefore, we assume
ψd = 2∆ψN |t. Then, if we replace ψs in (24) with ψd+ψN |t
according to the definition of ψd, the ∆ψs will converge to
zero as ∆ψN |t approaches zero. In addition, by assuming
uk1 = uN |t, vk1 = v0|t and rk1 =

2∆ψN|t
td

, the horizontal
position of the intermediate state can be derived based on
the vehicle kinematic relationship in (16)

xs = xN |t + uttd
∆ψN|t

sin(∆ψN |t) cos(ψnf ),

ys = yN |t + uttd
∆ψN|t

sin(∆ψN |t) sin(ψnf ),

(25)

where ut =
√
u2
N |t + v2

0|t is the forwarding velocity, and
ψnf is the path-tangential angle between ζN |t and ζf .

Substituting the approximated intermediate state in (25)
into (23), the terminal cost Kh is simplified as a function
of the state at the end of the prediction horizon (ζN |t), the
duration of the dynamic stage (td) and the desired final state
(ζf ). Then, based on the EMPC formulation in (11) and (12),
the energy-optimal EMPC (EO-EMPC) is formulated as

min
{T l
k|t},{T

r
k|t},td

JEO(ζ0, ζf , {T lk|t}, {T
r
k|t})

=

N−1∑
k=0

(`h(T lk|t, T
r
k|t) + PPB)∆t+

Jd(ζN |t, td) + Js(ζN |t, ζf , td),

(26)

subject to
ζk+1|t = fh(ζk|t, T

l
k|t, T

r
k|t), T

l
k|t ∈ U, T rk|t ∈ U. (27)

The overall schematic of EO-EMPC along with PID con-
trollers for heave and pitch controls is given in Fig. 8.

Fig. 8. Control architecture for EO-EMPC

V. SIMULATION RESULTS AND ANALYSIS

To verify the effectiveness of the proposed predictive con-
troller, EO-EMPC is demonstrated through simulations using
the six DOF model of DROP-Sphere in MATLAB/Simulink.
The sampling time of EO-EMPC (∆t) is 0.1 s, and the
prediction horizon is 0.5 s. The performance of EO-EMPC

TABLE I
PERFORMANCE COMPARISON (x0 = 0, y0 = 0)

Method Travel
Time (s)

Energy
Consumption (J)

CPU Time for
the whole Trip (s)

DC 21.33 19.93 1181.04
EO-EMPC 23.40 21.91 16.48
LOS-MPC 20.42 46.51 6.34

is compared with those obtained from (i) direct collocation
(DC) and (ii) line-of-sight-based MPC (LOS-MPC) for three
case scenarios. LOS-MPC tracks the reference surge velocity
and yaw angle under the standard MPC formulation (i.e.,
minimize the tracking error). The reference yaw angle is
computed using the line-of-sight guidance law in [14] with
a lookahead distance of 0.5 m. The reference surge velocity
is set as the initial surge velocity of the vehicle.

In the first case study, we simulate the vehicle using the
three control methods for the scenario considered in Sec-
tion. III-B. The horizontal trajectories resulted from DC, EO-
EMPC, and LOS-MPC are shown in Fig. 9. As demonstrated
in Fig. 9, all control algorithms are able to drive the vehicle
to the destination. The energy consumption and the travel
time spent by all the methods are compared in Table I. It
can be seen from Table I that the performance of EO-EMPC
is very close to that of DC. However, in our simulations, DC
takes 1181.04 s of the computation time to obtain the whole
trajectory, while EO-EMPC only takes 16.48 s. Compared to
LOS-MPC, EO-EMPC spends a slightly longer travel time
(+14.59%) but consumes much less energy (−52.89%).

Fig. 9. Horizontal trajectory comparison (x0 = 0, y0 = 0)

In order to verify the robustness of EO-EMPC, two
additional case studies are carried out with perturbations
added to the initial y position. The y0 for the two cases are
perturbed to −0.5 and 0.5, respectively. Two different im-
plementations of DC are employed: DC (feedback) that runs
the control input obtained for the perturbed initial position
and DC (feed-forward) that runs the control input obtained
for the unperturbed initial position. The resulted horizontal
trajectories are displayed in Fig. 10. From Fig. 10, it can
be observed that DC implemented as an open-loop control
law suffers from robustness issue against the uncertainty in
the initial position. The other three methods reach the final
position successfully. A further comparison of the energy
consumption is given in Table II. It can be seen that, in
terms of the energy efficiency, EO-EMPC still achieves a

5



(a) x0 = 0, y0 = −0.5

(b) x0 = 0, y0 = 0.5

Fig. 10. Horizontal trajectory comparison

TABLE II
PERFORMANCE COMPARISON (PERTURBED y0)

Scenario Method Energy
Consumption (J)

Energy
Reduction (%)

x0 = 0
y0 = −0.5

DC (feedback) 22.40 -54.13
EO-EMPC 23.68 -51.51
LOS-MPC 48.83 –

x0 = 0
y0 = 0.5

DC (feedback) 17.48 -58.95
EO-EMPC 19.38 -54.49
LOS-MPC 42.58 –

near-optimal solution compared to the DC (feedback) and
outperforms the LOS-MPC.

VI. CONCLUSIONS

In this paper, an EMPC was developed to address the
energy-optimal motion control of an AUV in the horizontal
plane. The terminal cost of the proposed EMPC was formu-
lated in terms of the energy-to-go to account for the energy
consumption beyond the prediction horizon. Two operation
modes identified from the DC solution were exploited to
partition the energy-to-go into dynamic and static costs,
respectively. The combination of the dynamic and static costs
was further optimized by modifying the duration of the two
operation modes. Simulation results verified the effectiveness

of the proposed EO-EMPC with three case studies. The EO-
EMPC is able to reduce the energy consumption by 50%
compared with the baseline MPC that tracks the reference
yaw angle generated with a line-of-sight guidance law. More-
over, compared to the DC method, up to 98% decrease in the
computation time is achieved by the EO-EMPC with only
10% difference in the energy efficiency. Future work will
be focusing on (i) robustness test under different horizontal
motion scenarios, (ii) validation on different AUV platforms,
and (iii) extension to 3D motion control problems.
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