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An Approach to Duality in Nonlinear Filtering

Jin-Won Kim, Amirhossein Taghvaei, Prashant G. Mehta and Sean P. Meyn

Abstract— This paper revisits the question of duality between
minimum variance estimation and optimal control first de-
scribed for the linear Gaussian case in the celebrated paper of
Kalman and Bucy. A duality result is established for nonlinear
filtering, mirroring closely the original Kalman-Bucy duality of
control and estimation for linear systems. The result for the
finite state-space continuous time Markov chain is presented.
It’s solution is used to derive the classical Wonham filter.

I. INTRODUCTION

In Kalman’s celebrated paper with Bucy, it is shown that
the problem of optimal estimation is dual to an optimal
control problem [1]. A striking example of the dual rela-
tionship is that, with the time arrow reversed, the dynamic
Riccati equation (DRE) of the optimal control is the same
as the covariance update equation of the Kalman filter. The
relationship is useful, e.g., to derive results on asymptotic
stability of the linear filter based on asymptotic properties of
the solution of the DRE [2].

A nonlinear extension of the minimum variance estimator
has been considered to be a harder problem. In literature, it
has been noted that: i) the dual relationship between the DRE
of the LQ optimal control and the covariance update equation
of the Kalman filter is not consistent with the interpretation
of the negative log-posterior as a value function; and ii) some
of the linear algebraic operations, e.g., the use of matrix
transpose to define the dual system, are not applicable to
nonlinear systems [3], [4]. For these reasons, the original
duality of Kalman-Bucy is seen as an LQG artifact that does
not generalize [3].

In this paper, a nonlinear extension of the minimum
variance estimation is presented for the special case of a
Markov process in continuous time, on a finite state-space.
The dual system is a backward ordinary differential equation.
An optimal control objective is formulated whose solution
yields the minimum variance estimator. Using the elementary
method of change of control, the formula for the optimal
control is obtained and used to derive the classical Wonham
filter.

The outline of the paper is as follows: classical duality is
reviewed in Sec. II, and the new dual optimal control problem
for the finite case is described in Sec. III. Its solution leading
to the Wonham filter is presented in Sec. IV.
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II. BACKGROUND ON CLASSICAL DUALITY

Linear Gaussian filtering model: Specified by the linear
stochastic differential equation (SDE):

Signal dXt = A⊺Xt dt + dBt

Observation dZt =H⊺Xt dt+ dWt

where Xt ∈Rd is the state at time t, Zt ∈Rm is the observation,
A, H are matrices of appropriate dimension, and B, W are
mutually independent Wiener processes (w.p.) taking values
in R

d and R
m, respectively. The covariance matrices associ-

ated with B and W are denoted by Q and R, respectively. The
initial condition X0 is drawn from a Gaussian distribution
N(x̂0,Σ0), independent of B or W . It is assumed that the
noise covariance matrix is non-singular, R ≻ 0.

Minimum-variance estimator: Consider the problem of
constructing a minimum variance estimator for the random
variable f ⊺XT , at some fixed time T , where f ∈ Rd is an
arbitrary, known vector.

Given the observations {Zt ∶ t ∈ [0,T ]}, the following linear
structure for the optimal estimator is assumed:

ST = y⊺0 x̂0−∫
T

0
u⊺t dZt

where y0 ∈Rd is constructed below, and the input u = {ut ∶ t ∈
[0,T ]} is chosen to solve the optimization problem,

min
u

E(∣ST − f ⊺XT ∣2)

The solution S∗T coincides with the minimum-variance esti-
mator of f ⊺XT .

This stochastic optimization problem is converted to a
deterministic optimal control problem via duality.

Dual optimal control problem:

Minimize
u

J(u) = 1
2 y⊺0 Σ0y0+∫

T

0

1
2 u⊺t Rut + 1

2 y⊺t Qyt dt

Subject to
dyt

dt
= −Ayt −Hut , yT = f

The process {yt ∶ t ∈ [0,T ]} is referred to as the dual process.
The solution of the optimal control problem yields the opti-
mal control input, along with the vector y0 that determines
the minimum-variance estimator S∗T .

The Kalman filter is obtained by expressing {S∗t ( f ) ∶ t ≥
0, f ∈Rd} as the solution to a linear SDE [5, Ch. 7].
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III. DUALITY FOR NONLINEAR FILTERING:
THE FINITE STATE SPACE CASE

Nonlinear filtering model: The finite state-space filtering
problem is considered, in which the state-space is the canon-
ical basis S = {e1,e2,⋯,ed} in R

d .
The Markovian state process X = {Xt ∶ t ∈ [0,T ]} evolves in

continuous time, taking values in S. This and the observation
process Z = {Zt ∶ t ∈ [0,T ]} are modeled by the SDE,

Signal dXt = A⊺Xt dt+ dBt (1a)

Observation dZt =H⊺Xt dt + dWt (1b)

where A ∈ Rd×d is the rate matrix, H ∈ Rd×m, W is an m-
dimensional w.p. with covariance R ≻ 0. B = {Bt ∶ t ∈ [0,T ]}
is defined by

Bt = Xt −∫
t

0
A⊺Xτ dτ

and it is a martingale since A is the generator of the Markov
process. The initial distribution for X0 is denoted π0 ∈ P(S)
where P(S) denotes the probability simplex in R

d . It is
assumed that X , W are mutually independent.

The linear observation model is chosen without loss of
generality: for any function h ∶ S→ R we have h(x) = H⊺x

for x ∈ S, with Hi = h(ei).
Two filtrations are required in this work: F = {Ft ∶ t ≥ 0}

and Z = {Zt ∶ t ≥ 0} where

Ft ∶= σ(Xτ ,Wτ ∶ 0 ≤ τ ≤ t) , Zt = σ(Zτ ∶ 0 ≤ τ ≤ t)
Let C

p

Z denote the family of Rp-valued, continuous, and Z-
adapted functions of time (the superscript “p” is omitted in
the special case p = 1).

The filtering problem is to compute the posterior distribu-
tion P(Xt ∈ ⋅ ∣Zt) [6]. The solution is derived here through
duality, very much like in the classical linear setting.

The dual system: A backward ordinary differential equation
(ODE) on R

d ,

dYt

dt
= −AYt −HUt , YT = f (2)

whose solution is

Yt = eA(T−t) f +∫
T

t
eA(τ−t)HUτ dτ , 0 ≤ t ≤ T

An optimal control problem is posed for the dual sys-
tem (2) whose solution yields the nonlinear filter. This
requires some restrictions on the class of control inputs. The
set of admissible control inputs is defined as follows:

U ∶= {Ut =K⊺t Yt +Vt ∶K ∈Cd×m
Z , V ∈Cm

Z , t ∈ [0,T ]} (3)

We denote U = {Ut ∶ t ∈ [0,T ]}, K = {Kt ∶ t ∈ [0,T ]} and
V = {Vt ∶ t ∈ [0,T ]}. By construction, K and V and Z-adapted
processes but U may not be Z-adapted because of the
backward nature of the ODE (2).

The following proposition provides explicit representa-
tions for the solution of the backward ODE (2). Its proof
appears in Appendix A.

Proposition 1: Consider the backward ODE (2) with con-
trol input Ut = K⊺t Yt +Vt where {Kt ∶ t ∈ [0,T ]} and {Vt ∶ t ∈
[0,T ]} are given Z-adapted processes. Then there exist Z-
adapted processes {Φt ,ηt ,κt ,γt ∶ t ∈ [0,T ]}, and Y0 ∈ZT , such
that for each t ∈ [0,T ],

Yt =ΦtY0+ηt , Ut = κ⊺t Y0+γt

This proposition is used to define stochastic integral being
used throughout the paper which is illustrated in the Ap-
pendix B.

Minimum-variance estimator: The problem of interest is
precisely as in the linear Gaussian case: given a fixed time
T > 0, and f ∈Rd , the goal is to obtain a representation for the
minimum variance estimator for the random variable f ⊺XT .

Given observations Z = {Zt ∶ 0 ≤ t ≤ T} defined according
to the model (1b), the following linear structure for the
estimator will be justified:

ST =Y⊺0 π0−∫
T

0
U⊺t dZt (4)

The vector Y0 is obtained from the solution to (2).
The optimal control input is chosen as the solution to the

optimization problem:

min
U∈U

E[∣ST − f ⊺XT ∣2]
Justification for the form (4) is provided through the formu-
lation of the dual control problem.

Remark 1: The stochastic integral ∫ T

0 U⊺t dZt in (4) is de-
fined as a forward integral. Formally, for a given admissible
choice of Z-adapted processes K and V , upon using the
representation in Prop. 1,

∫
T

0
U⊺t dZt =Y⊺0 ∫

T

0
κt dZt +∫

T

0
γ⊺t dZt

where {κt ∶ t ∈ [0,T ]}, {γt ∶ t ∈ [0,T ]} are adapted processes
and therefore the associated integrals are well-defined as
standard Itô-integrals. A self-contained background on in-
terpreting stochastic integrals for the non-adapted processes
considered in this paper appears in Appendix B.

Dual optimal control problem:

Min
U∈U

J(U) = E ( 1
2 ∣Y⊺0 X0−Y⊺0 π0∣2 +∫

T

0

1
2U⊺t RUt dt

+∫
T

0

1
2Y⊺t d⟨X ,X⊺⟩tYt +EtU

⊺
t dWt +EtY

⊺
t dBt) (5a)

Subject to
dYt

dt
= −AYt −HUt , YT = f (5b)

where ⟨X ,X⊺⟩ denotes the quadratic variation of the Markov
process X , and the error process E = {Et ∶ t ∈ [0,T ]} is defined
as follows:

Et ∶=Y⊺0 (X0−π0)+∫
t

0
U⊺τ dWτ +∫

t

0
Y⊺τ dBτ (6)

As in Remark 1, the four stochastic integrals appearing above
are defined also as forward integrals (see Appendix B).

The relationship between the optimal control objective J(⋅)
and the minimum variance objective (III) is illustrated in the
following proposition. The proof appears in the Appendix C.



Proposition 2: Consider the state-observation model (1),
the linear estimator (4) and the dual optimal control problem
(5). For any arbitrary choice of an admissible control input,

J(U) = 1
2E[∣ST − f ⊺XT ∣2]

This provides a justification for the objective function (5a)
and moreover shows that J(U)≥ 0 for any admissible control.

Remark 2: Consider a deterministic control input of the
form Ut = k⊺t Yt +vt where {kt}, {vt} are deterministic func-
tions of time (in particular, they do not depend upon the
observations). Such a control is trivially admissible. In this
case, {Yt} is a deterministic function of time and the error
process E is a F -martingale. Consequently,

E(∫
T

0
EtU

⊺
t dWt +EtY

⊺
t dBt) = 0

and the objective function in (5a) simplifies to

J(U) = 1
2Y⊺0 Σ0Y0+∫

T

0

1
2U⊺t RUt +

1
2Y⊺t E(Q(Xt))Yt dt

where Σ0 ∶= E((X0−π0)(X0−π0)⊺) and Q(⋅) is a S→R
d×d

map defined as follows:

Q(ei) ∶=∑
j≠i

Ai j(e j −ei)(e j −ei)⊺, i = 1, . . . ,d

The resulting problem is a deterministic LQ problem whose
optimal solution {U∗t ∶ t ∈ [0,T ]} will (in general) yield a
sub-optimal estimate S∗T using (4). The general problem
considered here is much tougher because E is not a F -
martingale: Under arbitrary admissible controls, it is not even
adapted to this filtration.

We have now set the stage to derive the nonlinear filter
via the solution to the dual optimal control problem.

IV. DERIVATION OF THE NONLINEAR FILTER

Recall that an admissible input has the form Ut =K⊺t Yt +Vt

where t ∈ [0,T ]. The goal is to obtain a formula for the gain
process K = {Kt ∶ t ∈ [0,T ]} such that the best choice of V =
{Vt ∶ t ∈ [0,T ]} is zero.

This choice of input class can be regarded as an instance
of the method of “change of control” because V represents
the new variable for control [6, Ch. 3.1].

If Vt ≡ 0 then Ȳ = {Ȳt ∶ t ∈ [0,T ]} solves the backward ODE

dȲt

dt
= −AȲt −HK

⊺
t Ȳt , ȲT = f

and the associated control is denoted Ūt =K⊺t Ȳt for t ∈ [0,T ].
With an arbitrary V , the solution is expressed

Yt = Ȳt +Ỹt , Ut = Ūt +Ũt

where Ỹ = {Ỹt ∶ t ∈ [0,T ]} also solves a backward ODE:

dỸt

dt
= −AỸt −HK

⊺
t Ỹt −HVt , ỸT = 0 (7)

with Ũt =K⊺t Ỹt +Vt for t ∈ [0,T ].

The error term is analogously split as Et = Ēt + Ẽt , with

Ēt = Ȳ0(X0−π0)+∫
t

0
Ū⊺τ dWτ +∫

t

0
Ȳ⊺τ dBτ

Ẽt = Ỹ0(X0−π0)+∫
t

0
Ũ⊺τ dWτ +∫

t

0
Ỹ⊺τ dBτ

The optimal gain is described in the following theorem.
Theorem 1: Consider the optimal control problem (5). For

any non-zero V ∈Cm
Z ,

J(U) ≥ J(Ū)
where the optimal gain is defined as following:

dπ̄t = A⊺π̄t dt−K⊺t (dZt −H⊺π̄t dt), π̄0 = π0 (8a)

Kt = −E((Xt − π̄t)(Xt − π̄t)⊺∣Zt)HR−1
, t ∈ [0,T ] (8b)

A. Proof of Thm. 1

It is simple calculation to see that

J(U) = J(Ū)+J(Ũ)+E(C)
where the cross-term C is defined by

C = Ỹ⊺0 (X0−π0)(X0−π0)⊺Ȳ0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term (i)

+∫
T

0
Ũ⊺t RŪt dt+Ỹ⊺t d⟨X ,X⊺⟩tȲt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (ii)

+∫
T

0
(ẼtŪ

⊺
t +ĒtŨ

⊺
t )dWt +∫

T

0
(ẼtȲ

⊺
t +ĒtỸ

⊺
t )dBt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
term (iii)

The strategy now is to choose K such that E(C) = 0 for all
possible choices of Z-adapted V .

Term (i): A standard technique of optimal control theory
dictates that the terminal condition term be expressed as an
integral by introducing a dual variable. Towards this goal,
we introduce a vector-valued stochastic process π̄ = {π̄t ∶ t ∈
[0,T ]} with π̄0 = π0 (the prior). At this point of time, we
only require that π̄ is a Z-adapted process. The dynamics of
this process will be defined later.

Using the process π̄ , together with the requirement (7) that
ỸT = 0, we obtain

Ỹ⊺0 (π0−X0)(π0−X0)⊺Ȳ0 = −∫
T

0
d(Ỹ⊺t (π̄t −Xt)(π̄t −Xt)⊺Ȳt)

The differential is evaluated by an application of the product
formula:1

d(Ỹ⊺t (π̄t −Xt)(π̄t −Xt)⊺Ȳt)
=Ỹ⊺t {(dπ̄t −A⊺π̄t dt+KtH

⊺(Xt − π̄t)dt− dBt)(π̄t −Xt)⊺

+(π̄t −Xt)(dπ̄t −A⊺π̄t dt+KtH
⊺(Xt − π̄t)dt− dBt)⊺

+ d⟨(π̄ −X),(π̄ −X)⊺⟩t}Ȳt −V⊺t H⊺(Xt − π̄t)(Xt − π̄t)⊺Ȳt dt

1See Appendix B for a justification of the product formula for the class
of (non-adapted) stochastic processes arising in this paper.



where ⟨(π̄ −X),(π̄ −X)⊺⟩ denotes the quadratic variation of
the process π̄ −X . It is noted that each of the term in the
integral is a quadratic either in Ỹt and Ȳt or in Vt and Ȳt .

Term (ii): The second term is expressed as:

∫
T

0
Ũ⊺t RŪt dt+Ỹ⊺t d⟨X ,X⊺⟩tȲt

= ∫
T

0
( Ỹ⊺t (KtRK

⊺
t dt+ d⟨X ,X⊺⟩t)Ȳt +V⊺t RK⊺t Ȳt dt)

Term (iii): It remains to tackle the two stochastic integrals
involving the error processes. We begin by recalling (6):

Et =Y⊺0 (X0−π0)+∫
t

0
U⊺τ dWτ +∫

t

0
Y⊺τ dBτ

Proceeding as in term (i), the process π̄ is again used
to express the terminal condition term Y⊺0 (π0 −X0) as an
integral. Once again, using the product rule

d(Y⊺t (Xt − π̄t)) = −Y⊺t (dπ̄t −A⊺π̄t dt+KtH
⊺(Xt − π̄t)dt)

+Y⊺t dBt −V⊺t H⊺(Xt − π̄t)dt

Therefore,

Et =Y⊺0 (X0−π0)+∫
t

0
U⊺τ dWτ +∫

t

0
Y⊺τ dBτ

=Y⊺t (Xt − π̄t)+∫
t

0
V⊺τ (dWτ +H⊺(Xτ − π̄τ)dτ)

+∫
t

0
Y⊺τ (dπ̄τ −A⊺πτ dτ +Kτ(dWτ +H⊺(Xτ − π̄τ)dτ))

In order to reduce the notational burden, the following
differential notation is adopted for the Z-adapted stochastic
processes Ī = {Īt ∶ t ∈ [0,T ]} and L = {Lt ∶ t ∈ [0,T ]}:

dĪt ∶= dZt −H⊺π̄t dt

dLt ∶= dπ̄t −A⊺π̄t dt+Kt dĪt

The notation is used to express the error succinctly as

Et =Y⊺t (π̄t −Xt)−∫
t

0
Y⊺τ dLτ +∫

t

0
V⊺τ dĪτ

In particular, upon splitting Et = Ēt +Ẽt , we have

Ēt = Ȳ⊺t (Xt − π̄t)+∫
t

0
Ȳ⊺τ dLτ

Ẽt = Ỹ⊺t (Xt − π̄t)+∫
t

0
Ỹ⊺τ dLτ +∫

t

0
V⊺τ dĪτ

We thus obtain a useful expression for term (iii):

∫
T

0
ẼtŪ

⊺
t +ĒtŨ

⊺
t dWt +∫

T

0
(ẼtȲ

⊺
t +ĒtỸ

⊺
t )dBt

= ∫
T

0
{Ỹ⊺t (Xt − π̄t)Ȳ⊺t Kt +Ȳ

⊺
t (Xt − π̄t)Ỹ⊺t Kt +(∫

t

0
Ỹ
⊺
τ dLτ)Ȳ⊺t Kt

+(∫
t

0
Ȳ
⊺
τ dLτ)Ỹ⊺t Kt +(∫

t

0
V
⊺
τ dĪτ)Ȳ⊺t Kt +V

⊺
t Ȳ
⊺

t (Xt − π̄t)
+V
⊺

t (∫
t

0
Ȳ
⊺
τ dLτ)}dWt

+∫
T

0
{Ỹ⊺t (Xt − π̄t)Ȳ⊺t +Ȳ

⊺
t (Xt − π̄t)Ỹ⊺t +(∫

t

0
Ỹ
⊺
τ dLτ)Ȳ⊺t

+(∫
t

0
Ȳ
⊺
τ dLτ)Ỹ⊺t +(∫

t

0
V
⊺
τ dĪτ)Ȳ⊺t }dBt

This concludes our program of expressing each of three
terms in C as an integral with sub-terms containing Ȳt ,Ỹt ,Vt .
Now, every sub-term is a quadratic of one of the two types:

1) The type 1 quadratic sub-terms contain Ȳt and Ỹt . An
example of this type of quadratic is Ỹ⊺t KtRK

⊺
t Ȳt in the

term (ii).
2) The type 2 quadratic sub-terms contain Ȳt and Vt . An

example of this is VtK
⊺
t Ȳt in the term (ii).

We express C = C1+C2, where C1 contains only the quadratic
sub-terms of type 1 and C2 contains only the quadratic sub-
terms of type 2. Upon collecting terms, we obtain

C1 = ∫
T

0
Ỹ
⊺

t (Kt RK
⊺
t dt + d⟨X ,X

⊺⟩t)Ȳt −Ỹ
⊺

t d⟨(π̄ −Xt),(π̄ −Xt)⊺⟩tȲt

+∫
T

0
(Ỹ⊺t (π̄t −Xt)Ȳ⊺t +Ȳ

⊺
t (π̄t −Xt)Ỹ⊺t )dLt

+∫
T

0
((∫

t

0
Ȳ
⊺
τ dLτ)Ỹ⊺t Kt +(∫

t

0
Ỹ
⊺
τ dLτ)Ȳ⊺t Kt)dWt

+∫
T

0
((∫

t

0
Ȳ
⊺
τ dLτ)Ỹ⊺t +(∫

t

0
Ỹ
⊺
τ dLτ)Ȳ⊺t )dBt

and

C2 = ∫
T

0
V
⊺

t (RK⊺t +H
⊺(Xt − π̄t)(Xt − π̄t)⊺)Ȳt dt

+∫
T

0
{V⊺t (Xt − π̄t)⊺Ȳt +V

⊺
t (∫

t

0
Ȳ
⊺
τ dLτ)+(∫

t

0
V
⊺
τ dĪτ)Ȳ⊺t Kt}dWt

+∫
T

0
(∫

t

0
V
⊺
τ dĪτ)Ȳ⊺t dBt

In order to have E(C) = E(C1)+E(C2) = 0 for all possible
choices of Ȳ ,Ỹ and for all possible choices of Ȳ ,V , we follow
the following 2-step procedure:

1) In Step 1, we obtain an equation for π̄ by setting

E(C1) = 0, a.s.

2) Given π̄ from Step 1, we next derive a formula for the
optimal gain K by imposing the requirement

E(C2) = 0, ∀V ∈Cm
Z

The 2-step procedure is inspired by the analogous procedure
in classical LQ theory where the step 1 is used to derive the
Ricatti equation and the step 2 is used to derive the formula
for the optimal feedback gain; cf., [6, Ch. 7.3.1].

Step 1: By inspection, we find that upon setting

dπ̄t = A⊺π̄t dt −Kt dĪt , π̄0 = π0 (9)

which is as presented in the theorem statement (8a), we have
dLt ≡ 0, and C1 reduces to

C1 = ∫
T

0
Ỹ⊺t (KtRK

⊺
t dt+ d⟨X ,X⊺⟩t)Ȳt

−Ỹ⊺t d⟨(π̄ −X),(π̄ −X)⊺⟩
t
Ȳt

It is an easy calculation to compute the quadratic variation

d⟨(π̄ −X),(π̄ −X)⊺⟩
t
=KtRK

⊺
t dt+ d⟨X ,X⊺⟩t

and therefore, upon defining the dynamics of π̄ according
to (9),

C1 = 0 a.s.



This is true for any choice of Z-adapted gain process K.

Among the consequences are the following pretty repre-
sentations for the error processes:

Ēt = Ȳ⊺t (Xt − π̄t)+∫
t

0
Ȳ⊺τ dLτ = Ȳ⊺t (Xt − π̄t) (10)

and similarly,

Ẽt = Ỹ⊺t (Xt − π̄t)+∫
t

0
Vτ dĪτ

These expressions also hold for any Z-adapted K.

Step 2: A formula for the gain K= {Kt ∶ t ∈ [0,T ]} is obtained
by enforcing E[C2] = 0.

We first carry out some simplifications. It is straightfor-
ward calculation that, with π̄ defined according to (9), the
integrand of C2 is a perfect differential:

C2 = ∫
T

0
d(Ēt ∫

t

0
V⊺τ dĪτ) = ĒT ∫

T

0
V⊺t dĪt (11)

The following orthogonality condition is thus obtained upon
using the representation (10) for ĒT :

f ⊺E((π̄T −XT )∫
T

0
V⊺t dĪt) = E(C2) = 0

Since the function f is arbitrary, we must have

E((XT − π̄T)∫
T

0
V⊺t dĪt) = 0

To obtain the formula for K, the expression inside the
expectation is written as an integral—essentially by reversing
the steps in finding the perfect differential. This yields

E(∫
T

0
(KtR+(Xt − π̄t)(Xt − π̄t)⊺H)Vt dt)

− E(∫
T

0
(∫

t

0
V⊺τ dĪτ)(dπ̄t −A⊺Xt dt)) = 0

(12)
For the equation to hold for arbitrary choices of V and Ī

(which is unrelated to the choice of V ), the two terms should
both be zero:

E(∫
T

0
(KtR+(Xt − π̄t)(Xt − π̄t)⊺H)Vt dt) = 0 (13)

E(∫
T

0
(∫

t

0
V⊺τ dĪτ)(dπ̄t −A⊺Xt dt)) = 0 (14)

The formula for the optimal K is obtained by solving (13).
Using the tower property of conditional expectation, because
Vt and Kt are both Zt -measurable, we have

E(∫
T

0
(KtR+E((Xt − π̄t)(Xt − π̄t)⊺H ∣Zt))Vt dt) = 0

Since V is an arbitrary Z-adapted function, Kt is uniquely
determined on L2 space:

Kt = −E((Xt − π̄t)(Xt − π̄t)⊺H ∣Zt)R−1
, t ∈ [0,T ]

This gives the formula for the optimal gain K.
Remark 3: Using the optimal gain, the equation (9) for π̄

becomes

dπ̄t = A⊺π̄t dt+E[(Xt − π̄t)(Xt − π̄t)⊺H ∣Zt]R−1 dĪt , π̄0 = π0

The equation is not closed because we do not know E(Xt ∣
Zt) =∶ πt .

One could consider closing the equation by assuming a
certainty equivalence principle that π = π̄ . In that case,

E((Xt − π̄t)(Xt − π̄t)⊺H ∣Zt) = diag(πt)(H −π⊺t H)⊺

where diag(πt) is a diagonal matrix whose diagonal entries
are the elements of the vector πt , and one obtains the
equation

dπt = A⊺πt dt +diag(πt)(H −π⊺t H)⊺R−1 dIt , π0 = π0

where dIt = dZt −H⊺πt dt. This is the equation for the
Wonham filter.
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APPENDIX

A. Proof of Proposition 1

For a given affine control law Ut =K⊺t Yt +Vt , the ODE (2)
is a linear system with random coefficients:

dYt

dt
= −(A+HK

⊺
t )Yt −HVt , YT = f (15)

It admits a unique solution Y ∶ [0,T ]→ R
d . Now, because

{Kt ,Vt ;t ∈ [0,T ]} are Z-adapted and YT = f is deterministic,
the solution Y0 at time t = 0 is a ZT -adapted random vector.

For t ≥ τ , the state transition matrix Φ(t,τ) is defined as
the solution to the matrix ODE

d
dt

Φ(t,τ) = −(A+HK
⊺
t )Φ(t,τ), Φ(τ,τ) = I (16)

A solution of (15) is given by

Yt =Φ(t ;0)Y0−∫
t

0
Φ(t ;τ)HVτ dτ =∶ΦtY0+ηt

Similarly, Ut =K⊺t Yt +Vt = (Φ⊺t Kt)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

κt

⊺
Y0+(K⊺t ηt +Vt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γt

.

B. Stochastic integrals

Recall the filtrations: Ft ∶=σ(X0,Bτ ,Wτ ∶ 0≤ τ ≤ t) and Zt =
σ(Zτ ∶ τ ∈ [0,t]), t ∈ [0,T ]. There are two types of stochastic
processes:

1) Adapted stochastic processes: W, B, X ∈ F and
Z, π̄, Ī, K,V ∈Z .

2) Non-adapted stochastic processes: Y, U, E , and their
optimal and perturbed counterparts, Ȳ , Ū , Ē and
Ỹ , Ũ , Ẽ , respectively.



Now, allowing only for admissible control inputs from U
(see (3)), a generic stochastic process considered in this paper
is expressed as φt = F⊺ξt +αt , where F ∈ZT and ξt ,αt ∈Ft

for each t (Prop. 1 and Prop. 4).

Definition 1: Consider two stochastic processes φt =
F⊺ξt + αt and ψt = G⊺ζt + βt , where ξt ,αt ,ζt ,βt ∈ Ft are
piecewise continuous functions of time t with at most finitely
many jumps and F, G are bounded random vectors. Consider
a partition ΠN

[0,t] = {0= t0 < t1 < . . . < tN = t} with ∆ ∶=max
i
(ti−

ti−1). Then,

∫
t

0
φτ dψτ ∶= lim

∆→0

N

∑
i=1

φti−1(ψti −ψti−1)

⟨φ ,ψ⟩t ∶= lim
∆→0

N

∑
i=1
(φti −φti−1)(ψti −ψti−1)

provided the respective limits exist in L2.
Proposition 3: Consider the two stochastic processes
{φt ,ψt} as defined in Defn. 1. Then

∫
t

0
φτ dψτ

L2= F⊺(∫
t

0
ξτ dζ⊺τ )G+F⊺(∫

t

0
ξτ dβτ)

+ G⊺(∫
t

0
ατ dζτ)+∫

t

0
ατ dβτ

⟨φ ,ψ⟩t L
2= F⊺⟨ξ ,ζ⊺⟩tG+F⊺⟨ξ ,β ⟩t + ⟨α,ζ⊺⟩tG+ ⟨α,β ⟩t

where the integrals on the right-hand side are standard Itô-
integrals. Moreover, the following Itô product formula holds:

φtψt −φ0ψ0 = ∫
t

0
φτ dψτ +∫

t

0
ψτ dφτ + ⟨φ ,ψ⟩t

Proof: The pre-limit is evaluated as

N

∑
i=1

φti−1(ψti −ψti−1)

=F⊺(
N

∑
i=1

ξti−1(ζ⊺ti −ζ⊺ti−1
))G+F⊺

N

∑
i=1

ξti−1(βti −βti−1)

+ G⊺
N

∑
i=1

αti−1(ζti −ζti−1)+
N

∑
i=1

αti−1(βti −βti−1)

The result is obtained upon letting ∆→ 0. For example,

lim
∆→0

N

∑
i=1

ξti−1(ζ⊺ti −ζ⊺ti−1
) L

2= ∫
t

0
ξτ dζ⊺τ

and therefore, because F, G are bounded,

lim
∆→0

F⊺(
N

∑
i=1

ξti−1(ζ⊺ti −ζ⊺ti−1
))G L

2= F⊺(∫
t

0
ξτ dζ⊺τ )G

The calculation for the cross variation is analogous. The
product rule is proved by using the following identity (which
holds for arbitrary stochastic processes):

(φtiψti −φti−1 ψti−1) =φti−1(ψti −ψti−1)+ψti−1(φti −φti−1)
+(φti −φti−1)(ψti −ψti−1)

Summing over i and taking the limit as ∆ → 0 yields the
result.

Remark 4: The product rule is the only type of Itô formula
used in the various proofs in this paper. This is because of
the linear quadratic nature of the optimal control problem in
finite-state-space settings. The following differential notation
is frequently used:

d(φtψt) = φt dψt +ψt dφt + d⟨φ ,ψ⟩t (17)

C. Proof of Proposition 2

The following identity is established in this section for any
admissible control:

J(U) = 1
2E[∣ST − f ⊺XT ∣2]

The lefhand-side is the optimal control objective as defined
in (5a). The righthand-side is the mean-squared error. Recall
that ST is the linear estimate as defined by (4), f ∈ Rd is
deterministic, and XT is the hidden state at time T .

The approach is to use the dual ODE (2) to express the
mean-squared error as an integral. The product formula (17)
is used to obtain

d(Y⊺t Xt) = dY⊺t Xt +Y⊺t dXt + d⟨Y⊺, X⟩t
= (−Y⊺t A⊺−U⊺t H⊺)Xt dt +Y⊺t (A⊺Xt dt+ dBt)
= −U⊺t H⊺Xt dt+Y⊺t dBt

which is shorthand for the integral equation

Y⊺T XT =Y⊺0 X0+∫
T

0
U⊺t H⊺Xt dt+Y⊺t dBt

With YT = f , upon subtracting this equation from (4),

f ⊺XT −ST = (Y⊺0 X0−Y⊺0 π0)+∫
T

0
U⊺t dWt +Y⊺t dBt

With the definition of the error process Et in (6), the left-hand
side is identified: f ⊺XT −ST = ET .

The product formula (17) is then used to obtain

1
2E

2
T = 1

2E
2
0 +∫

T

0
Et dEt +

1
2 ⟨E ,E⟩T

The integral form (5a) of the objective function follows from
evaluating each of the terms as summarized in the following.

Proposition 4: Consider the error process E = {Et ∶ t ∈
[0,T ]} defined in (6). Suppose U = {Ut ∶ t ∈ [0,T ]} is any
admissible control. Then

E
2
0 = ∣Y⊺0 X0−Y⊺0 π0∣2

∫
T

0
Et dEt = ∫

T

0
EtU

⊺
t dWt +∫

T

0
EtY
⊺

t dBt

⟨E ,E⟩T = ∫
T

0
U2

t dt+Y⊺t d⟨X ,X⟩tYt

The proof is the direct application of Prop. 1 and Prop. 3.


