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Abstract— Previously, we derived exact relationships between
the properties of a linear time-invariant control system and
properties of an anomaly detector that quantified the impact
an attacker can have on the system if that attacker aims to
remain stealthy to the detector. A necessary first step in this
process is to be able to precisely tune the detector to a desired
level of performance (false alarm rate) under normal operation,
typically through the selection of a threshold parameter. To-
date efforts have only considered Gaussian noises. Here we
generalize the approach to tune a chi-squared anomaly detec-
tor for noises with non-Gaussian distributions. Our method
leverages a Gaussian Mixture Model to represent the arbitrary
noise distributions, which preserves analytic tractability and
provides an informative interpretation in terms of a collection
of chi-squared detectors and multiple Gaussian disturbances.

I. INTRODUCTION

Model-based anomaly detection uses a predictor to fore-
cast the evolution of a dynamical system. This prediction
is compared with the actual measured value to test for an
appreciable discrepancy, which may indicate the presence of
anomaly in the system. If the predictor is perfect, then this
task is easy - any discrepancy is enough to cause concern.
The task is made more challenging because the predictor has
some uncertainty in its forecast, which implies that relatively
small discrepancies may be due to this uncertainty rather than
anomalous behavior. One of the most fundamental sources
of uncertainty in conventional control systems is captured in
the terms that quantify system and measurement noise. The
overwhelming majority of work on stochastic model-based
detection assumes system and measurement noises that are
Gaussian distributed, see e.g., [1], [2], [3]. In the context of
linear time-invariant systems especially, normal distributions
preserve the capability of finding analytic solutions. In this
work, we do not assume any structure of the noise proba-
bility density functions; however, we manage to retain some
analytic tractability by employing a Gaussian Mixture Model
(GMM) representation of these arbitrary distributions.

In a stochastic context, detectors necessarily trade off
sensitivity (rate of true positives - true alarms) for fall-out
(rate of false positives - false alarms). The machinery we
present to tune detectors is a necessary step to (a) understand
the shape of the Receiver Operating Characteristic (ROC)
curve, (b) quantify how that shape depends on system and
design parameters, and (c) select a point on the ROC that
has a desired level of performance - as measured by a
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tolerable true/false positive balance. In past work we have
provided methods to tune several popular detectors when the
uncertainty is driven by Gaussian system and measurement
noises [4], [5]. When noise distributions deviate significantly
from this assumption, then new tools are required to produce
an effective means of tuning detectors. Here we provide a
generalized chi-squared detector that can be tuned to any
desired rate of false alarms through the appropriate selection
of the detector sensitivity threshold.

The process of tuning model-based detectors is to propa-
gate the uncertainty, here the noise distributions, through the
system and into the detector. By quantifying the distributions
the detector expects to see under normal operation (with no
anomalies), we can quantify the trade-off between the true
and false positive rates based on the sensitivity threshold we
select. We begin by reviewing the tools for the Gaussian case
and conclude by demonstrating the backwards compatibility
of the results we develop with the Gaussian case and by
showing an example.

II. MODEL-BASED ANOMALY DETECTION

Consider a general discrete-time linear time-invariant
(LTI) system,

xk+1 = Fxk +Guk + vk

yk = Cxk + ηk
(1)

with time index k ∈ N, state xk ∈ Rn, output yk ∈ Rp, input
uk ∈ Rm, matrices F , G, and C of appropriate dimensions,
and iid multivariate noises vk ∈ Rn and ηk ∈ Rp with
covariance matrices R1 ∈ Rn×n, R1 ≥ 0 and R2 ∈ Rp×p,
R2 ≥ 0 respectively. The random processes vk and ηk are
mutually independent. We assume that (F,G) is stabilizable
and (F,C) is detectable such that there are no unstable
unobservable or uncontrollable modes.

The main idea behind fault detection theory is to use
an estimator to forecast the evolution of the system in the
absence of fault [6]. In this analysis we consider a model-
based estimator of Luenberger form,

x̂k+1 = Fx̂k +Guk + L(yk − Cx̂k), (2)

where the estimator has perfect model knowledge, L is the
observer gain matrix, and x̂k+1 is the predicted state. This
prediction is compared to the actual measurement received
from the sensors. If the difference between the measurement
and the predicted output is large, there may be an anomaly
in the system. This difference is typically called the residual,

rk = yk − Cx̂k, (3)
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where yk is the actual measurement and Cx̂k is the estimated
output. Different model-based detectors use the residual in
different ways to quantify deviation away from the estimate.
One of the simplest and most widely used approach con-
structs the distance measure zk from a quadratic form of the
residual,

zk = (rk − µ)TΣ−1(rk − µ), zk > α −→ alarm (4)

where µ ∈ Rp and Σ ∈ Rp×p are the mean and covariance of
the residual random vector, rk, under normal operation (no
faults or attacks). This detector raises alarms if zk exceeds
an assigned threshold, i.e., zk > α, α ∈ R>0.

When the system and sensor noises are zero-mean and
Gaussian distributed, then the residual is also a zero-
mean Gaussian random variable, i.e., rk ∼ N (0,Σ), with
covariance Σ = CPCT + R2, where P represents the
asymptotic covariance of the estimation error, limk→∞ Pk =
limk→∞E[eke

T
k ] = P , ek = xk − x̂k, and is the solution of

the Lyapunov equation [7],

(F − LC)P (F − LC)T − P +R1 + LR2L
T = 0. (5)

The distance measure zk is then a sum of squared Gaussian
variables making it chi-squared distributed. For this reason,
the detector (4) is conventionally called the Chi-Squared
Detector. This name underscores the prevailing assumption
that system and sensor noises are Gaussian distributed - the
simplifying assumption we lift in this work.

In past work, we characterized the relationship to select
the threshold α in (4) to yield a desired false alarm rate.
Effectively capturing the receiver operator curve (ROC) of
the detector, this characterization is critical for comparisons
across detectors because all detectors must be tuned for
comparable performance. The following Lemma states the
relationship for a chi-squared detector with zero-mean Gaus-
sian system and measurement noises.

Lemma 1 ([5]): Assume that there are no anomalies
present in an LTI system (1) driven by zero-mean Gaussian
system and measurement noises such that the residual rk ∼
N (0,Σ) and consider the chi-squared detector (4) with
threshold α ∈ R>0. To achieve a desired false alarm rate A∗
set α = α∗ := 2P−1(1 − A∗, p2 ), where P−1(·, ·) denotes
the inverse regularized lower incomplete gamma function.

III. NON-GAUSSIAN NOISES

Although assuming noises fall according to Gaussian
distributions is standard for the theoretical treatment of
control systems, practical implementations for tuning chi-
squared detectors on real systems can fall short when using
Lemma 1 directly. System noise is typically used to aggregate
model uncertainty. For many control concerns, increasing the
covariance of Gaussian noise is an effective, conservative
approach for capturing model imperfections. However, when
we aim to use this noise to predict the expected behavior
of the system it is important that the noise distribution is an
accurate representation of the model discrepancy. In addition,
injecting conservatism into the system noise directly reduces
the sensitivity of the detector. For sensor noise, many sensors
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Fig. 1: Given the probability density function (black) a Gaus-
sian Mixture Model (GMM) expression can be constructed.
Here the GMM is composed of three Gaussian modes.

exhibit nonlinear behavior in the distribution of their reported
values or evidence strong quantization effects; both of which
can have a dramatic effect on the accuracy of Lemma 1.

We revisit the chi-squared detector defined in (4) with
system and sensor noises that are arbitrary distributed. These
distributions can be expressed as convex mixtures of Gaus-
sian distributions [8]. We construct the so-called Gaussian
mixture model (GMM) expansion of the distributions for
system noise (vk) and measurement noise (ηk), respectively,

fη =

m1∑
j=1

pηj N (x |µηj ,K
η
j ), (6)

fv =

m2∑
j=1

pvj N (x |µvj ,Kv
j ), (7)

where m1 is the number of Gaussian modes for the mea-
surement noise and m2 is the number of Gaussian modes
for the system noise, µηj ∈ Rp and µvj ∈ Rn are the mean
value of each Gaussian mode, Kη

j ∈ Rp×p and Kv
j ∈ Rn×n

are their corresponding covariances. It is important that the
scalar values pηj and pvj satisfy

m1∑
j=1

pηj = 1, and
m2∑
j=1

pvj = 1, (8)

which follows from interpreting (6) (resp., (7)) as a total
law of probability between Gaussian conditional probabilities
with probability pηj (resp., pvj ). The EM algorithm supplies
a reliable mechanism for computing GMMs from data with
guarantees on the convergence of these models [9]. See Fig.
1 for an example of a GMM.

The challenge, now, for anomaly detection is to accurately
characterize the distribution of the residual and distance mea-
sure, ideally maintaining an analytic relationship so that the
role of different design variables (e.g., observer gain) can be
understood. This paper employs a generalized version of the
chi-squared detector and in using the GMM representation
of the noise distributions allows us to develop the GMM
representation of the residual distribution and then compute
statistics about the distance measure distribution.

A. Residual Distribution

We first characterize the residual distribution.



Lemma 2: Given the LTI system (1) driven by system
and sensor noises whose probability density functions can
be expressed as the Gaussian mixture models in (6) and
(7), the probability density function of the residual rk at
time k ∈ N can be written as a Gaussian mixture model of
mk = mk

1m
k−1
2 Gaussian modes

frk(x) =

mk∑
j=1

τj N (x |βj ,Θj), (9)

where τj represents the mixture probabilities of the Gaussian
modes, βj are the means, and Θj are the covariances,

βj =

k∑
κ=1

ATκµ
η

njκ
+

k−1∑
κ=1

BTκ µ
v
njκ+k

Θj =

k∑
κ=1

AκK
η

njκ
ATκ +

k−1∑
κ=1

BκK
v
njκ+k

BTκ

τj =
k∏
κ=1

pη
njκ
×
k−1∏
κ=1

pv
njκ+k

Aκ =

{
I κ = 1
−C(F − LC)κ−2L 2 ≤ κ ≤ k

Bκ = C(F − LC)κ−1 1 ≤ κ ≤ k − 1

where njκ captures all the possible permutations of combining
terms from the system and measurement noise GMM modes,
following the rules: leftmargin=1.3cm

Init: n1
κ = 1 for κ = 1, . . . , 2k − 1

Add: nj+1
1 = nj1 + 1

Wrap: if nj+1
κ >

{
m1 for κ = 1, 2, . . . , k
m2 for κ = k + 1, . . . , 2k − 1

}
then nj+1

κ+1 = nj+1
κ+1 + 1 and nj+1

κ = 1.

Remark 1: Since any probability density function can be
expressed as a Gaussian mixture model, the key insight from
Lemma 2 is not that the residual can be expressed as a GMM,
but rather that the residual GMM can be found analytically
from the GMMs of the system and measurement noises. The
notation above is unavoidably complicated due to a large
number of terms. Their definitions are straightforward by
looking at the proof below - namely the expansion of the
product in (16). In Section V we will discuss an effective
means of reducing the number of GMM terms needed to
represent the density function.

Proof: In the absence of anomalies, from the definition
of the residual (3) and the system equations (1), we can
recursively solve for the expression of rk as a function of
only the system and sensor noises (alternatively use the z-
transform),

rk = ηk −
k−1∑
κ=1

C(F − LC)κ−1(Lηk−κ − vk−κ). (10)

Thus the residual is a linear combination of sequential iid
samples of noise such that its distribution can be expressed

as a convolution integral in terms of the constituent noise
distributions [10], i.e.,

frk = fAkη1 ∗ · · · ∗ fA1ηk ∗ fBk−1v1 ∗ · · · ∗ fB1vk−1
(11)

where Aκ = −C(F −LC)κ−2L, 2 ≤ κ ≤ k , A1 = I and
Bκ = C(F − LC)κ−1, 1 ≤ κ ≤ k − 1. Since the noise
samples are iid, we can drop the time dependence to yield,

frk = fA1η ∗ · · · ∗ fAkη ∗ fB1v ∗ · · · ∗ fBk−1v. (12)

The characteristic function of a random variable X is defined
ϕX(ω) = E[eiω

TX ], where E[·] denotes expectation. Using
the characteristic function to represent the distributions in-
volved in (12), changes the convolution from an integral to
a product. The characteristic functions of the residual and
noises are,

ϕrk(ω) =

∫ ∞
−∞

frk(x) eiω
T x dx, (13)

ϕη(ω) =

∫ ∞
−∞

fη(x) eiω
T x dx, (14)

ϕv(ω) =

∫ ∞
−∞

fv(x) eiω
T x dx. (15)

Note that the characteristic function of an affine transforma-
tion of a random variable Y = QX +R is

ϕY (ω) = e(iωTR)ϕX(QTω),

thus ϕAκη(ω) = ϕη(ATκω) and ϕBκv(ω) = ϕv(B
T
κ ω).

Therefore, ϕrk(ω) is a product of characteristic functions
for transformed system and measurement noises,

ϕrk(ω) =

k∏
κ=1

ϕη
(
ATκω

)
×

k−1∏
κ=1

ϕv
(
BTκ ω

)
. (16)

Using the Gaussian mixture model with the characteristic
function representation makes it possible to expand the sys-
tem noise and measurement noise, e.g., for the measurement
noise

ϕη(ω) =

m1∑
j=1

pηj

∫ ∞
−∞
N (x |µηj ,K

η
j ) eiω

T x dx, (17)

=

m1∑
j=1

pηj e
(iωTµηj− 1

2ω
TKη

j ω), (18)

where the simplification from (17) to (18) comes from identi-
fying that the integral in (17) is the characteristic function of
a Gaussian distribution which has a closed form expression
[10]. If we replace the variable ω with its transformed ATκω
and perform the same process for the system noise,

ϕη(ATκω) =

m1∑
j=1

pηj e
(iωTAκµηj− 1

2ω
TAκK

η
j A

T
κω), (19)

ϕv(B
T
κ ω) =

m2∑
j=1

pvj e
(iωTBκµvj− 1

2ω
TBκK

v
j B

T
κ ω). (20)



Substituting these expressions into (16) reveals that ϕrk(ω)
is a linear combination of mk = mk

1m
k−1
2 exponential terms

ϕrk(ω) =

mk∑
j=1

τj e
(iωT βj− 1

2ω
TΘjω) (21)

where the expressions for βj , Θj , and τj in the statement
of Lemma 2 can be derived by substituting (19)-(20) and
expanding the product in (16). Conveniently, (21) is in the
form of the characteristic function of a linear combination of
Gaussian functions, thus (21) demonstrates that the residual
distribution at time step k can be expressed as

frk(x) =

mk∑
j=1

τj N (x |βj ,Θj), (22)

where τj represents the mixture probabilities of the mk

Gaussian modes, βj are the means of the modes, and Θj

are the covariances of the modes.

In the absence of anomalies, the time dependence of the
residual is governed by the convergence of the estimator,
since the system is time-invariant and the noises are iid.
In most practical situations the estimator is designed to
converge relatively quickly and so it is reasonable to assume
for the rest of this work that sufficient convergence of the
estimation has already been achieved. Thus we seek the
steady state distribution of the residual, which permits some
simplification by removing the dependence on time.

Lemma 3: If the system is stable, then the distribution of
the residual converges to fr∞ as k → ∞, i.e., given some
error tolerance ε ∈ R>0 there exists a k∗ ∈ N such that

‖fr∞ − frk∗‖ < ε, (23)

implying that fr := frk∗ provides an arbitrarily close
approximation of the steady state distribution.

Proof: To not belabor an intuitive result, we provide
a sketch of the proof without explicitly writing all details
regarding the convergence. Because the system is stable
ρ(F − LC) < 1, which means

lim
κ→∞

Aκ = Op×p, and lim
κ→∞

Bκ = On×p,

where O is the zero matrix of the designated size. Therefore,
in steady state the characteristic functions characterizing the
system and measurement noise become

lim
κ→∞

ϕη(ATκω) = lim
κ→∞

m1∑
j=1

pηj e
(iωTAκµ

η
j−

1
2ω

TAκK
η
j A

T
κω)

=

m1∑
j=1

pηj = 1, (24)

lim
κ→∞

ϕv(B
T
κ ω) = lim

κ→∞

m2∑
j=1

pvj e
(iωTBκµ

v
j− 1

2ω
TBκK

v
j B

T
κ ω)

=

m2∑
j=1

pvj = 1. (25)

The convergence of these characteristic functions imply the
convergence of the characteristic function of the residual to
ϕr∞(ω) such that for a given ε̃ ∈ R>0 there exists a k∗ such
that

|ϕr∞(ω)− ϕrk∗ (ω)| < ε̃, (26)

where ϕrk is defined as in (16). This provides an approxi-
mation for the steady state that is made arbitrarily accurate
by selecting an arbitrarily small ε̃ (and hence large k∗),

ϕr∞(ω) =

∞∏
κ=1

ϕη(ATκω)×
∞∏
κ=1

ϕv(B
T
κ ω) (27)

≈
k∗∏
κ=1

ϕη(ATκω)×
k∗−1∏
κ=1

ϕv(B
T
κ ω). (28)

As mentioned earlier, k∗ can be interpreted as the settling
time of the control system and estimator. As before, the char-
acteristic function of the residual corresponds to a probability
density function that is composed of the sum of multiple
Gaussian modes - a GMM. This distribution can also be
made arbitrarily accurate by selecting a smaller ε̃ which
corresponds to a larger k∗ and a smaller ε in (23),

fr∞(x) ≈ fr(x) := frk∗ (x) =

m∑
j=1

πj N (x |µj ,Kj), (29)

where m = mk∗

1 mk∗−1
2 is the number of Gaussian modes

used to represent the steady state residual distribution. As
before, the values of πj , µj , and Kj are the mixture
probabilities, means, and covariances, respectively, of the m
Gaussian modes and are computed by substituting (19)-(20)
and expanding the product in (28).

B. Distance Measure & False Alarm Rate Tuning

Most detectors construct a scalar-valued distance measure
from the residual to quantify how different the measurement
is from what is expected. In this paper we use the generalized
chi-squared detector in (4) where µ is the overall mean value
and Σ is the overall covariance of the steady state residual.
From (29),

µ =

m∑
j=1

πjµj and Σ =

m∑
j=1

πjKj + γjγ
T
j (30)

where γj = µ− µj is the difference between the individual
GMM (mode) means and overall mean. Our aim in this
section, and ultimately of this paper, is to characterize the
expected rate of false alarms given a chosen threshold value,
α, of the detector. Recall that alarms are generated if zk > α
for any k ∈ N. Thus the probability of drawing a distance
measure value from its distribution that leads to an alarm
is P (zk > α). Figure 2 plots the multivariate, scalar-valued
distance measure function zk over the domain of the residual
rk, in the two dimensional (p = 2) case. Due to the
quadratic form of the distance measure in (4), the surface
is a paraboloid. The region D is the area contained by the
projection of the level set zk = α onto the rk plane. Theorem
1 is the generalized version of Lemma 1 for tuning the



Mj =
det C√

(2π)p detKj

∫ 2π

0

∫ π

0

· · ·
∫ π

0

∫ √α
0

e(CT ρk+γj)
TK−1

j (CT ρk+γj) dρ

dρ = |ρk|p−1 sin (φ1)
p−2

sin (φ2)
p−3 · · · sin (φp−2) d|ρk| dφ1 dφ2 ... dφp−1

(?)

Fig. 2: The 3D surface of the residual GMM probability density function (shaded to reveal height mapping) constructed
from m = 3 Gaussian modes with means µj denoted by blue dots. The quadratic form of the distance measure zk forms a
paraboloid over the domain of the residual rk centered at µ (the mean of the residual distribution). The cumulative probability
P (zk ≤ α) corresponds to the amount of probability in the residual distribution within the region D (33) (green area), the
area corresponding to the domain formed by projecting the zk = α level set of the paraboloid (red line). The probability
P (zk ≤ α) =

∑
j πjMj , where Mj is the volume of probability contributed by the Gaussian mode j. In Section IV, we

show that we can interpret the generalized detector as the probabilistic combination of m chi-squared detectors, where the
j-th detector is tuned such that the false alarm rate is Aj = 1−Mj , which means the threshold αj is selected such that the
volume of probability contained within the region Dj (38) (the projection of the αj-level set of the paraboloid centered at
µj) is equal to Mj .

detector for a desired level of performance (desired false
alarm rate) in the case that the system and measurement
noises are no longer Gaussian.

Theorem 1: Assume that there are no anomalies present
in an LTI system (1) driven by arbitrary system and mea-
surement noises such that the residual rk ∼ fr (29), i.e.,
an m-th order Gaussian mixture model, and consider the
generalized chi-squared detector (4) with threshold α ∈ R>0.
The expected false alarm rate is

A = 1− P (zk ≤ α) = 1−
m∑
j=1

πjMj , (31)

where Mj is given by (?), in the box above.
Proof: The false alarm rate is the probability that zk

exceeds the threshold α, A = P (zk > α) = 1 − P (zk ≤
α). The cumulative probability of the nonnegative distance
measure is given by

P (zk ≤ α) =

∫ α

0

fzk(z) dz =

∫∫
D
fr(r) dr, (32)

where dr is the differential area element over the region

D = {rk | zk = (rk − µ)TΣ−1(rk − µ) ≤ α}, (33)

which is in general a p-dimensional ellipsoid and whose
boundary is defined by the projection of the level set zk = α
onto the rk plane, and threshold α is the assigned threshold

of the generalized chi-squared detector. Effectively, (32)
expresses that the probability of having zk ≤ α is equal
to the volume under the fr distribution, restricted to the
rk values that generate a zk value less than or equal to α.
Since fr is composed of a mixture of Gaussian modes, Fig. 2
depicts how this formulation sums the volume of probability
contained under the various Gaussian modes and within the
region D. Replacing fr in equation (32) explicitly expressing
the m GMM modes leads to

P (zk ≤ α) =

1√
(2π)p

m∑
j=1

πj√
detKj

∫∫
D
e(rk−µj)TK−1

j (rk−µj)dr.

In order to write this equation in terms of the assigned
threshold on the detector, we write it in normalized spherical
form, changing the volume element dr to the volume element
dρ which is a volume element over an p-sphere characterized
with radius

√
α; hence,

rk − µ = CT ρk → rk − µj = CT ρk + γj ,

and dρ =
dr

det C
,

where ρk is a vector varying inside the p-sphere and is
an affine transformation of the steady state residual ρk =
C−T (rk−µ) and the matrix C is the Cholesky decomposition
of covariance Σ. This transformation simplifies the new



region of integration to be a p-sphere. Making this substi-
tution and expressing the limits of integration in spherical
form yield the final from in (31) and (?), where ρk in
spherical form is a function of its norm |ρk| and angles φi,
i = 1 . . . p−1, where p is the dimension of the measurement.

Remark 2: Now that we have the relationship (31) and
(?) between assigned threshold of the detector α and the
corresponding CDF for the distance measure in the no
fault/attack case P (zk < α), we can use this result to find the
threshold α that provides a desired false alarm rate. There
is a mapping between the threshold α and the false alarm
rate A. Armed with Theorem 1, it is possible to use, for
example, a bisection method to find the threshold value to
yield a desired false alarm rate.

IV. INTERPRETATION

Using an approach that leverages the Gaussian mixture
model representation of arbitrary noise distributions not only
recovers analytic tractability, it also provides an intuitive and
instructive backwards compatibility with the standard chi-
square detector driven by Gaussian noise. Suppose that in
using the tools presented in this paper, we find that the GMM
of the residual distribution is the combination of three distinct
Gaussian modes (e.g., see Fig. 1),

fr(x) =

3∑
j=1

πj N (x |µj ,Kj), (34)

where µj are the mean values of the GMM modes, Kj

are the corresponding covariances, and πj are the mixing
probabilities.

A way to interpret the GMM residual probability distri-
bution (34) is that at each time k the residual rk is drawn
from the first GMM mode with probability π1, drawn from
the second GMM mode with probability π2, and drawn from
the third GMM mode with probability π3. For each of these
modes of the residual GMM, we can reverse engineer a
hypothetical Gaussian measurement noise that if applied to
the system in isolation would generate a Gaussian residual
equal to that mode of the residual GMM. This hypothetical
Gaussian noise would have mean aj and covariance Cj ,

aj = E−Tµj and Cj = E−1KjE
−T , (35)

for j ∈ {1, 2, 3} and the matrix E is defined as

E =

∞∑
κ=1

Aκ.

If the measurement noise was Gaussian with mean aj and
covariance Cj , j ∈ {1, 2, 3}, then we could tune a conven-
tional chi-squared detector using Lemma 1 to determine a
threshold αj to yield a false alarm rate Aj . If further, we
selected Aj = 1−Mj , where Mj is defined in (?), then (31)
becomes

A = 1− π1(1−A1)− π2(1−A2)− π3(1−A3), (36)
= π1A1 + π2A2 + π3A3, (37)

0
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Fig. 3: The measurement noise distribution (top) is approxi-
mated by a Gaussian mixture model with six modes and leads
to a corresponding complex residual distribution (bottom).
The GMM approximations agree well with the empirical
distributions from Monte-Carlo simulations.

since π1 + π2 + π3 = 1. In this context, then Mj can also
be interpreted the probability under the j-th Gaussian mode
distribution (characterized by µj and Kj) over the integration
region

Dj := {rk | zk = (rk − µj)TK−1
j (rk − µj) ≤ αj}, (38)

which is defined by the level set zk = αj of the paraboloid
characterized by µj and Kj . Thus Mj and αj are related
according to Lemma 1

αj = 2P−1

(
Mj

2
,
p

2

)
. (39)

This interpretation is depicted in Fig. 2.

V. EXAMPLE

Consider a single output system and estimator character-
ized by the following matrices and driven by measurement
noise (no system noise) distributed according to the proba-
bility density function shown in Fig. 3,

F =

[
0.8 0.2
−0.25 0.1

]
, C =

[
0.5 0.5

]
, L =

[
0.3
−0.3

]
.

We select a threshold for the detector α = 0.75 and use
Theorem 1 to calculate the expected false alarm rate for this
threshold.

Figure 3 shows the fit of the GMM of the measurement
noise compared to the empirical distribution attained from
a Monte-Carlo simulation with 5 × 106 samples. Here we
select a mixture of six (m1 = 6) Gaussian modes and Table
I presents the means and covariances of each mode.

One of the challenges of our method is the possibility of
having a large number of terms in the residual distribution



1 2 3 4 5 6
pη 0.0847 0.2012 0.1184 0.3200 0.1889 0.0869
µη -7.0877 -4.4709 -2.0082 1.2318 4.5240 7.0504
Kη 2.1997 0.4471 0.2062 1.0392 0.3858 2.2329

TABLE I: The coefficients, means, and covariances of the
GMM modes (m1 = 6) of the measurement noise in Fig. 3.

0 1 2 3 4 5 6
0

0.25

0.5

0.75

1

0.522

GMM
Chi-squared

Empirical

Fig. 4: The cumulative distribution function of the distance
measure corresponding to the measurement noise in Fig. 3
evidencing noticeable deviations away from a comparable
chi-squared distribution (which would correspond to Gaus-
sian measurement noise). The GMM distribution agrees very
well with the empirical distribution found through Monte-
Carlo simulation. For a threshold α = 0.75, the GMM
distribution, using Theorem 1, predicts a false alarm rate
of A = 1− 0.522 = 0.478. The empirical distribution has a
false alarm rate of A = 1− 0.516 = 0.484.

GMM: selecting the settling time k∗ = 10, m = mk∗

1 = 610

since we have no system noise. In practice, however, many
of these terms have mean and covariance values that are
extremely similar. We can then greatly simplify the GMM
expression by aggregating terms that are roughly the same.
To do this we define a threshold on the normed difference
between mean values and covariance values, dµ and dK . If
the normed difference between mean values and covariance
values for any pair of modes is less than these thresholds,

‖µi − µj‖ ≤ dµ and ‖Ki −Kj‖ ≤ dK ,

for i 6= j ∈ {1, . . . ,m1}, we consider those terms the same
and their coefficients are added together. This procedure pro-
vides an arbitrarily accurate approximation with significantly
fewer terms. Here we select dµ = 0.0747 and dK = 0.0917
using a heuristic based on the spread of the distribution and
these choices lead to m̃ = 282 terms that remain, signifi-
cantly fewer than the original m = 610. Using this reduced
number of modes, the GMM expression of the distribution
of residual is shown in Fig. 3 and compares favorably with
the empirical residual distribution computed (through Monte-
Carlo simulation) from the true noise distribution. By using
Theorem 1, we calculate the expected false alarm rate

A = 1− P (zk ≤ 0.75) = 0.478

This expected false-alarm rate is shown in Fig. 4 and the
value of A compares well with the value attained through
Monte-Carlo simulation (0.484).

VI. CONCLUSION

In this paper, for discrete-time LTI systems subject to
arbitrary sensor and measurement noise, we provide tools
to tune model-based detectors and characterize the trade-off
between true and false positives. We have generalized one of
the most widely used fault detector, the chi-squared detector,
for use with general noise distributions. Our approach uses
a Gaussian mixture model expression of the disturbances
which preserves some of the appealing analytic tractability
of working with Gaussian noises on an LTI system.
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