
Trajectory Generation for Robotic Systems with Contact Force
Constraints

Jaemin Lee1, Efstathios Bakolas2, and Luis Sentis3∗

Abstract— This paper presents a trajectory generation
method for contact-constrained robotic systems such as ma-
nipulators and legged robots. Contact-constrained systems are
affected by the interaction forces between the robot and the
environment. In turn, these forces determine and constrain state
reachability of the robot parts or end effectors. Our study sub-
divides the trajectory generation problem and the supporting
reachability analysis into tractable subproblems consisting of
a sampling problem, a convex optimization problem, and a
nonlinear programming problem. Our method leads to signifi-
cant reduction of computational cost. The proposed approach is
validated using a realistic simulated contact-constrained robotic
system.

I. INTRODUCTION
We aim to control contact-constrained robotic systems

using optimal control in a computationally feasible way.
In the case of high dimensional systems such as legged
humanoid robots, a widely used control method is to cre-
ate desired trajectories without prior knowledge of their
feasibility, then rely on a feedback tracking controller to
instantaneously realize them by projecting the controls into
the null space of the constraints [1]–[3]. The drawback
of this method is that the desired trajectories are often
infeasible forcing the feedback controllers to fulfill them
only in a least square error sense. Other methods used in
humanoid robots rely on using simplified models to design
feasible trajectories, e.g. using center of mass dynamics
subject to contact constraints [4]. However, those methods
cannot guarantee the feasibility of the trajectories because
the mechanical degrees-of-freedom of the robot are ignored.
In contrast, our approach generates feasible trajectories that
fully comply with the robot’s mechanics and dynamics as
well as its contact state with its environment. In order to
obtain feasible trajectories for the desired goals, we broadly
employ reachability analysis. In particular contact constraints
need different treatment than state constraints since they
need to fulfill cone formulation requirements. This type
of formulation has not been employed before for optimal
control of robotic systems.

Reachability analysis is often used in optimal control for
analyzing the performance and safety of various types of

1J. Lee is with the Department of Mechanical Engineering and Human-
centered Robotics Laboratory, The University of Texas at Austin, Austin,
TX, 78712, USA jmlee87@utexas.edu

2E. Bakolas is with Faculty of the Department of Aerospace Engineering
and Engineering Mechanics, The University of Texas at Austin, Austin, TX,
78712, USA bakolas@austin.utexas.edu

3L. Sentis is with Faculty of the Department of Aerospace Engi-
neering and Engineering Mechanics, The University of Texas at Austin,
Austin, TX, 78712, USA. *L. Sentis is the corresponding author.
lsentis@austin.utexas.edu

dynamical systems with bounded uncertainty, [5]–[9], for hy-
brid dynamical systems [10]–[14], and for stochastic systems
[15], [16]. A common method to perform reachability anal-
ysis in the continuous domain is by solving the Hamilton-
Jacobi-Bellman PDE [17]–[19]. But methods based on this
process result in exponentially increasing computational cost
as a function of the system’s state and the discretization step.
Therefore, for robotics it is not possible to use Hamilton-
Jacobi-Bellan methods due to these limitations on scalability.
Another approach is to employ the logarithmic norm of a
Jacobian matrix producing over-approximated bounds of the
reachable sets [20] and checking feasibility via simulations
[21]. However, this kind of method does not incorporate
system constraints as we do.

In robotics, configuration-based reachability analysis has
been broadly used for motion planning of complex robotic
systems. For instance, collision-free reachability maps in the
configuration space are employed for the planning of hu-
manoid motions [22] but without addressing contact forces or
robot dynamics. The Monte-Carlo method has been used to
obtain piecewise end-effector position samples by exploring
configuration space samples and center of mass positions
[23], however they ignore the robot’s dynamics. Another idea
is to connect nodes obtained via Rapidly-Exploring Random
Trees using reachability analysis [24]. However, these two
last works have not been extended to dynamical systems with
contact force constraints.

Fundamentally, our method generates trajectories for con-
tact force constrained robotic systems with differential con-
straints. We rely on randomly generated samples [25]–[28]
and null-space projections associated with the differential
constraints [29]. This approach is more efficient than em-
ploying Monte-Carlo methods to generate the set of sam-
ples fulfilling the system constraints. A key novelty in our
sampling process is using a convex optimization stage to
determine whether samples fulfill contact force constraints.
We define the fraction of reachable samples (FRS) with
respect to samples falling in the output regions that are
feasible. The FRS, which has a dependency with the number
of samples, is used as an indicator to guide the sampling
process. We first solve a DP problem to obtain a candidate
trajectory of the output guided by the properties of the
samples. After this process we perform an additional optimal
control procedure based on the reachability between the
sampled points. We utilize a non-convex hull, which is the
envelope of a set containing the output samples, to describe
the set of reachable samples propagated from a given initial
state over a finite time interval. By using small time intervals

ar
X

iv
:1

80
9.

10
59

8v
1

 [
cs

.R
O

]
 2

7
Se

p
20

18

for generating trajectories between adjacent regions we make
use of model approximations that significantly reduce the
computational burden required for state propagation. In ad-
dition, we increase computational efficiency by propagating
only the dynamics of boundary states.

This paper is organized as follows. We introduce notations,
the state space model of the constrained robotic system,
and its time-discretization in Section II. In Section III, we
explain how to obtain the samples that fulfill all system
constraints and partition the sampled space based on the
fraction of feasible samples. In Section IV, we characterize
practical reachable sets and use them to design optimal
control problems to generate trajectories over short time
intervals. An example problem and simulation results are
shown in Section V.

II. PRELIMINARIES

A. Notations

The sets of real n-dimensional vectors and m×n matrices
are denoted by Rn and Rm×n, respectively. R+ and R++

indicate the sets of non-negative and strictly positive real
numbers. Z+ and Z++ represent the sets of non-negative
and strictly positive integers. When considering z1, z2 ∈ Z+

where z1 ≤ z2, the interval of integers between z1 and z2

is represented as [z1, z2]d where d stands for discretization.
The space of real symmetric n × n matrices is denoted
by Sn and the spaces of positive semidefinite and positive
definite matrices are denoted by S+

n and S++
n , respectively.

Given a matrix A, A† and ker(A) denote the Moore-Penrose
pseudo inverse and the kernel of A, respectively. Given
multiple matrices A1, . . . , Ak or a set A = {A1, . . . , Ak},
Vertcat (A1, . . . , Ak) or Vertcat (A) denote the matrix
formed by vertically concatenating the matrices A1 to Ak.
A diagonal matrix in Rk×k with diagonal components
a1, · · · , ak is denoted by diag (a1, · · · , ak). Considering a
vector a ∈ Rn, ‖a‖ and ‖a‖∞ denote the 2-norm and
∞-norm of the vector a, respectively. E[.] represents the
probabilistic expectation operator. Given a set A ⊆ Rn,
Int(A) and Ext(A) denote the interior and the exterior of
A. Furthermore, card (A), bd (A), and Nconv (A) represent
the cardinality, the boundary, and the non-convex hull of
the set A, respectively. Given two sets A1 and A2, the
relative complement of A1 with respect to A2 is denoted
by A1\A2, that is, A1\A2 := {x ∈ A1 : x /∈ A2}. When
A (R, max (A) and min (A) denote the maximum and the
minimum values among the elements of the set A. Finally, if
the k-th derivative of the function f exists and is continuous,
the function is said to be of class Ck.

B. State Space Model of Robotic System

The equation of motion of a multi-body dynamical sys-
tem enduring contact forces with the environments can be
described as follows:

M(q)q̈ + b(q, q̇) + p(q) = u+ J>c Fc (1)

where q ∈ Rnq , u ∈ Rnu , M(q) ∈ S++
nq

, b(q, q̇) ∈
Rnq , p(q) ∈ Rnq , Fc ∈ Rnc , and Jc ∈ Rnc×nq are

the joint variables, input commands, mass/inertia matrix,
Coriolis/centrifugal force, gravitational force, contact force,
and the Jacobian matrix corresponding to the contact force
constraint, respectively. We can transform the above equation
into state space form as

ẋ = fx(x) + fu(x)u+ fc(x)Fc

fx(x) =

[
x2

M−1(x1) (−b(x1, x2)− p(x1))

]
fu(x) =

[
0

M−1(x1)

]
, fc(x) =

[
0

J>c (x1)

] (2)

where x =
[
x>1 x>2

]> ∈ Rnx , x1 = q, and x2 = q̇.
fx : Rnx 7→ Rnx , fu : Rnx 7→ Rnx×nu , and fc : Rnx 7→
Rnx×nc . The joint position and velocity limits of the robot
are described as the state constraints, Cx (x) ≤ 0, and torque
limits are described as input constraints, Cu (u) ≤ 0. In
additional, more complicated interactions such as contact
wrench cones constraints, are described as mixed state-input
constraints Cx,u (x, u) ≤ 0. Here, the constraint functions
are Cx : Rnx 7→ RnCx , Cu : Rnu 7→ RnCu , and Cx,u :
Rnx+nu 7→ RnCxu , which are C1. We discretize the state
space dynamics in (2) as:

xk+1 = xk +B1(xk, uk, Fc,k)∆t

+
B2(xk, uk, Fc,k) (∆t)

2

2
+O

(
(∆t)

2
)

= F (xk, uk, Fc,k)

(3)

where k ∈ [0, N − 1]d. ∆t and O
(

(∆t)
2
)

denote the time
discretization increment and terms higher than 2nd order in
Taylor series expansion, respectively. B1 (xk, uk, Fc,k) :=
fx (xk) + fu (xk)uk + fc (xk)Fc,k and B2 (xk, uk, Fc,k) :=
∂B1(xk,uk,Fc,k)

∂x B1(xk, uk, Fc,k).
The output state of the robotic system is defined as y =

g(x) where y ∈ Rny and g : Rnx 7→ Rny . g is continuous
and differentiable. Our problem concerns the generation of
feasible state and input trajectories given desired output goals
and initial system states maintaining the solid contact with
respect to the nonlinear system model in (3).

III. SAMPLING-BASED APPROACH
As we mentioned earlier, sampling based methods enable

to solve complex computational problems like ours. In this
section, we introduce the way to obtain the samples fulfilling
the given constraints.

A. Mathematical Definitions for Sampling

We draw random samples of the system’s states from a
Gaussian distribution x ∼ N (µx,Σx) where x ∈ Rnx , µx ∈
Rnx , and Σx ∈ S++

nx
denote the sampled state vector, its

mean, and its covariance matrix, respectively, where µx :=
E [x] and Σx := E

[
(x− µx)(x− µx)>

]
. In robotics, we

can define µx and Σx based on joint position and velocity
limits.

Given ne equality constraints, we describe them using the
function Ce,[he](x) = 0 where he ∈ [1, ne]d is an index.
This index is used to address multiple equality constraints

separately. Likewise, given ni inequality constraints, we
describe them using the function Ci,[hi](x) ≤ 0 where
hi ∈ [1, ni]d is also an index. Ce,[he] : Rnx 7→ Rne,he

and Ci,[hi] : Rnx 7→ Rni,hi denote functions for the he-
th equality and hi-th inequality constraints, respectively, and
both functions are C1 functions. Then, we define vectors of
values for the equality and inequality constraint functions in
terms of the state sample x.

VE(x) := Vertcat
(
Ce,[1](x), · · · , Ce,[ne](x)

)
VI(x) := Vertcat

(
Ci,[1](x), · · · , Ce,[ni](x)

) (4)

where VE(x) ∈ R
∑ne

he=1 nhe and VI(x) ∈ R
∑ni

hi=1 nhi . For
dividing the indices of the constraint functions, we define
two sets as follows:

He(x) :=
{
he ∈ Z++ :

∥∥Ce,[he](x)
∥∥ ≤ εh, he ∈ [1, ne]d

}
Hi(x) :=

{
hi ∈ Z++ : Ci,[hi](x) ≤ 0, hi ∈ [1, ni]d

}
.

(5)

In addition, H\e(x) := [1, ne]d\He(x) and H\i(x) :=
[1, ni]d\Hi(x), respectively. To split all constraints into
feasible and infeasible constraints in terms of the random
sample x, we define the vectors whose elements are function
values with respect to the index sets defined in (5) as follows:

Ve(x) := Vertcat
(
Ce,[h](x) : ∀h ∈ He(x)

)
V\e(x) := Vertcat

(
Ce,[h](x) : ∀h ∈ H\e(x)

)
Vi(x) := Vertcat

(
Ci,[h](x) : ∀h ∈ Hi(x)

)
V\i(x) := Vertcat

(
Ci,[h](x) : ∀h ∈ H\i(x)

)
.

(6)

Since all constraint functions are differentiable, we can com-
pute the Jacobian matrices of the constraint functions such
that JCe,[h](x) :=

∂Ce,[h]

∂x (x) ∈ Rne,h×nx and JCi,[h](x) :=
∂Ci,[h]

∂x (x) ∈ Rni,h×nx . In addition, we can define matrices
by vertically concatenating the Jacobian matrices of the
constraint functions with respect to the categorized index in
(5):

Je(x) := Vertcat
(
JCe,[h](x) : ∀h ∈ He(x)

)
J\e(x) := Vertcat

(
JCe,[h](x) : ∀h ∈ H\e(x)

)
Ji(x) := Vertcat

(
JCi,[h](x) : ∀h ∈ Hi(x)

)
J\i(x) := Vertcat

(
JCi,[h](x) : ∀h ∈ H\i(x)

) (7)

where all Jacobian matrices Je(x), J\e(x), Ji(x), and
J\i(x) are assumed as full row rank matrices. In order to
have all sample states satisfying the state constraints, we will
solve a least square error problem using the Moore-Penrose
pseudo inverse.

B. Update of Samples for the State Constraints

We update the state sample for fulfilling all state con-
straints in the least square error sense. In addition, the
orthogonal projection onto the kernel space of the constraint
function is utilized to prevent modifications of the function
values after fulfilling the constraints. Given a state sample
xl ∈ X in the l-th update iteration, we can compute the ver-
tically concatenated Jacobian matrices Je(xl) and J\e(xl).

The orthogonal projection onto ker (Je(x)) is defined as

Pe(x
l) := Inx

− J †e (xl)Je(xl) (8)

where Inx
is the nx × nx identity matrix and Pe : Rnx 7→

Rnx×nx . Based on the Jacobian matrix J\e(xl) and Pe(xl),
the sampled state is updated as follows:

xl+1 = xl − αPe(xl)
(
J\e

(
xl
)
Pe
(
xl
))† V\e(xl) (9)

where l ∈ [0, Niter]d and the initial state is the originally
sampled state, that is, x0 = x. In addition, α ∈ R++ is the
gain for regulating the convergence speed to exponentially
reduce ‖V\e

(
xl
)
‖ to 0. When ‖V\e

(
xl
)
‖ ≤ εe, the iteration

process ends and the state sample x is altered to the result
xl in the set X . If ‖V\e

(
xNiter

)
‖ > εe, the state sample is

discarded from the set X for the computational efficiency of
the method.

After updating all samples in X , we do not want to update
the function values for which the constraints are already
fulfilled. Therefore, an augmented Jacobian is defined with
respect to the state xl as

Jaug(xl) := Vertcat
(
Je(xl),Ji(xl)

)
(10)

where Paug(x
l) is computed in the same manner in (8).

Using the Jacobian J\i(xl) projected onto ker
(
Jaug(xl)

)
,

we can update the state sample without any modification of
function values for already fulfilled constraints. The update
of state sample is

xl+1 = xl + αPaug(x
l)
(
J\i(xl)Paug(xl)

)† Ei(xl)
Ei(xl) := Vint\i (xl)− V\i(xl)

(11)

where Vint\i (xl) denotes the vector vertically concatenating
the interior points fulfilling the constraints Ci,[h](x

l) ≤ 0 for
all h ∈ H\i(xl) . This update is terminated when the state xl

fulfills the inequality constraints and the existing component
x is replaced by xl. If the state update cannot be satisfied
within Niter iterations, the state sample is discarded from X .
Therefore, all components in the state set X fulfill the state
constraints.

C. Sample Evaluation Given Contact Force Constraints
In this section, we check both input and contact force

constraints in terms of the samples in X . Optimization
techniques are broadly utilized to find the contact force
for the mechanical systems, thus, we also formulate the
optimization problem with quadratic cost function to obtain
the contact force in terms of the samples as follows:

min
Fc

F>c WcFc (12a)

s.t. xk+1 = F (xk, u, Fc) , xk, xk+1 ∈ X , (12b)
Dc(xk)Fc ≤ 0, Cu(u) ≤ 0, Cx,u(xk, u) ≤ 0 (12c)

where Dc : Rnx 7→ Rnc′×nc denotes the unilateral con-
straints using a polyhedral approximation of the friction cone
[30]. Solving this optimization problem for all states in X ,
the set of feasible states in discrete state space XR can be
defined as the collection of the samples which result in the
optimal contact force and input command given (12).

D. Fraction of Reachable Samples

Using the set XR, we will formulate a DP trajectory
optimization problem. To that end, we define a measure
called the fraction of reachable samples (FRS) regarding
output regions. The output space is partitioned into no
regions as Ym := {y ∈ Rny : ‖y − ỹm‖∞ ≤ δm} (Rny ,
where m ∈ [1, no]d and ỹm ∈ Rny denotes the center of the
regions Ym. Then, we define the subset of XR as follows:

XYm
:= {x ∈ Rnx : g(x) ∈ Int (Ym) ,∀x ∈ XR} . (13)

Using the set XYm , the FRS quantifies how many random
samples are allocated in the region Ym.

Definition 1. Suppose that m ∈ [0, n0]d is given and that
XR is not an empty set. The Fraction of Reachable Samples
(FRS) is defined as the ratio:

Fm|Ns
:=

card (XYm
)

card (XR)
. (14)

where Ns is card(XR) and XYm
is defined in (13).

We need sufficient number of samples so that the FRS is
a reliable property. In order to check the rate of change of
the FRS with respect to the number of samples, we define
its gradient as follows:

G
(
Fm|Ns

,∆Ns
)

:=
Fm|(Ns+∆Ns) − Fm|Ns

∆Ns
(15)

where ∆Ns denotes the number of new samples generated in
XR. Using the gradient of FRS, we address the convergence
of the FRS with respect to Ns in the following theorem:

Theorem 1. Let ∆Ns ∈ Z++ and m ∈ [0, no]d be given and
∆Ns be less than Ns. Then, G

(
Fm|Ns

,∆Ns
)

will converge
to zero as Ns →∞, that is,

lim
Ns→∞

G
(
Fm|Ns

,∆Ns
)

= 0 (16)

In other words, limNs→∞ Fm|Ns
= Fm where Fm represents

a convergence value for the FRS.

Proof. Suppose card(XR) = Ns and card(XYm
) = Nm.

We consider a case in which all new samples are allocated
within Ym, which means the rate of change of the FRS is
maximum. Hence, |G(Fm|Ns

,∆Ns)| is bounded such that

|G
(
Fm|Ns

,∆Ns
)
| ≤

∣∣∣∣ NsFm|Ns
+ ∆Ns

∆Ns (Ns + ∆Ns)
−

Fm|Ns

∆Ns

∣∣∣∣
=

∣∣∣∣ Ns∆Ns −Nm∆Ns
Ns∆Ns (Ns + ∆Ns)

∣∣∣∣ =

∣∣∣∣ Ns −Nm
Ns (Ns + ∆Ns)

∣∣∣∣
Since ∆Ns, Nm � Ns,

0 ≤ lim
Ns→∞

∣∣G (Fm|Ns
,∆Ns

)∣∣ ≤ lim
Ns→∞

∣∣∣∣ Ns −Nm
Ns (Ns + ∆Ns)

∣∣∣∣
= lim
Ns→∞

∣∣∣∣1−Nm/NsNs + ∆Ns

∣∣∣∣ = lim
Ns→∞

∣∣∣∣ 1

Ns

∣∣∣∣ = 0

It is therefore implied that limNs→∞ G
(
Fm|Ns

,∆Ns
)

= 0.

For numerical implementation Ns is determined by us-
ing the inequality max (GNs

) ≤ εG, where G(Ns) :={
nG ∈ R+ : nG = |G

(
Fm|Ns

,∆Ns
)
|,m ∈ [1, no]d

}
and εG

is a pre-defined small positive threshold.
Let us consider the set of output samples:

Ym := {y ∈ Rny : y = g(x),∀x ∈ XYm} (17)

The mean vector and the covariance matrix of samples
y ∈ Ym are represented by µym := E[y] and ΣYm

:=
E
[
(y − µym)(y − µym)>

]
, respectively. To analyze the pat-

terns of the output samples, the covariance matrix ΣYm is
decomposed using the singular vale decomposition such that

ΣYm = UmΩmV
>
m (18)

where Um and Vm are unitary matrices in Rny×ny and Ωm
represents a diagonal singular value matrix in Rny×ny . We
next define a vector that is associated with the largest singular
value, to find the principle direction of the distribution of
samples in Ym.

Definition 2. Let Vm = [col1 (Vm) , . . . , colny (Vm)] and
Ωm = diag

(
σm,1, . . . , σm,ny

)
where σm,i denotes the

singular values of ΣYm
. The principal singular vector (PSV)

of Ym is defined as the singular vector corresponding to the
largest singular value such that

Pm := colj (Vm) , σmax = σm,j (19)

where Pm ∈ Rny and σmax denotes the maximum singular
value of ΣYm

.

The PSV Pm is a critical property for constructing the
transition dynamics of the DP process.

E. Dynamic Programming based on Sample Properties

After computing the FRS, Fm, and the PSV, Pm, with
sufficient samples, we formulate the DP problem using a
Markov Decision Process (MDP) to create an end-to-end
trajectory. To start with, we define a discrete node associated
with the output region Ym as follows:

sm := node (Ym) ,m ∈ [1, no]d. (20)

For DP, we represent the FRS and the PSV corresponding
to the node index sm as Fsm = Fm and Psm = Pm. In
addition, we employ value iteration to solve the DP using
the Bellman equation as follows:

D?(sl) = max
a

R
(
sl
)

+ γ
∑

sl+1∈S

Ta
(
sl, sl+1

)
D?
(
sl+1

)
where sl ∈ S, a, R, Ta, γ, and S are the node in the
l-th iteration of the algorithm, the action, the reward, the
transition dynamics, the discount factor, and the set of nodes,
respectively. The reward function is defined to include as
many samples as possible for the result of the DP:

R(sl) =

 −η1 if Fsl = 0
η2 +KFFsl if sl = sφ
−η3 +KFFsl else

(21)

where sφ denotes the node associated with the region con-
taining the goal output, φ. KF ∈ R++ and η1,2,3 ∈ R++

are the gain for Fsl and the offset values for the reward
functions, respectively.

If the PSV of ΣYm associated with the node sm is not well
defined, e.g., when the distribution of samples is isometric
or uniform, the transition dynamics of the DP process is
considered deterministic. Otherwise, the transition dynamics
is computed by the direction cosine between the PSV Psl

and an action vector π(a) ∈ Rny such that

Π
(
sl, sl+1, a

)
:= max

({
0,

P>slπ(a)

|Psl | |π(a)|

})
. (22)

Then, the transition dynamics is obtained by normalizing the
direction cosine as follows:

Ta
(
sl, sl+1

)
=

Π
(
sl, sl+1, a

)∑
ŝ∈Ŝ Π (sl, ŝ, a)

(23)

where ŝ is an individual neighboring node of sl, and Ŝ is the
collection of all neighboring nodes, respectively. The reward
and transition dynamics are designed to exclude infeasible
output regions (Fsm = 0).

Using DP, we obtain a sequential set of nodes
S? :=

{
s1, s2, · · · , sndp

}
. The set is converted to

Q? :=
{

node−1(s1),node−1(s2), · · · ,node−1(sndp)
}

where node−1(sm) denotes the mapping of the node sm
to its corresponding output region Ym. This implies that the
end-to-end trajectory generation problem can be formulated
as a trajectory generation problems between the output
regions in Q?.

IV. TRAJECTORY GENERATION VIA
REACHABILITY ANALYSIS

Given the resulting sequence of output regions Q? from
the DP, we now generate feasible trajectories between output
regions connecting node−1(sl) to node−1(sl+1) for all l ∈
[1, ndp−1]d. After generating trajectories for all l ∈ [1, ndp−
1]d, an entire end-to-end trajectory can be generated with
feasibility guarantees.

A. Reachability Analysis
As discussed above, we seek to solve a nonlinear opti-

mization problem for the sequence of output regions. The
nonlinear optimization strategy requires a feasible initial
condition so that the solution can converge to the local
optimal point. For this reason, we compute a reachable set
fulfilling the constraints given an initial state. The reachable
set is defined for a continuous system with the contact force
constraint as:

Definition 3. Given an initial state x0 ∈ Rnx and a time
instance t, the reachable state set of the robotic system given
a contact force constraint is defined as:

Rxt (x0) := {z ∈ Rnx : z = x(t),∃u([t0, t]),

∃Fc([t0, t]), Cx (x(t)) ≤ 0, Cu (u(t)) ≤ 0,

Cx,u (x(t), u(t)) ≤ 0,D (x(t))Fc(t) ≤ 0, x(0) = x0,

t ∈ [t0, t], ẋ = fx(x) + fu(x)u+ fc(x)Fc}.

(24)

This reachable state set can be extended over a time
interval [ti, ti+1] as follows:

Rx[ti,ti+1] (x0) :=
⋃

t∈[ti,ti+1]

Rxt (x0). (25)

Using the reachable set for the states, the reachable set for
the outputs is defined as:

Ryt (x0) := {ν ∈ Rny : ν = g(x),∀x ∈ Rxt (x0)} (26)

which can be extended to the time interval [ti, ti+1] as:

Ry[ti,ti+1](x0) :=
⋃

t∈[ti,ti+1]

Ryt (x0). (27)

Since this paper considers the discrete state space model
coupled with a sampling-based approach, we approximate
the reachable set, e.g. Eq. (24), with a discrete state space
model.

Before computing the reachable sets, we check the state
bounds using the discrete state space model (3):

‖xk+1 − xk‖ = T

∥∥∥∥∥B1 +
T

2
B2 +

O
(
T 2
)

T

∥∥∥∥∥
≤ T ‖(I + Z1)‖ ‖B1‖+K|T | = Z2(T, xk)

(28)

where Z1 := Jx(xk) + Ju(xk)uk + Jc(xk)Fc,k, Jx(xk) =
∂fx
∂x (xk), Ju(xk) = ∂fu

∂x (xk), and Jc(xk) = ∂fc
∂x (xk). T

is the time increment and it should be small satisfying
O
(
T 2
)
< K|T |. Also, the norm of the output update is

bounded by:

‖yk+1 − yk‖ = ‖Jy(xk) (xk+1 − xk)‖
≤ ‖Jy(xk)‖ ‖xk+1 − xk‖ = Z3(T, xk)

(29)

where Jy(xk) = ∂g
∂x (xk). Based on (29), we define the closed

ball in the output space as follows:

By (T, x0) := {y ∈ Rny : ‖y − g(x0)‖ ≤ Z3(T, x0)} .
(30)

Since the reachable output set is a subset of By(T, x0), it is
necessary to consider a time interval wider than [0, T\min]
in the reachability analysis, where T\min := min({t : t =
k∆t, φ ∈ By(t, x0), k ∈ Z+}).

The reachable set is numerically constructed using the
discrete state space model. To start, we formulate the op-
timization problem with the state, xk, and input, u:

min
Fc,xk+1

F>c WcFc (31a)

s.t. xk+1 = F (xk, u, Fc) ,Dc(xk)Fc ≤ 0, (31b)
Cx,u(xk, u) ≤ 0, Cx(xk+1) ≤ 0. (31c)

Let us consider an initial state, xk = x0. We draw random
input samples from a Gaussian distribution u ∼ N (µu,Σu)
where µu := E(u) and Σu := E[(u−µu)(u−µu)>] denote
the mean vector and the covariance matrix of the input
samples, respectively. For all of the generated input samples,
we only select samples that fulfill the input constraints.

Via our numerical strategy, the reachable state set at ∆t
is approximated as Rx∆t(x0) in the form of the collection

x1 from the optimization (31) for all input samples. The
reachable set of the output samples is computed as:

Ry∆t := {ν ∈ Rny : ν = g(x), x ∈ Rx∆t(x0)}. (32)

We can extend this method to obtain the reachable set over
multiple time steps. Suppose a time step, Tk = k∆t, and
a reachable set for the previous time step, Rx0,Tk−1

(x0).
Our strategy is to solve the optimization problem in (31)
with respect to the samples in the set {x : g(x) ∈
bd(Ry[0,Tk−1](x0))} instead of with respect to xk. Then the
computation of the reachable set at Tk, RxTk

(x0) results in a
collection of xk+1 for all x and u. Based on Rx[0,Tk−1](x0)

and RxTk
(x0), we can obtain the reachable state set over the

time horizon [0, Tk] and the corresponding output set as:

Rx[0,Tk](x0) = Rx[0,Tk−1](x0)
⋃
RxTk

(x0) (33a)

Ry[0,Tk](x0) = {ν ∈ Rny : ν = g(x), x ∈ Rx[0,Tk](x0)}
(33b)

where k ≥ 2, Rx[0,T1](x0) = Rx∆t(x0), and Ry[0,T1](x0) =

Ry∆t(x0). In terms of the computational efficiency, the
proposed strategy can reduce the computational cost to
O(NNu

b), where Nb and Nu denote the number of samples
at the boundary of the reachable set and the number of input
samples, respectively.

As mentioned above, we must check whether the desired
goal belongs to the reachable set of output samples before
solving the optimal control problem given an initial state. We
first approximate Rx[0,T](x0) by a non-convex hull. We then
check whether the desired goal output yφ is reachable or not:
yφ ∈ Nconv

(
Ry[0,T](x0)

)
, where Ry[0,T](x0) is addressed in

(33b). If we find a T satisfying yφ ∈ Nconv
(
Ry[0,T](x0)

)
,

then we can conclude that it implies that the desired goal
output position yφ is achievable over the time interval [0, t]
where t ≥ T ≥ T\min.

B. Optimal Control

To generate the whole trajectory, we recursively solve
the optimal control problem between node−1(sl) and
node−1(sl+1) for all l ∈ [1, ndp − 1]d in Q?, as defined
in Section III. To begin the optimal control process, the
time interval T l and the desired output ỹl+1 for the l-th
optimal control problem are determined through the previous
reachability analysis and initial state, xl0. We also define a
performance measure of the optimal control problem in the
discrete time domain as follows:

Ll(u(.), N l) :=

N l−1∑
k=0

(
u>kW1uk + F>c,kW2Fc,k

)
+ Ll (ξN)

Ll (ξN) :=
(
ỹl+1 − ξN

)>
W3

(
ỹl+1 − ξN

)
where ξ denotes the trajectory of the output and N l =
T l/∆t. W1 ∈ S++

nu
, W2 ∈ S++

nc
, and W3 ∈ S++

ny
are the

weighting matrices for the components of the performance
measure.

The optimal control problem is formulated using the
reachable sets, the constraints, and the discrete state space
model as follows:

min
ζ(.),u(.)

Ll(u(.), N l) (34a)

s.t. ξk ∈ R
y

[0,T l](x
l
0) (34b)

ζk ∈ R
x

[0,T l](x
l
0) (34c)

ζk+1 = F (ζk, uk, Fc,k) (34d)
Cx (ζk) ≤ 0, Cu (uk) ≤ 0, (34e)
Cx,u (ζk, uk) ≤ 0,D(ζk)Fc,k ≤ 0, (34f)

ζ0 = xl0, ξ0 = g(xl0) (34g)

where ζ denotes the state trajectory. As a result of the
optimal control problem, we obtain the state trajectory to
control the system output from region node−1(sl) to region
node−1(sl+1) in Q?:

Ψl := Vertcat
(
ζ>k : ∀k ∈ [0, N l]d

)
. (35)

This process is sequentially implemented for all pairs
(node−1(sl),node−1(sl+1)) in Q? by replacing the initial
state xl0 with the last component of Ψl−1 when l 6= 1. In
particular, we set x1

0 = x0 and ỹndp = φ. Note that all initial
states in the optimal control problem are feasible due to the
constraints (34b) and (34c). After solving for all trajectories
Ψ1, . . . ,Ψndp−1, we obtain the start-to-end state trajectory
by connecting the individual trajectories such that:

ψ = Vertcat
(
Ψ1, . . . ,Ψndp−1

)
. (36)

The full state trajectory and the corresponding input are able
to control the robotic system, fulfilling not only the required
differential constraints but also the contact force constraints.

V. SIMULATIONS

In this simulation, we consider a 2-dimensional output
space and a 4-DOF planar robot with a contact point at the
end-effector as shown in Fig. 1(a). For the simulation, we use
the optimization toolbox of MATLAB and the tool DYNOPT
[31] on a laptop with an i7-8650U CPU and 16.0 GB RAM.

A. A Planar Robot with Contact

A 4-DOF planar robot is set with parameters M =
[2.0, 1.5, 1.0, 1.0] kg and L = [1.0, 1.5, 2.5, 1.0] m where
M and L denote the masses and link lengths, respectively.
It is assumed that each link’s center of mass is located at
the geometric center of the link. We consider joint position,
velocity, and torque limits such that:

−(2/3)π ≤ qi ≤ (2/3)π ∀i ∈ [1, 4]d

−(3/2)π ≤ q̇i ≤ (3/2)π ∀i ∈ [1, 4]d

−1000 ≤ ui ≤ 1000 ∀i ∈ [1, 4]d

where qi, q̇i, and ui denote the i-th joint position, velocity,
and torque input, respectively. We also consider contact
geometry constraints for the end-effector. Specifically, the
contact position and the orientation of the end-effector should

(a)

(b) (c)

Fig. 1. (a) Conceptual robotic system, (b) histograms of the original samples and the samples updated to fulfill the constraints, including contact force
constraints. Ns is the number of samples in desired specific range, (c) is the color-map of the FRS Fm and the solution of the first DP.

(a) (b) (c)

Fig. 2. (a) Non-convex hull of the reachable output set within the time interval: Nconv
(
Ry

[0,T](x0)
)

, (b) joint position trajectory, (c) contact force

be consistent, and its velocity should be zero. The contact
force constraint is defined as follows:

− µ|Fc,x| < Fc,y < µ|Fc,x|, Fc,x < 0

− Lc|Fc,x| ≤ τc,z ≤ Lc|Fc,x|

where Fc = [Fc,x, Fc,y, τc,z]
> and Lc denotes the moment

arm of the contact link. The focus of the performance for this
simulation is on the 2nd link which is required to move while
a solid contact should be maintained on the end-effector, as
shown in Fig. 1(a). The initial configuration, the joint veloc-
ity, and the goal output are q0 = [−1.22, 0.949, 0.610, 0.210]
rad, q̇0 = [0.0, 0.0, 0.0] rad/s, and φ = [2.0, 1.2] m, respec-
tively.

We then generate random samples. The threshold εG used
to determine the appropriate number of samples is set to
be 6.0 × 10−5. The Jacobian matrices of all the constraint
functions are full row rank. As a result, the required number
of samples is 2.0× 105 to obtain the reliable FRS. The raw
random samples and the modified samples, which fulfill the
constraints, are represented by histograms as shown in Fig.
1(b). Specifically, the updated samples satisfy not only joint
position limits but also the contact geometric constraints. We
next consider a 20× 20 grid box to create trajectories using

the DP process described in Section III-E. As a result of the
DP process, the trajectory generation problem over long-term
interval is broken into 16 short-term problems as shown Fig.
1(c).

The reachable sets are numerically computed to check
whether or not the goal outputs resulting from solving the
DP problem are reachable via the proposed approach. Fig.
2(a) describes the non-convex hull of the reachable output
sets with respect to small time intervals [0, 0.01], [0, 0.02],
[0, 0.03], [0, 0.04], and [0, 0.05]. The non-convex hull of
the reachable output set, Nconv

(
Ry[0,0.03](x0)

)
, contains

both the initial and goal output positions from the first
trajectory generation problem. Therefore, we set the final
time interval of the first nonlinear optimization as 0.1 s >
0.03 s based on the reachable set of Fig. 2(a). We repeat
the process for the remaining problems. Fig. 2(b) shows the
generated joint position trajectory, and Fig. 2(c) shows the
corresponding contact force. The final configuration of the
robot is qf = [0.084, 0.755,−1.460, 0.880] rad and the final
output is g(qf) = [2.0, 1.2] m, which is identical to the
desired goal output. Furthermore, all considered constraints,
related to the joint position, joint velocity, and input limits
and the contact geometry/force constraints, are fulfilled while

achieving the desired goal.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an approach to generate feasible
trajectories for robotic systems with contact force constraints.
The proposed approach consists of a sampling-based method
and two optimization processes to generate trajectories that
maintain solid contacts in an effective way. Using proper-
ties from our sampling approach, the end-to-end trajectory
generation problem over a long-term interval is replaced
by multiple sub-problems over short-term intervals. This
strategy also enables us to perform numerical reachability
analysis for the finite time interval before implementing
an optimal control process. The simulation results show
that the proposed approach successfully generates a feasible
trajectory with contact force constraints.

In the near future, we will conduct an extended analysis
of our method. Real experiments on a robot will be pursued
to verify the scalability of our method. We will also apply
our method to more complex systems such as dual-arm and
bipedal robots.

ACKNOWLEDGMENTS

The authors would like to thank the members of the
Human Centered Robotics Laboratory at The University of
Texas at Austin for their great help and support. This work
was supported by an NSF Grant# 1724360 and partially
supported by an ONR Grant# N000141512507.

REFERENCES

[1] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, no. 04, pp. 505–518, 2005.

[2] M. Mistry, “Operational space control of constrained and underactu-
ated systems,” Robotics: Science and systems VII, pp. 225–232, 2012.

[3] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[4] B. J. Stephens and C. G. Atkeson, “Dynamic balance force control for
compliant humanoid robots,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 1248–1255.

[5] D. Jia and B. Krogh, “Min-max feedback model predictive control for
distributed control with communication,” in Proceedings of American
Control Conference, vol. 6, 2002, pp. 4507–4512.

[6] J. M. Bravo, T. Alamo, and E. F. Camacho, “Robust MPC of
constrained discrete-time nonlinear systems based on approximated
reachable sets,” Automatica, vol. 42, no. 10, pp. 1745–1751, 2006.

[7] R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzmán, and F. Rodrı́guez,
“Online robust tube-based MPC for time-varying systems: a practical
approach,” International Journal of Control, vol. 84, no. 6, pp. 1157–
1170, 2011.

[8] S. V. Rakovic, B. Kouvaritakis, M. Cannon, C. Panos, and R. Find-
eisen, “Parameterized tube model predictive control,” IEEE Transac-
tions on Automatic Control, vol. 57, no. 11, pp. 2746–2761, 2012.

[9] S. Subramanian, S. Lucia, and S. Engell, “A novel tube-based output
feedback MPC for constrained linear systems,” in Proceedings of
American Control Conference, 2017, pp. 3060–3065.

[10] I. Mitchell, A. M. Bayen, and C. J. Tomlin, “Validating a Hamilton-
Jacobi approximation to hybrid system reachable sets,” in International
Workshop on Hybrid Systems: Computation and Control. Springer,
2001, pp. 418–432.

[11] C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach
to controller design for hybrid systems,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 949–970, 2000.

[12] L. Habets, P. J. Collins, and J. H. van Schuppen, “Reachability and
control synthesis for piecewise-affine hybrid systems on simplices,”
IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 938–948,
2006.

[13] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp.
947–957, 2005.

[14] M. Maiga, N. Ramdani, L. Travé-Massuyès, and C. Combastel, “A
comprehensive method for reachability analysis of uncertain nonlinear
hybrid systems,” IEEE Transactions on Automatic Control, vol. 61,
no. 9, pp. 2341–2356, 2016.

[15] S. Summers, M. Kamgarpour, C. Tomlin, and J. Lygeros, “Stochastic
system controller synthesis for reachability specifications encoded by
random sets,” Automatica, vol. 49, no. 9, pp. 2906–2910, 2013.

[16] K. Lesser and M. Oishi, “Reachability for partially observable discrete
time stochastic hybrid systems,” Automatica, vol. 50, no. 8, pp. 1989–
1998, 2014.

[17] A. B. Kurzhanski and P. Varaiya, “Dynamic optimization for reach-
ability problems,” Journal of Optimization Theory and Applications,
vol. 108, no. 2, pp. 227–251, 2001.

[18] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reacha-
bility analysis of piecewise-linear dynamical systems,” in International
Workshop on Hybrid Systems: Computation and Control. Springer,
2000, pp. 20–31.

[19] N. Kariotoglou, S. Summers, T. Summers, M. Kamgarpour, and
J. Lygeros, “Approximate dynamic programming for stochastic reach-
ability,” in Proceedings of European Control Conference, 2013, pp.
584–589.

[20] J. Maidens and M. Arcak, “Reachability analysis of nonlinear systems
using matrix measures,” IEEE Transactions on Automatic Control,
vol. 60, no. 1, pp. 265–270, 2015.

[21] M. Arcak and J. Maidens, “Simulation-based reachability analysis for
nonlinear systems using componentwise contraction properties,” arXiv
preprint arXiv:1709.06661, 2017.

[22] Y. Yang, W. Merkt, H. Ferrolho, V. Ivan, and S. Vijayakumar,
“Efficient humanoid motion planning on uneven terrain using paired
forward-inverse dynamic reachability maps,” IEEE Robotics and Au-
tomation Letters, vol. 2, no. 4, pp. 2279–2286, 2017.

[23] Y. Guan and K. Yokoi, “Reachable space generation of a humanoid
robot using the monte carlo method,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 1984–1989.

[24] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in IEEE Interna-
tional Conference on Robotics and Automation, 2009, pp. 2859–2865.

[25] V. Boor, M. H. Overmars, and A. F. Van Der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in IEEE Inter-
national Conference on Robotics and Automation, vol. 2, 1999, pp.
1018–1023.

[26] S. Patil, J. Van Den Berg, and R. Alterovitz, “Estimating probability
of collision for safe motion planning under gaussian motion and
sensing uncertainty,” in IEEE International Conference on Robotics
and Automation, 2012, pp. 3238–3244.

[27] J. Carpentier and N. Mansard, “Multi-contact locomotion of legged
robots,” IEEE Transactions on Robotics, 2018.

[28] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” The International Jour-
nal of Robotics Research, vol. 27, no. 11-12, pp. 1325–1349, 2008.

[29] M. Stilman, “Task constrained motion planning in robot joint space,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 3074–3081.

[30] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench
cone for rectangular support areas,” in IEEE International Conference
on Robotics and Automation, 2015, pp. 5107–5112.

[31] M. Cizniar, M. Fikar, M. Latifi et al., “A matlab package for dynamic
optimisation of processes,” in Proceedings of International Scientific-
Technical Conference-PROCESS CONTROL. Kouty nad Desnou,
Czech Republic, 2006.

	I INTRODUCTION
	II PRELIMINARIES
	II-A Notations
	II-B State Space Model of Robotic System

	III SAMPLING-BASED APPROACH
	III-A Mathematical Definitions for Sampling
	III-B Update of Samples for the State Constraints
	III-C Sample Evaluation Given Contact Force Constraints
	III-D Fraction of Reachable Samples
	III-E Dynamic Programming based on Sample Properties

	IV TRAJECTORY GENERATION VIA REACHABILITY ANALYSIS
	IV-A Reachability Analysis
	IV-B Optimal Control

	V SIMULATIONS
	V-A A Planar Robot with Contact

	VI CONCLUSION AND FUTURE WORK
	References

