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A Path Planning Framework for a Flying Robot in Close Proximity of

Humans

Hyung-Jin Yoon, Christopher Widdowson, Thiago Marinho, Ranxiao Frances Wang and Naira Hovakimyan

Abstract— We present a path planning framework that takes
into account the human’s safety perception in the presence
of a flying robot. The framework addresses two objectives:
(i) estimation of the uncertain parameters of the proposed
safety perception model based on test data collected using
Virtual Reality (VR) testbed, and (ii) offline optimal control
computation using the estimated safety perception model. Due
to the unknown factors in the human tests data, it is not
suitable to use standard regression techniques that minimize
the mean squared error (MSE). We propose to use a Hidden
Markov model (HMM) approach where human’s attention
is considered as a hidden state to infer whether the data
samples are relevant to learn the safety perception model.
The HMM approach improved log-likelihood over the standard
least squares solution. For path planning, we use Bernstein
polynomials for discretization, as the resulting path remains
within the convex hull of the control points, providing guar-
antees for deconfliction with obstacles at low computational
cost. An example of optimal trajectory generation using the
learned human model is presented. The optimal trajectory
generated using the proposed model results in reasonable safety
distance from the human. In contrast, the paths generated
using the standard regression model have undesirable shapes
due to overfitting. The example demonstrates that the HMM
approach has robustness to the unknown factors compared to
the standard MSE model.

I. INTRODUCTION

In the last decade, multi-rotor copters have seen immense

growth in popularity, not only as a research platform, but also

as a commercial and industrial device. By 2020, the market

for these devices is expected to attain a value of $11.2 billion

with an annual growth of over 30% [1]. The mechanical sim-

plicity, the ability to hover and the maneuverability of these

flying robots justify their use in civilian applications such as

media production, inspection, and precision agriculture. The

inclusion of these micro unmanned aerial vehicles (UAVs)

in our day-to-day lives brings immediate benefits to society.

As an example, by using fast and cheap UAVs, delivery

from major retailers like Amazon and Walmart, can keep

a reduced inventory resulting in cost-effective warehouse

management. Additionally, by exploring their small and

lightweight form factor and substantially leveraging their

agility and reliability, applications in elderly care, medicine,

transportation and mobile surveillance are being developed.

In all these examples, it is important to fly safely near people

Research supported by NSF NRI initiative #1528036.
Hyung-Jin Yoon, Thiago Marinho and Naira Hovakimyan are with

the Department of Mechanical Science and Engineering, University of
Illinois at Urbana-Champaign (UIUC), Urbana, IL 61801, USA. Christo-
pher Widdowson and Ranxiao Wang are with Psychology Depart-
ment in UIUC. {hyoon33, widdwsn2, marinho, wang18,
nhovakim}@illinois.edu

and navigate in densely populated areas. Unlike current

mobile robots that autonomously operate without considering

humans, these flying collocated and cooperative robots (co-

robots) are intended to interact and cooperate with people in

a shared and constrained environment.

It is a long tradition in robot control and motion planning

to focus on the robot’s actual safety, i.e., the ability to gener-

ate safe paths that avoid collisions with obstacles. However,

this is insufficient for robots operating in human congested

areas. Studies of human perception have shown that there is

a sharp distinction between human perceived safety and the

actual safety. This paper presents a path planning framework

that takes into account the human’s safety perception in

the presence of a flying robot. Human’s safety perception

is predicted based on data collected from physiological

experiments in a virtual reality (VR) environment. In the

VR experiment, the participants experience a robot flying in

the proximity, and the physiological signals and the position

coordinates of the flying robot are recorded simultaneously.

The target variable is the physiological arousal signal, and the

feature variables are the position and the velocity coordinates

of the flying robot.

There are a number of unknown factors present in the

data collected from these experiments. Naively assuming the

unknown factor to be an independent identically distributed

(i.i.d.) Gaussian noise model would not be suitable for the

data where only partial observation of the state of the system

is provided. However, the i.i.d. Gaussian noise assumption

is popularly used for regression tasks, since maximizing the

likelihood for estimation task conveniently reduces to the

mean squared error (MSE) minimization problem. In [2], a

recurrent neural network (RNN) is applied to predict music

mood (valence), where the coefficient of determination1 with

a recurrent neural network (RNN) is at most 50% [2]. The

undesired goodness of fit despite the highly complex models

used in the previous papers suggests that the other factors

not contained in the data may influence the outcome of the

human test. To overcome the issue, we propose to use a

Hidden Markov Model [3] approach, which divides the data

samples into two clusters: (i) relevant samples where the

target variable (physiological arousal) can be predicted as a

function of the feature (robot’s position and velocity); (ii)

irrelevant samples where it is better predicted by a random

source than a function of the feature. The prediction model

1The coefficient of determination R2 is a performance metric used in

regression task. R2 = 1− ∑i(yi−ŷi)
2

∑i(yi−ȳ)2
, where ȳ denotes empirical mean and ŷi

denotes the prediction of the target variable given a feature variable xi.
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estimated with the help of the relevant samples is incorpo-

rated in the optimal path planning framework to take into

account the human’s safety perception. In the optimal path

planning, the flight path is parameterized using Bernstein

polynomials, which ensures that the path remains inside the

convex hull of its control points [4]. This feature helps to

have collision avoidance guarantees at low computational

cost.

A. BACKGROUND

Human’s perception of a flying robot dependent upon its

spatial and temporal variables (e.g. distance and speed) has

been studied using virtual reality testbed, and as well using

a real flying robot. A comfortable distance for a flying robot

to approach a human was studied in [5], where the authors

tested the effects of the size of the robot on the comfort levels

of the human subjects using behavioral, physiological, and

survey measures. Distancing with the robot and interaction

preference between two differently behaving robots were

investigated for speed and repeating behavior (cyclicity)

using VR experiments, [6].

On the other hand, various design approaches to the

human-aerial-robot system have been explored again for the

purpose of ensuring comfort for humans. Laban effort2 is

employed to design affective locomotion for a flying robot

in [8], and the effect on arousal and valence due to the

design parameter of the locomotion is tested. Emotional

encoding in a flight path of a robot was investigated in [9],

where the encoding is derived from characterizing stereo-

types of personality and motion parameters using interaction

vocabulary. In [10], the authors propose a flight path design

approach, which improves the ease of human’s perception of

the robot’s motion, and the proposed design is tested using

survey measures. A signaling device that resembles the turn

signals of a car is proposed to communicate the robot’s intent

to humans, [11]. Using gestures to communicate the user’s

intent to the robot is investigated in [12].

In the papers cited above, the focus is on either discovering

a general model in human-aerial-robot interaction based on

the empirical data or devising a heuristic method to improve

the acceptability of the robot for humans. However, the

sparse and qualitative model stated in the form of null hy-

pothesis testing is not straightforward to apply for engineers,

who intend to use it with an optimal design technique. In the

proposed framework, we estimate the uncertain parameters

of a human’s physiological signal model, then the estimated

parametric model is considered as a cost to minimize in the

optimal path planning task.

The remainder of the paper is organized as follows. In

Section II, the VR experiment set-up is described, and the

preliminary finding that relates the physiological arousal to

the perceived safety is introduced. In Section III, we propose

a model to address the influence of unknown factors and

validate it against the VR experimental data. In Section

IV, the optimal path planning that takes into account the

2A method to interpret human motion used in choreography [7]

human arousal model is presented. Section V summarizes

and discusses future directions.

II. VR EXPERIMENT AND DATASET

GENERATION

Fig. 1: Flying robot observed in the

VR environment (an illustration video at

https://youtu.be/XnaXzdHlxUA).

Virtual Reality offers a safe, low-cost, and time efficient

method to collect data [6]. For example, the precise coordi-

nates of the human and robot can easily be recorded in real-

time, which is useful for studying spatial-temporal variables

in human behavior. To this end, we have developed a VR

test environment to explore human-aerial-robot interactions

in a variety of experimental scenarios [13], [14]. Concurrent

psychophysiological reactions of participants are recorded in

terms of head motion kinematics and electrodermal activ-

ity (EDA), and time-aligned with attributes of the robot’s

flight path, e.g. velocity, altitude, and audio profile. During

the experiment, participants were introduced to the virtual

environment (VE) and told that they would experience a

simulation of an urban scene lasting approximately ten min-

utes. Participants were seated at the junction of a three-way

intersection with unoccluded paths in the forward, left, and

right direction. Three arbitrary trajectories conforming to the

shape of the intersection were chosen and reversed, for a total

of six unique trajectories (1.6 m altitude) (see Figure 2a).

The simulation started with a 90 seconds baseline period –

without any flying robot – allowing time for the EDA signal

to plateau. The first robot then appeared and completed its

trajectory. After a pause of 30 to 40 seconds, the next robot

appeared, and the process repeated itself for the duration

of the entire experiment. Figure 2b shows the position and

velocity profiles of all these flying robots. We collected the

data from 56 participants (20 males / 36 females) recruited

from our university.

The skin conductance signal is preprocessed by EDA

analysis package, Ledalab, to generate the phasic activation

signal [15]. The EDA toolbox decomposes the skin conduc-

tance signal into phasic and tonic signal as shown in Figure 3.

The phasic signal is then deconvolved to determine phasic ac-

tivation; phasic activation represents an instantaneous arousal

response.

To our knowledge, there has been no standard index of

perceived safety in the literature. Although physiological

measurements of arousal (e.g., EDA) alone are not neces-

sarily equivalent to people’s perceived safety, several pieces

of evidence suggest that the EDA measure of physiological

https://youtu.be/XnaXzdHlxUA


(a) Flight paths.

(b) Human-aerial robot interaction events. x, y,
z denote position coordinates and d denotes the
distance between the robot and the human. Also,
ẋ, ẏ, ż denote velocity coordinates and ḋ denotes
the rate of change of the distance.

Fig. 2: Test events and flight paths.

arousal in our study is closely related to people’s anxiety

induced by the approaching drone. For example, in a follow-

up experiment examining the effects of path height on

people’s EDA responses, we found that the EDA phasic

response was significantly stronger for a drone approaching

at eye-height, where a potential collision was possible, than

when the drone was flying at a height beyond the observer’s

head, where there is no danger of collision, even though all

other characteristics of the drone movement were the same.

These results suggest that such arousal was most likely due

to people’s anxiety in response to approaching danger rather

than general excitement caused by watching flying robots.

Moreover, analysis of the simultaneous head motion showed

that as the EDA signal increased with the approaching drone,

people made characteristic collision-avoidance movements

by jerking their heads away from the drone. These findings

again suggest that the physiological arousal signals observed

in our study are most likely a result of people’s anxiety to

avoid impeding danger, rather than general excitement. Thus,

in the following sections we consider the EDA signal as an

operational approximation of the human’s perceived safety

for the optimal path generation algorithm.

III. THE PROPOSED MODEL

We aim to develop a data-driven model that predicts the

phasic activation (arousal), given the robot’s position and

Fig. 3: EDA analysis result (phasic/tonic decomposition and

deconvolution to determine phasic activation).

velocity. Let yn ∈ R denote the phasic activation, where n

is the time index. The input (feature) variable, denoted by

xn ∈R
8, is the vector that contains the distance to the robot,

the rate of change of the distance, the Cartesian position

coordinates, and the velocity coordinates. Despite the high-

fidelity test environment, it is impossible to measure every

stimulus on the subject, i.e. there are unknown factors in the

data. As an example, one of our collected datasets, shown

in Figure 4, illustrates the unknown factors’ presence in the

data. One can notice an increase in the phasic activation in

the shaded area, although the flying robot is far away and

virtually invisible to the subject.

Fig. 4: Phasic activation signal induced by the flying robot.

The shaded box indicates the response, where the robot is in

far distance (greater than 60 [m]).

To account for the unknown factors in the data, we
hypothesize that the unexpected spike of the phasic activation
in Figure 4 is due to the change of the participant’s focus of
attention, i.e. the participant is distracted by some other stim-
ulus. Inspired by the work in [16], we model the sequential
dependence of the (hidden) human’s focus of attention using
a Hidden Markov Model (HMM). The HMM has two states
represented by the latent variable that models the human’s
attention state, which we denote by

zn :=

{

1, if the human is attentive to the robot,
2, otherwise.

Then zn is modeled by a homogeneous Markov chain with
the following probability transition equation:

πn+1 = πnA. (1)



The vector πk := [p(zn = 1), p(zn = 2)] is the stochastic

row vector for the distribution over the state zn, and A ∈
R

2×2 denotes the transition probability matrix of the Markov

chain3. The initial distributions π0 and A are the parameters

of the Markov chain.
The attention state variable zn assigns one of the two

output emission models fβ (xn)+ε or an independent random
source δ as follows

yn = 1{zn=1}( fβ (xn)+ ε)+1{zn=2}δ , (2)

where 1A denotes the indicator function, and fβ : R8 →R is

a function fβ (x) := β⊤φ(x), which is linearly parameterized

with β and basis φ(x)4, ε ∼ N (0,σ2), and δ denotes the

random source. As seen in (2), yn depends on xn when

zn = 1; however, yn = δ when zn = 2, i.e. it is modeled as an

independent random signal. In (2), it can be seen that one

of the two regression functions of the models yn = fβ (xn)
and yn = δ is chosen based on the likelihood given the

observation (xn,yn).
In addition to the hypothetical binary HMM that models

the change of human’s attention, we further hypothesize

that the unexpected spike of the activation signal follows a

multimodal distribution. We employ a mixture of Gaussians

to model δ for the multimodal distribution. The Gaussian

mixture model (GMM) allows a multi-modal and skewed

distribution in contrast to the Gaussian distribution. The

density of the mixture model for δ is defined by another

latent variable wn ∈ {1, . . . ,K} as follows:

p(δ |wn = k) = N (δ |µk, σ2
k ), p(wn = k) = ck, (3)

where ck are the mixing coefficients such that ∑K
k=1 ck = 1,

N (δ |µ , σ) denotes a Gaussian density function of δ with

the mean µ and the variance σ2. We assume that wn is

independent and identically distributed. Also, it is assumed

that wn and zn are independent, and furthermore, wn and zn

are conditionally independent, given the observation (xn,yn).

A. Model Parameter Estimation

The model defined by (1) - (3) has a set of parameters
denoted by θ := {β ,µ ,σ ,π1,A,{ci,µi,σi}K

i=1}. Given the
dataset x := {x1, . . . ,xN} and y := {y1, . . . ,yN}, the parameter
of the model is estimated by the maximum likelihood esti-
mation (MLE) through the following conditional likelihood
equation:

argmax
θ

p(y|x,θ ) = argmax
θ

∑
z

∑
w

p(y,z,w|x,θ ), (4)

where the summation takes place over all possible

sequences z := {z1, . . . ,zN} and w := {w1, . . . ,wN}. The

number of terms for the summation is 2NKN , which makes

the optimization intractable for large number of samples.

Due to this challenge, Expectation-Maximization (EM)

algorithm [17] is widely used to obtain the MLE for HMM.

EM Algorithm: Assume the complete data (x,y,z,w) is
available. Using the independence assumption on wn, zn and

3We used p(·) for both probability and probability density; its distinction
easily follows from the context.

43rd order polynomial basis functions were chosen for the φ(·).

the Markov chain property as defined in (1), the conditional
likelihood is calculated as follows:

p(y,z,w|x,θ ) =

p(z1|π1)

[

N

∏
n=2

p(zn|zn−1,A)

]

N

∏
n=1

p(wn|θ )p(yn|zn,wn,xn,θ ),
(5)

where z := {z1, . . . ,zN} and w := {w1, . . . ,wN}. The EM

algorithm iteratively maximizes the likelihood using the pos-

terior p(z,w|x,y,θ old) and the likelihood for the supposed

complete data p(y,z,w|x,θ ), as summarized in Algorithm 1.

The detailed calculation of EM algorithm for the proposed

model is in Appendix.
In contrast to standard regressions that minimize the mean

squared error (MSE), the latent variable model (HMM)
determines the parameter of the prediction model fβ (x) as
the weighted least squared error solution with the weight of
the posterior P(zn,1|x,y,θ old) as follows:

β ∗ := argmin
β

N

∑
n=1

P(zn,1|x,y,θ old)(yn − fβ (xn))
2,

where P(zn,1|x,y,θ old) denotes P(zn = 1|x,y,θ old). The

proposed method puts greater weight on the samples, which

are more relevant to the input based on the posterior of the

attention state.

Algorithm 1 EM Algorithm for MLE of θ

Initialize the parameter, θ old with θ 0.

repeat

1. Determine the posterior, p(z,w|x,y,θ old).
2. Calculate Q(θ ,θ old):

Q(θ ,θ old) := ∑
z,w

p(z,w|x,y,θ old) log p(y,z,w|x,θ ),

which is the expectation of log p(y,z,w|x,θ ) with respect

to the posterior.

3. Find the maximizer, θ ∗

θ ∗ = argmax
θ

Q(θ ,θ old),

4. Update θ old with θ ∗.

until convergence.

B. RESULT

We choose the following initial parameter θ 0:

1) β 0 := argminβ ∑N
n=1(yn − fβ (xn))

2, and σ0 = 0.5,

2) A0 :=

[

1/2 1/2
1/2 1/2

]

, and π0
1 := [1/2,1/2],

3) c0
k
= 1/K, σ0

k
= 1, and µk are randomly chosen from the

interval,[−1,1],

where K is the number of the Gaussian basis of the GMM.

For the linear function fβ (x) := β⊤φ(x), we choose the basis

functions φ(x) as polynomials with degree 3.

The i.i.d. Gaussian noise model (MSE minimization ap-

proach) is contained in the proposed model structure as

a special case, p(zn = 1) = 1, i.e. the arousal is always

explained by fβ (x) than the random source δ . We would

like to know whether the proposed model is better than



the MSE minimization approach. Likelihood ratio test is

typically used to decide if the additional complexity in the

modeling is desired compared to a simple model (e.g. i.i.d.

Gaussian noise model), [18]. Since HMM is non-identifiable

in general [19], the likelihood ratio model comparison test

with the training dataset does not apply. To determine which

model is more suitable, we calculate the likelihood with test

dataset by employing the approach from [20]. We randomly

partition the data from 56 subjects into a training set with 38

subjects and a test set with the other 18 subjects. Figure 6

shows the log-likelihood with test data set for the models:

(i) the Gaussian i.i.d. noise model, (ii) the proposed model

with a different basis K of GMM. We see that there is

a significant increase in the likelihood using the proposed

model as compared to the Gaussian i.i.d. noise model (or

the MSE minimization model).
Remark 1: The improvement of the log-likelihood by us-

ing the proposed model suggests that the null hypothesis5

is not true. By rejecting the null hypothesis, we show that
the proposed model is more suitable than the Gaussian noise
model. Consider the following log-likelihood ratio test (see
11.7.4 in [18]):

H0 : ϕ ∈ Θ0 versus H1 : ϕ ∈ Θ1,

where ϕ denotes the true parameter, Θ0 denotes the set of
parameters for the Gaussian noise model, and Θ1 denotes
the set of parameters for the proposed model. Note that
the Gaussian noise model is a special case of the proposed
model, i.e. Θ0 ⊆ Θ1. The likelihood ratio statistics λ is
calculated as

λ = 2log

(

supθ∈Θ1
L (θ )

supθ∈Θ0
L (θ )

)

,

where L (θ ) := p(y,z,w|x,θ ) denotes the likelihood for θ
in (5). Figure 6 shows that λ > 4000. The relative degree is

r = 10, as the proposed model has 10 more parameters than

the Gaussian noise model. The likelihood ratio test is: reject

H0, when λ > χ2
r,α . We reject H0 : ϕ ∈ Θ0 with p-value at

0.01.

We fix the proposed model with K = 2, since a greater

number of basis does not result in significant improvement

in likelihood, as shown in Figure 6. The function fβ with the

fixed model is used to predict the phasic activation (arousal)

as shown in Figure 5a. Figure 5b shows that the MSE

minimization approach has signs of over-fitting (oscillation

and spiky shape). In the following section, optimal path

planning with the prediction model is presented.

IV. OPTIMAL PATH PLANNING

The ability to generate a safe path while considering

human’s safety perception (using the prediction function

fβ (·)) is necessary for our optimal path planning task. To

meet the requirement, we employ the trajectory generation

method from [4], [21]. To ensure spatial separation of the

robot’s path from obstacles, we use Bernstein polynomials

to discretize trajectories. Bernstein polynomials are useful

for checking collision avoidance, as the convex hull of the

5The null hypothesis assumes that the true parameter ϕ is in the set of
parameters Θ0, which corresponds to the Gaussian i.i.d. noise model.

phasic activation

MSE minimization

the proposed

(a) On entire experiment data.

the proposed

MSE minimization

(b) Closer look on an event.

Fig. 5: Prediction, ŷ = fβ (x), where the phasic activation

signals, are normalized for each subject.
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Fig. 6: Log-Likelihood with Test Data. K denotes the number

of Gaussian basis in the equation (3).

vertices determined from the coefficients of the Bernstein

polynomial contains the flight path, Figure 7. The convex

hull is used to check for collision between the vehicle and

the obstacles, as demonstrated in [4].

Polynomial interpolation of state trajectories has been used

to determine numerical approximate solutions to optimal path

planning. For example, an interpolation polynomial with the

Legendre-Gauss-Lobatto (LGL) time nodes has been used

to solve an optimal control problem in [23], [24]. In [21]

it is shown that using Bernstein polynomials the optimal

control solution can be approximated sufficiently closely

as the number of time-nodes increases, while at the same

time ensuring spatial separation from obstacles. In our path



Fig. 7: Convex hulls (gray) containing the flight path (blue).

Splitting the Bernstein polynomial curve with De Casteljau’s

algorithm [22], we can determine the convex hulls that tightly

contain the curve.

planning framework, we use the LGL quadrature [23] to

approximately calculate the cost to minimize, and we use

Bernstein polynomials to check for collision avoidance [4].

A. Finite Dimensional Optimization

Both Bernstein polynomial curves and interpolation

polynomial curves with LGL nodes are two equivalent

parametrizations for a polynomial trajectory. Consider a 2D

trajectory time function p(t) := [x(t),y(t)]⊤ as an nth order

polynomial in x(t) and y(t). We present a brief overview of

both equivalent representations.
1) A degree n Bernstein polynomial is given by:

p(t) =
n

∑
k=0

p̄kbn
k(ζ (t)), ζ : [0, t f ]→ [0,1], ζ (t) :=

t

t f
,

where bn
k(ζ ) :=

(

n
k

)

(1−ζ )n−kζ k, ζ ∈ [0,1], represents

the polynomial basis, and the coefficients p̄k are called

control points6 of the Bernstein polynomial.
2) The interpolation curve is represented as:

p(t)=
n

∑
k=0

pkℓk(η(t)), η : [0, t f ]→ [−1,1], η(t) :=
2t

t f
−1,

where pk are interpolation points at time nodes tk, and

ℓk(η(t)) := ∏0≤i≤n,i6=k

(

η(t)−η(ti)
η(tk)−η(ti)

)

are the Lagrange

polynomial basis.

The nth order polynomial trajectories can be parameterized

by either n+1 control points p̄k, or n+1 interpolation points

pk, and the transformation between the control points and the

interpolation points can be done using matrix multiplication.
The optimal path planning is formulated as the following

finite dimensional optimization:

argmin
p̄0,...,p̄n,t f

J(p̄0, . . . , p̄n, t f ),

subject to collision avoidance constraint,

velocity and acceleration constraint,

6Note that the polynomial is a vector equation, so the coefficient p̄k is
also a vector.

where J(p̄0, . . . , p̄n, t f ) is the LGL quadrature of
∫ t f

0 L(p(t), ṗ(t))dt calculated by the method in [23],

and L(p(t), ṗ(t)) is the running cost to be minimized in time

average. Constraint equations for collision avoidance and

velocity acceleration can be written as functions of control

points p̄0, . . . , p̄n by following the methodology in [4].

B. Optimal Path Planning in the Presence of Humans

Define x(t) in the same way as we defined xn in (2),

where x(t) ∈ R
8 contains the distance to the robot, the

rate of change of the distance, the position coordinates and

the velocity coordinates at time t. Notice that with the

polynomial path p(t) and ṗ(t) one can directly construct

x(t). For this reason, to simplify the notation we can use

x(t) and (p(t), ṗ(t)) interchangeability as arguments of the

functions fβ (·), J(·) and L(·).
In the optimal path planning, we only consider values of

fβ larger than a threshold ba, where ba ≥ 0 is essentially a
tuning parameter. Intuitively, we ignore arousal levels below
the threshold. To make the optimization problem tractable,
instead of adding a strict constraint to the minimization
problem, the constraint is incorporated in the running cost
as a penalty function [25]:

L(p(t), ṗ(t)) := 1+ γ max(0, fβ (x(t))−ba)
2, (6)

where γ is the penalty coefficient. The corresponding cost
function J(p̄0, . . . , p̄n, t f ) becomes

J(p̄0, . . . , p̄n, t f ) = t f + γ

∫ t f

0
max(0, fβ (x(t))−ba)

2dt. (7)

The two arousal prediction functions are used in the

optimal flight trajectory generation, as shown in Figure 8

and Figure 9. The smaller value of ba results in a path that

is more safety conscious, as intended by the running cost

function in (6). Flight paths generated with the proposed

model show the desirable behavior, as shown in Figure 5a

(decreasing ba results in greater distance from the human).

However, the paths with the MSE minimization model have

unconvincing shapes. This undesirable behaviour of the MSE

minimization model is due to over-fitting, as we have seen in

Figure 5b. It shows that the arousal prediction model which

only minimizes MSE does not generalize in the optimal path

generation task.

V. CONCLUSION

We present a path planning framework that takes into ac-

count human’s safety perception. Psychophysiological reac-

tions for different paths of flying robots in VR were collected

to estimate the arousal prediction model. To consider the

unknown factor in the data, we proposed a hidden Markov

model approach. Compared to the mean squared error (MSE)

minimization approach (due to i.i.d. Gaussian noise model),

the proposed model has improved the likelihood significantly.

When the arousal prediction functions are implemented in

the optimal path planning, the flight paths with the proposed

model show desirable behaviors, in contrast to the uncon-

vincing flight paths with the MSE minimization approach.



Fig. 8: Flight paths generated with the proposed model.

Fig. 9: Flight paths generated with the MSE minimization

model.

APPENDIX

The EM algorithm for the proposed model is calculated

by the following three subsequent steps:

1) Determine the Posterior p(z,w|x,y,θ old): Using the

conditional independence assumption of the latent variables,

the posterior is factorized as

p(z,w|x,y,θ old) = p(z|x,y,θ old)p(w|x,y,θ old). (8)

Now, we can calculate p(z|x,y,θ old) and p(w|x,y,θ old)
separately.

Forward-Backward Algorithm [26]:

Define a(zn,i) and b(zn,i) as follows:

a(zn,i) := p(y1, . . . ,yn,zn,i),

b(zn,i) := p(yn+1, . . . ,yN |zn,i,x),

where zn,i denotes the event {zn = i}. To calculate the
posterior, the following recursive equations are used:

a(zn,i) = p(yn|zn,i,x,θ
old)

2

∑
k=1

a(zn−1,k)p(zn|zn−1,k,A
old),

b(zn,i) =
2

∑
k=1

b(zn+1,k)p(yn+1|zn+1,k,x,θ
old)p(zn+1,k|zn,i,A

old),

where p(yn|zn,i,x,θ
old) is calculated using (2) as

p(yn|zn,i,x,θ )

=

{

N (yn − fβ (xn)|0, σ2), if i = 1

∑K
k=1 φkN (yn|µk, σ2

k ), if i = 2.

The boundary values a(z1) and b(zN) are determined as
a(z1) = p(z1|π1)p(y1|x,θ old) and b(zN) = 1. After calculat-
ing a(zn) recursively and b(zn), the posterior is determined
as follows:

p(zn|x,y,θ old) =
a(zn)b(zn)

p(y|x,θ old)
, (9)

p(zn−1, j,zn,k|x,y,θ old) =
a(zn−1, j)p(yn|zn,k,xn,θ

old)A jkb(zn,k)

p(y|x,θ old)
,

(10)

where the likelihood is calculated as

p(y|x,θ old) =
2

∑
k=1

a(zN,k). (11)

Posterior for the GMM: Due to the conditional

independence assumption of wn and zn, the poste-

rior p(wn,i|xn,yn,θ
old) is calculated independently from

p(zn|x,y,θ old), by directly using the result on GMM

from [26] as follows

p(wn,i|xn,yn,θ
old) =

φiN (yn|µi,σ
2
i )

∑K
k=1 φkN (yn|µk,σ

2
k )

, (12)

where wn,i denotes the event {wn = i}.

2) Calculate Q(θ ,θ old): Using the poseterior calculated
in (9) and (12) and the likelihood in (5), Q(θ ,θ old) in
Algorithm 1 is calculated by expanding the log term:

Q(θ ,θ old)

:= ∑
z,w

p(z,w|x,y,θ old) log p(y,z,w|x,θ )

=
2

∑
i=1

p(z1,i|x,y,θ old) logπ1,i

+
N

∑
n=2

2

∑
i=1

2

∑
j=1

p(zn−1,i,zn, j|x,y,θ old) log Ai, j

+
N

∑
n=1

2

∑
i=1

K

∑
k=1

p(zn,i,wn,k|x,y,θ old) log p(wn|φk)p(yn|zn,i,wn,k,xn,θ ),

(13)

where zn,i denotes the event {zn = i}, wn,k denotes the event

{wn = k}, Ai, j is the (i, j) element of the matrix A, and



p(yn|zn,i,wn,k,xn,θ ) is calculated using the model equation

(2) as follows

p(yn|zn,i,wn,k,xn,θ )

=

{

N (yn − fβ (xn)|µ , σ2), if i = 1

N (yn|µk, σ2
k ), if i = 2.

(14)

3) Find the maximizer θ ∗: As seen in (13) and (14),
each term has a distinct set of parameters. Hence, we can
determine the maximizer for each term independently from
the other terms. From [26] we have the maximizers as
follows:

π∗
1,i =

p(z1,i|x,y,θ old)

∑2
j=1 p(z1, j|x,y,θ old)

, (15)

A∗
j,k =

∑N
n=2 p(zn−1, j,zn,k|x,y,θ old)

∑2
l=1 ∑N

n=2 p(zn−1, j,zn,l |x,y,θ old)
. (16)

The maximizer for the last term in (13) is calculated using
the model equation (2). Let L denote the last term in (13).
Using (14), L is written as follows:

L(β ,σ ,{φi ,µi,σi}K
i=1)

:=
N

∑
n=1

2

∑
i=1

K

∑
k=1

p(zn,i,wn,k |x,y,θ old ) log p(wn|φk)p(yn|zn,i,wn,k ,xn,θ )

=
N

∑
n=1

K

∑
k=1

p(wn,k|x,y,θ old ) logφk

+
N

∑
n=1

p(zn,1|x,y,θ old) log

(

1

σ
√

2π
exp

(

−
(yn − fβ (xn))

2

2σ2

))

+
N

∑
n=1

K

∑
k=1

p(zn,2,wn,k |x,y,θ old) log

(

1

σk

√
2π

exp

(

− (yn −µk)
2

2σ2
k

))

.

The variable β ∗ := argmaxβ Q(β ,θ old) is calculated as

β ∗ := argmin
β

N

∑
n=1

P(zn,1|x,y,θ old)(yn − fβ (xn))
2. (17)

The φ∗
i , µ∗

i , σ∗
i , and σnew are determined using KKT

(Karush-Kuhn-Tucker) condition as follows:

φnew
i =

∑N
n=1 p(wn,i|x,y,θ old)

∑N
n=1 ∑K

k=1 p(wn,k|x,y,θ old)
,

µnew
i =

∑N
n=1 p(zn,2,wn,i|x,y,θ old)yn

∑N
n=1 p(zn,2,wn,i|x,y,θ old)

,

σnew
i =

∑N
n=1 p(zn,2,wn,i|x,y,θ old)(yn −µnew

i )2

∑N
n=1 p(zn,2,wn,i|x,y,θ old)

,

σnew =
∑N

n=1 p(zn,1|x,y,θ old)(yn − fβ new (xn))
2

∑N
n=1 p(zn,1|x,y,θ old)

.
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