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Abstract

This paper describes the implementation of a sliding mode observer based fault detection and isolation (FDI)
scheme, which is capable of reconstructing/estimating sensor faults, on the Japan Aerospace Exploration Agency’s
Multi-Purpose Aviation Laboratory (MuPAL-α) research aircraft. Hardware-in-the-loop (HIL) simulation results,
which serve as a precursor to upcoming real test flights, are presented in this paper. The HIL simulation results
show good yaw rate sensor fault reconstruction performance, and will be flight tested as the next stage of development
and validation.

I. INTRODUCTION
Modern model-based fault detection and isolation (FDI) methods, also referred to as analytic redundancy, represent

one possible approach to health monitoring for aircraft (see for example the results from GARTEUR FM-AG16
[1]). Furthermore, analytic redundancy FDI approaches can improve the sustainability of aircraft, by helping to
reduce over-engineering and replacing hardware redundancy based fault detection logic. Consequently the weight
of the aircraft, fuel consumption and design complexity can be reduced.

The most recent large scale funded investigation into the potential of fault detection and isolation/fault tolerant
control (FDI/FTC) for aircraft flight control systems is the H2020/Japan co-funded project VISION (Validation of
Integrated Safety-enhanced Intelligent Flight cONtrol). The aim of the project is to develop and validate in-flight
FDI/FTC techniques for aircraft guidance, navigation and control, with the objective of increasing TRL levels to
7. One of the platforms to be used for flight testing is the Japan Aerospace Exploration Agency’s MuPAL-α [2].

As a precursor to flight tests, this paper describes recent Hardware-in-the-loop (HIL) tests of a sliding mode
observer (SMO) for sensor fault reconstruction. Sliding mode observers (SMOs) are capable of reconstructing un-
measurable signals within a process by appropriate filtering of the ‘equivalent output error injection’ signal required
to maintain sliding [3]. This is a unique property of sliding mode observers, which emanates from the fact that
the introduction of a sliding motion forces the outputs of the observer to perfectly track the plant measurements
[3]. Theoretically, sliding mode observers can provide finite time convergence of the state estimation errors to zero
and totally reject the effects of a class of unknown bounded matched disturbances. This property of total rejection
is quite different from the characteristics of high gain observers [4] which only provide ultimate boundedness
guarantees; or H∞ filters [5] in which the effect of disturbances are optimally attenuated by the appropriate choice
of observer gain, but are not usually totally rejected. Furthermore sliding mode observers have been shown to
perform well when directly compared with other methods [6], [7] for different types of system. The ability to
accurately reconstruct faults is useful since the estimates can be used to create (virtual) corrected measurements
for use by the control law (i.e. FTC) [8]. Other methods including H∞ and adapting schemes are being developed
within the VISION project and those results are reported elsewhere [9], [10]. This paper focusses on the design of
an SMO for sensor fault estimation. The proposed scheme is capable of reconstructing sensor faults in the presence
of external disturbances.

In this paper, an SMO based FDI scheme has been developed and implemented within MuPAL-α’s HIL test
platform, as a precursor to actual flight tests. The HIL setup includes the real aircraft, with all its attendant systems,
connected to a computer to provide a realistic emulated environment.

This paper focusses on the lateral-directional dynamics. The scenarios considered concern yaw rate sensor faults.
Since the sensor fault is reconstructed, the scheme has the potential to achieve fault tolerant control without
reconfiguring the baseline controller (however this aspect is not pursued in this particular publication). The main
contribution of the paper is, as far as the authors are aware, the first implementation and validation of an SMO
based FDI scheme at a system integration level within an on-board fly-by-wire system, in which a real aircraft is
involved in hardware-in-the-loop ground testing.
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The structure of the paper is as follows: Section II describes the SMO based FDI scheme. In Section III, the
effectiveness of the scheme is tested on the HIL test platform. The corresponding design and validation results are
then presented. Section IV concludes the paper and outlines the plans for future work – including piloted in-flight
testing.

II. SLIDING MODE OBSERVER

This section begins by recapitulating the approach for sensor fault reconstruction proposed in [11]. Consider an
uncertain linear time invariant (LTI) system subject to sensor faults described by

ẋp(t) = Apxp(t) +Bpup(t) +Mpξ(t)

yp(t) = Cpxp(t) +Hpf(t)
(1)

where, Ap ∈ Rn×n, Bp ∈ Rn×m, Cp ∈ Rp×n, Mp ∈ Rn×l, and Hp ∈ Rp×q where q < p. In (1), Hp represents the
sensor fault distribution matrix, and in this paper the columns of Hp are assumed to belong to the standard basis
for Rp i.e. the column of Hp are formed from ones and zeros, and in each column exactly one element is unity
[12]. It is assumed Cp is full row rank and Hp is full column rank. In (1) it is assumed that up(t) and yp(t) are
measurable, xp(t) is unknown, and that yp(t) represents the sensor measurements potentially corrupted by faults
(represented by f(t)). The signal f(t) is unknown, but subject to

∥f(t)∥ ≤ β(t) (2)

where β(t) is a known function. The signal ξ(t) denotes a bounded external disturbance and is assumed to satisfy

∥ξ(t)∥ ≤ d (3)

where d is known. Since Hp is composed of columns from the standard basis for Rp, by permutating the elements
of yp, it is easy to obtain the form [

yp,1(t)
yp,2(t)

]
=

[
C1

C2

]
xp(t) +

[
0
Iq

]
f(t) (4)

where C1 ∈ R(p−q)×n and C2 ∈ Rq×n, and yp,2(t) denotes the outputs potentially corrupted by sensor faults.
The objective is to design an SMO to estimate the unknown states and f(t). To reformulate the sensor fault

reconstruction problem as a more general actuator fault reconstruction scheme, as in [11], introduce a (stable) filter
in the form of

żf (t) = −Afzf (t) +Afyp,2(t) (5)

where zf (t) ∈ Rq and the matrix Af is a symmetric positive definite (s.p.d) matrix. Combining (1), (4) and (5),
the augmented system can be conveniently represented by[

ẋp(t)
żf (t)

]
=

[
Ap 0

AfC2 −Af

] [
xp(t)
zf (t)

]
+

[
Bp

0

]
up(t) +

[
0
Af

]
f(t) +

[
Mp

0

]
ξ(·)[

yp,1(t)
zf (t)

]
=

[
C1 0
0 Iq

] [
xp(t)
zf (t)

] (6)

Remark 2.1: Note that the choice of the filter gain Af affects the system performance and as such constitutes
an important design parameter. For more details see the discussion on page 216 in [11].

Define a state coordinate transformation matrix for (6) as

Ta = Diag{Ts, Iq} (7)

where the square nonsingular matrix Ts ∈ Rn×n is any matrix with the property that C1T
−1
s =

[
0 Ip−q

]
. Note

that since by assumption Cp is full row rank, C1 has full row rank. Applying the above coordinate transformation
to (6) yields the representation[

ẋ(t)
żf (t)

]
︸ ︷︷ ︸
ẋa(t)

=

[
TsApT

−1
s 0

AfC2T
−1
s −Af

]
︸ ︷︷ ︸

A

[
x(t)
zf (t)

]
︸ ︷︷ ︸
xa(t)

+

[
TsBp

0

]
︸ ︷︷ ︸

B

up(t) +

[
0
Af

]
︸ ︷︷ ︸

D

f(t) +

[
TsMp

0

]
︸ ︷︷ ︸

M

ξ(·)
(8)

In this coordinate system, ya = Col(yp,1, zf ) = Cxa, where

C =

[
C1T

−1
s 0

0 Iq

]
=

[
0 Ip

]
(9)
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A. Observer Structure
The system (A,B,C) from (8) with fault distribution matrix D and with disturbance distribution matrix M from

(8)-(9) will be used as the basis of the observer design.
A classical/conventional SMO will be used here which requires relative degree one minimum phase conditions

[11]. The rank condition on the Markov is trivially satisfied since CD = [0 AT
f ]

T where rank(Af ) = q since it is
s.p.d by design. The minimum phase condition is more subtle, but a sufficient condition is that the system matrix
Ap is Hurwitz [11]. The most straightforward test for applicability is to check the invariant zeros of (A,D,C) lies
in the LHP. In the example which will be considered in Section III, this condition is fulfilled. It can be shown from
[11] that an appropriate SMO to address this problem is one with the structure

ż(t) = Az(t) +Bup(t) +Gley(t) +Gnν(t) (10)

where the output estimation error ey(t) = C(z(t) − xa(t)) and ν(t) represents the discontinuous output error
injection vector used to induce the sliding motion. Here

ν =

 − ρ(t)
ey
∥ey∥

if ey ̸= 0

0 otherwise
(11)

where the modulation gain ρ(t) will be specified later. The matrix Gn ∈ R(n+q)×p in (10) is given by

Gn =

[
−L
Ip

]
(12)

where in turn the design parameter L ∈ R(n+q−p)×p has the structure

L =
[
L1 0

]
(13)

and the matrix L1 ∈ R(n+q−p)×(p−q) [11]. Suppose the state estimation error e = z − xa = col(e1, ey), where,
e1 ∈ Rn+q−p, then it follows[

ė1
ėy

]
=

[
A11 A12

A21 A22

] [
e1
ey

]
−
[
0
D2

]
f −

[
M1

M2

]
ξ+

[
Gl1

Gl2

]
ey+

[
−L
Ip

]
ν (14)

where A11 ∈ R(n+q−p)×(n+q−p), D2 ∈ Rp×q and M2 ∈ Rp×l and are given by

D2 =

[
0
Af

]
, M2 =

[
M21

0

]
(15)

where M21 ∈ R(p−q)×q. These special structures arise from the specific augmentation in (6). Define a coordinate
transformation e 7→ ẽ = TLe, given by

TL =

[
In+q−p L

0 Ip

]
(16)

Applying the above transformation to (14), in the new coordinates, the error system is represented by[
˙̃e1
ėy

]
=

[
Ã11 Ã12

A21 Ã22

] [
ẽ1
ey

]
−
[

0
D2

]
f −

[
M̃1

M2

]
ξ+

[
G̃l1

Gl2

]
ey+

[
0
Ip

]
ν (17)

where Ã11 = A11 + LA21, M̃1 = M1 + LM2, ẽ1 = e1 + Ley and ẽ = Col(ẽ1, ey). The structure of the fault
distribution matrix in (17) occurs because LD2 = 0. This occurs as a consequence of the special form of L1 in
(13) and D2 in (15) [11]. In this error system define[

G̃l1

Gl2

]
=

[
−Ã12

−Ã22 − k2Ip

]
(18)

where k2 is a positive scalar to be designed.
The remainder of this section (focussing on observer design) is bespoke to this paper and represents developments

beyond those in [11].
Notice from (17) and (18) that

˙̃e1(t) = Ã11ẽ1(t)− M̃1ξ(t) (19)
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where Ã11 is assumed to be Hurwitz (by selecting a suitable L). Since Ã11 is Hurwitz

∥eÃ11t∥ ≤ me−α0t (20)

for some positive scalars m and α0 (from the semi-group property of linear systems). Therefore

∥ẽ1(t)∥ ≤ me−α0t∥ẽ1(0)∥+
∫ t

0
m∥M̃1∥e−α0(t−s)∥ξ(s)∥ds

≤ me−α0t∥ẽ1(0)∥+ dm∥M̃1∥/α0

(21)

since from (3), by assumption ∥ξ(t)∥ ≤ d. Therefore for an appropriately chosen scalar β0 > 0

∥ẽ1(t)∥ ≤ β0 + dm∥M̃1∥/α0 (22)

in finite time t0 where t0 ≤ − 1
α0

loge(m∥ẽ1(0)∥/β0).
Theorem 2.1: If the modulation gain from (11) satisfies

ρ(t) ≥ ∥A21∥(β0 + dm∥M̃1∥/α0) + ∥D2∥β(t) + ∥M2∥d+ η (23)

then a sliding motion on S = {ẽ ∈ Rn+q : Cẽ = 0} can be enforced in finite time.
Proof: Consider a candidate Lyapunov function V (ey) =

1
2e

T
y ey. For all t > t0, the derivative along the trajectory

is

V̇ = eTy (A21ẽ1 + Ã22ey −D2f −M2ξ + G̃l2ey + ν)

= eTy (A21ẽ1 − k2ey −D2f −M2ξ + ν)

≤ ∥ey∥(∥A21∥∥ẽ1∥+ ∥D2∥β(t) + ∥M2∥d− ρ(t))

≤ −η∥ey∥ = −η
√
2V

(24)

This ensures sliding occurs in finite time [13].

B. Fault reconstruction

During sliding, ėy(t) = ey(t) = 0 [13]. Then substituting these quantities into (17) yields the expressions

˙̃e1 = Ã11ẽ1 − (M1 + LM2)ξ

0 = A21ẽ1 −D2f −M2ξ + νeq
(25)

where νeq is the equivalent output error injection signal ([13]). In this paper, consider a fault estimation signal

f̂ = Wνeq (26)

In equation (26) the user defined gain
W =

[
W1 A−1

f

]
(27)

where W1 ∈ Rq×(p−q) denotes the design freedom. Define ef = f̂ − f , then it follows from (25) and (26)

ef = −WA21ẽ1 +WD2f +WM2ξ − f (28)

Let
A21 =

[
AT

211 AT
212

]T (29)

Then using the fact that WD2 = I , WM2 = W1M21 and WA21 = W1A211 + A−1
f A212, the observer error

dynamics and the fault estimation error satisfies

˙̃e1 = Ã11ẽ1 − M̃1ξ

ef = (−W1A211 −A−1
f A212)ẽ1 +W1M21ξ

(30)

Theorem 2.2: An upper bound on the L2 gain γ for the system in (30) can be computed so that

∥ef∥2 ≤ γ∥ξ∥2 (31)
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if there exists a s.p.d matrix P0 and design freedom Y and W1 such thatHe{·} −P0M1 − YM2 (−W1A211−A−1
f A212)

T

∗ −γI (W1M21)
T

∗ ∗ −γI

<0 (32)

where He{·} = He{P0A11+Y A21}.
Proof: From the Bounded Real Lemma, (31) is guaranteed if (32) holds. It follows (32) is an LMI with respect

to the decision variables P0, Y and W1. By solving the LMI in (32), the observer gain L = P−1
0 Y .

The observer discussed in this section will now be applied to the problem of reconstruction of a yaw rate sensor
fault associated with the MuPAL-α aircraft.

III. HIL TEST ON THE MUPAL-α PLATFORM

A. MuPAL-α platform

MuPAL-α is owned and operated by the Japan Aerospace Exploration Agency. The aircraft is a Dornier Do228-
202 modified to include a bespoke Fly-By-Wire (FBW) system. The MuPAL-α platform (see Fig. 1) is used for
both Hardware-in-the-loop (HIL) ground tests and piloted flight tests of new guidance and control algorithms (and
the associated human factors). Researchers are able to incorporate new control laws or test flight displays for

 

Fig. 1. MuPAL-α HIL test platform

the pilot. MuPAL-α can be used to simulate the motion of various types of aircraft (big transports, business jets
etc), and also to test the effect of system failures (see for example [14], [15], [16], [17], [18]). From a safety
perspective, the primary elements of the bespoke on-board FBW system are designed to be duplex, allowing a
safety pilot to override the FBW output and manually take over control via the original mechanical control system
[2]. Consequently, MuPAL-α represents a unique facility for flight testing FDI and FTC schemes.

B. MuPAL-α HIL test platform

Following JAXA’s test procedures, HIL simulations are always carried out first to test the C-code implementations
of any new FDI or FTC schemes, to provide a preliminary assessment of their performance before any actual piloted
test flights. The HIL configuration allows a wide range of manoeuvres and flight conditions to be conducted in
safe static conditions inside the hanger. The HIL test setup has the capability to include various wind and gust
conditions to mimic actual flight conditions as a further check. The HIL tests allow the safety and evaluation pilots
to become acquainted with the manoeuvres and fault scenarios to be conducted during the actual flight tests.

The MuPAL-α HIL test platform represents a fairly conventional flight simulator arrangement, but includes the
actual aircraft as part of the configuration. An emulation computer provides the flight simulator capabilities and
runs in real time a high fidelity simulation model of the aircraft which has been calibrated against real flight data.
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The emulation computer uses the position of the actual aircraft’s control surfaces (which respond during the HIL
tests) as inputs to the simulation. The simulation on the emulation computer then provides ‘sensor measurements’
of the position and attitude of the aircraft. These emulated measurements provide the signals which are used by the
control law running on the FBW computer, and update the cockpit displays for the pilots. The emulation computer
also updates the graphic display screen (placed outside of the cockpit) to provide the pilots with a visualisation
of the aircraft attitude. In this way the FDI and FTC interact with the real system hardware on the aircraft. For
further details of MuPAL-α and its operation, see for example [2].

C. Hardware-in-the-loop tests
This paper focuses on the lateral-directional dynamics of the aircraft. The results which will be presented in the

following subsections were all obtained from HIL tests. A control scheme was initially coded in C and integrated
into the FBW system. The controller which is used is the sliding mode control allocation scheme described in
[19]. During the HIL tests, it is assumed that the yaw rate sensor measurement is corrupted by faults (which are
introduced at a software level). All the faults are assumed to occur from 30sec onwards. Since FTC is not explored
in this paper, during the HIL tests illustrated in this paper, the sensor faults are not fed back to the baseline controller
taken from [19], which has good sideslip and roll angle tracking performance, and therefore the closed-loop system
performance is always fault-free. The system architecture for the HIL implementation is shown in Fig. 2.

MuPal-α
Baseline 

controller

+
+

SMO

Fig. 2. MuPAL-α HIL test

During the HIL tests, the sideslip and roll angle commands are created by the evaluation pilot via the pedal and
wheel respectively.

D. Observer design results
During the HIL tests, the flaps are retracted. The Direct Lift Control (DLC) flaps are fixed at 0 deg while the

gear (which is used to set MuPAL-α on the ground) is set as retracted in the simulation. The weight of the aircraft
is 5700 kg, the centre of gravity is set at 28%, the trim altitude is 5000 ft and the trim indicated airspeed is
120 kts. A lateral-directional LTI model of MuPAL-α at this specific flight condition was provided by the Japan
Aerospace Exploration Agency (JAXA) based on recorded flight test data.

The system states of the LTI model are given by

xp =
[
ϕ β p r

]T (33)

which denote roll angle, sideslip angle, roll rate and yaw rate, respectively. In this paper, it is assumed that all
system states are available and therefore yp = xp. The system inputs up are given by

up =
[
δa δr

]T (34)

where δa and δr represent the aileron and rudder surface deflections. Consequently, in this example, n = 4, p = 4
and q = 1 and

Cp =

[
Cp,1

Cp,2

]
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Hp =


0
0
0
1
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In this scenario, the disturbance distribution matrix is

Mp =

[
10 0 0 0
0 0 0 1

]T
(35)

This matrix is used as (indirect) design freedom for the synthesis of L. In this paper, by considering that ξ(t)
represents the external disturbance and roll signal is not so often corrupted by noise compared to yaw rate signal,
the roll angle signal is supposed to be affected by ten-times large external disturbance compared to yaw rate signal,
i.e. roll angle signal accept large external disturbance. The filter parameter has been chosen as Af = 0.01. By
choosing a suitable gain matrix L for (12) and (13), the matrix Ã11 is established. In this design, k2 = 0.1, and
the values of L and W1 obtained using the Matlab LMI toolbox are

L =
[
0.6123 4.7950 −1.2778 0

]
W1 =

[
0.0055 0.9216 −0.0576

] (36)

The modulation gain ρ(t) is chosen as 0.7, and the small positive scalar selected for the sigmoidal approximation
[13] to the discontinuous injection term is 0.01 and the expression in (11) is then replaced by

ν = −ρ(t)
ey

∥ey∥+ 0.01
(37)

E. HIL simulation results

In this section, the HIL simulation results, associated with additive sine wave faults, are illustrated.
1) Fault free without wind affects: The manoeuvre shown in Fig. 3(a) is manually created by the evaluation

pilot via wheel manipulation and represents a roll angle command of approximately 20deg to −20deg. Fig. 3(b)
shows the observer performance in the absence of faults and without any wind/gust disturbances in the emulation
tests. It can be seen from Fig. 3(b) that the fault reconstruction signal is small. The sliding surface variable ∥ey∥
is zero from the beginning of the simulation. It can be seen from Fig. 3(b) that there exist small spikes on ∥ey∥
corresponding to the tunes of the pilot manipulations. The emulated wind, injected during the HIL simulation,
is almost zero. The fault estimation error, at the sample times, plotted as a histogram, displays a tight normal
distribution with a small nonzero mean – indicating a small bias (approx 0.5 deg/s).

2) Faulty cases: The HIL simulation results, associated with an additive sine wave yaw rate sensor fault, are
shown in Fig. 5. The amplitude of the sine wave fault is 5deg/s and the frequency of the sine wave fault is 0.05
Hz. A similar manoeuvre (as shown in Fig. 5(a)) is manually created by the evaluation pilot via pedal and wheel
manipulations. Figure 5(b) shows the observer performance in the presence of the fault and the wind injected
into the HIL system from a Dryden model (as shown in Fig. 4). It can be seen from Fig. 5(b) that the nominal
yaw rate sensor measurement is affected by the sine wave fault from 30sec onwards. The observer is capable of
reconstructing the sine wave fault to an accuracy of about 1deg/s as shown in the histogram of the fault estimation
error (which has a larger standard deviation compared to the wind free case) and the fault reconstruction error is
similar to the fault free case. The sliding variable ∥ey∥ is close to zero despite the fault and the wind.

These results are very satisfactory and are of sufficient interest that in future work piloted flight tests will take
place.

IV. CONCLUSION

This paper has shown the results of using a sliding mode observer based sensor FDI scheme to reconstruct/estimate
yaw rate sensor faults in the presence of wind disturbances. The proposed scheme has been implemented on the
Japan Aerospace Exploration Agency MuPAL-α research aircraft, and validated by ground based Hardware-in-the-
Loop (HIL) tests. The illustrated HIL results show that, during a steady turn manoeuvre induced by the evaluation
pilot, yaw rate sensor faults can be well reconstructed to an accuracy of approximately 1 deg/sec. These results are
a precursor to planned actual piloted flight tests, and the HIL tests shown in this paper have yielded sufficiently
good results to make these flight testes possible. The FDI scheme is intended to form part of a sensor fault tolerant
flight control system obtained by using the fault estimates to correct the measured signals resulting in a virtual
(fault-free) sensor reading. Flight tests of such an FTC scheme are also scheduled to take place and will be reported
on during the conference if available.
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(a) Commands created by the evaluation pilot
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(b) Observer performance

Fig. 3. Fault-free case without winds: commands and observer performance
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Fig. 5. Sine wave fault case: commands and observer performance


