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Abstract

We study a setting where a group of agents, each receiving partially informative private
observations, seek to collaboratively learn the true state (among a set of hypotheses) that ex-
plains their joint observation profiles over time. To solve this problem, we propose a distributed
learning rule that differs fundamentally from existing approaches, in the sense, that it does not
employ any form of “belief-averaging”. Specifically, every agent maintains a local belief (on
each hypothesis) that is updated in a Bayesian manner without any network influence, and an
actual belief that is updated (up to normalization) as the minimum of its own local belief and
the actual beliefs of its neighbors. Under minimal requirements on the signal structures of the
agents and the underlying communication graph, we establish consistency of the proposed belief
update rule, i.e., we show that the actual beliefs of the agents asymptotically concentrate on the
true state almost surely. As one of the key benefits of our approach, we show that our learning
rule can be extended to scenarios that capture misbehavior on the part of certain agents in
the network, modeled via the Byzantine adversary model. In particular, we prove that each
non-adversarial agent can asymptotically learn the true state of the world almost surely, under
appropriate conditions on the observation model and the network topology.

1 Introduction

Various distributed learning problems arising in social networks (such as opinion formation and
spreading), and in engineering systems (such as target recognition by a group of aerial robots) can
be studied under the formal framework of distributed hypothesis testing. Within this framework,
a group of agents repeatedly observe certain private signals, and aim to infer the “true state of
the world” that explains their joint observations. While much of the earlier work on this topic
assumed the existence of a centralized fusion center for performing computational tasks [1,2], more
recent endeavors focus on a distributed setting where interactions among agents are captured by a
communication graph [3–12]. Our work here falls in the latter class. A typical belief update rule in
the distributed setting combines a local Bayesian update with a consensus-based opinion pooling
of neighboring beliefs. Specifically, linear opinion pooling is studied in [3–5], whereas the log-linear
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form of belief aggregation is studied in the context of distributed hypothesis testing in [6–10], and
distributed parameter estimation in [11, 12]. Notably, exponential convergence rates are achieved
in [4,6–9], while a finite-time analysis is presented in [10]. Extensions to time-varying graphs have
also been studied in [5–7].

In [7, Section III], the authors explain that the commonly studied linear and log-linear forms
of belief aggregation are specific instances of a more general class of opinion pooling known as
g-Quasi-Linear Opinion pools (g-QLOP), introduced in [13]. The main contribution of our paper
is the development of a novel belief update rule that deviates fundamentally from the broad family
of g-QLOP learning rules discussed above. Specifically, the learning algorithm that we propose in
Section 3.1 does not rely on any linear consensus-based belief aggregation protocol. Instead, each
agent maintains two sets of beliefs: a local belief that is updated in a Bayesian manner based on the
private observations (without neighbor interactions), and an actual belief that is updated (up to
normalization) as the minimum of the agent’s own local belief and the actual beliefs of its neighbors.
In Section 6, we establish that under minimal requirements on the agents’ signal structures and the
communication graph, the actual beliefs of the agents asymptotically concentrate on the true state
almost surely. In Section 5, we argue that our approach works under graph-theoretic conditions
that are milder than the standard assumption of strong-connectivity.

In addition to the above contribution to the distributed hypothesis testing problem, we also
show in this paper that our approach is capable of handling agents that do not follow the prescribed
learning algorithm. Indeed, despite the wealth of literature on distributed inference, there is limited
understanding of the impact of misbehaving agents for the problem under consideration. Such
agents may represent stubborn individuals, ideological extremists in the context of a social network,
or model faults (either benign or malicious) in a networked control system. In the presence of
such misbehaving entities, how should the remaining agents process their private observations and
the beliefs of their neighbors to eventually learn the truth? To answer this question, we model
misbehaving agents via the classical Byzantine adversary model, and develop a provably correct,
resilient version of our proposed learning rule in Section 3.2. The only related work (that we are
aware of) in this regard is reported in [9]. As we discuss in Section 3.2, our proposed approach is
significantly less computationally intensive relative to those in [9]. We identify conditions on the
observation model and the network structure that guarantee applicability of our Byzantine-resilient
learning rule, and argue (in Section 5) that such conditions can be checked in polynomial time.

2 Model and Problem Formulation

Network Model: We consider a group of agents V = {1, 2, . . . , n} interacting over a time-
invariant, directed communication graph G = (V, E). An edge (i, j) ∈ E indicates that agent i

can directly transmit information to agent j. If (i, j) ∈ E , then agent i will be called a neighbor of
agent j, and agent j will be called an out-neighbor of agent i. The set of all neighbors of agent i

will be denoted Ni. Given two disjoint sets C1, C2 ⊆ V, we say that C2 is reachable from C1 if for
every i ∈ C2, there exists a directed path from some j ∈ C1 to agent i (note that j will in general
be a function of i). We will use |C| to denote the cardinality of a set C.

Observation Model: Let Θ = {θ1, θ2, . . . , θm} denote m possible states of the world; each
θi ∈ Θ will be called a hypothesis. Let N and N+ denote the set of non-negative integers and positive
integers, respectively. Then at each time-step t ∈ N+, every agent i ∈ V privately observes a signal
si,t ∈ Si, where Si denotes the signal space of agent i. The joint observation profile so generated
across the network is denoted st = (s1,t, s2,t, . . . , sn,t), where st ∈ S, and S = S1 ×S2 × . . . Sn. The
signal st is generated based on a conditional likelihood function l(·|θ⋆), governed by the true state of
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the world θ⋆ ∈ Θ. Let li(·|θ
⋆), i ∈ V denote the i-th marginal of l(·|θ⋆). The signal structure of each

agent i ∈ V is then characterized by a family of parameterized marginals {li(wi|θ) : θ ∈ Θ, wi ∈ Si}.
1

We make the following standard assumptions [3–10]: (i) The signal space of each agent i, namely
Si, is finite. (ii) Each agent i has knowledge of its local likelihood functions {li(·|θp)}

m
p=1, and it

holds that li(wi|θ) > 0,∀wi ∈ Si, and ∀θ ∈ Θ. (iii) The observation sequence of each agent is
described by an i.i.d. random process over time; however, at any given time-step, the observations
of different agents may potentially be correlated. (iv) There exists a fixed true state of the world
θ⋆ ∈ Θ (unknown to the agents) that generates the observations of all the agents.2 Finally, we
define a probability triple (Ω,F ,Pθ⋆), where Ω , {ω : ω = (s1, s2, . . .),∀st ∈ S,∀t ∈ N+}, F is
the σ-algebra generated by the observation profiles, and P

θ⋆ is the probability measure induced by

sample paths in Ω. Specifically, Pθ⋆ =
∞∏
t=1

l(·|θ⋆). For the sake of brevity, we will say that an event

occurs almost surely to mean that it occurs almost surely w.r.t. the probability measure P
θ⋆.

Given the above setup, the goal of each agent in the network is to discern the true state of the
world θ⋆. The challenge associated with such a task stems from the fact that the private signal
structure of any given agent is in general only partially informative. To make this notion precise,
define Θθ⋆

i , {θ ∈ Θ : li(wi|θ) = li(wi|θ
⋆),∀wi ∈ Si}. In words, Θθ⋆

i represents the set of hypotheses
that are observationally equivalent to the true state θ⋆ from the perspective of agent i. In general,
for any agent i ∈ V, we may have |Θθ⋆

i | > 1, necessitating collaboration among agents. While
inter-agent collaboration is implicitly assumed in the distributed hypothesis testing literature, in
this paper we will also allow for potential misbehavior on the part of certain agents in the network,
modeled as follows.

Adversary Model: We assume that a certain fraction of the agents are adversarial, and model
their behavior based on the Byzantine fault model [14]. In particular, Byzantine agents possess
complete knowledge of the observation model, the network model, the algorithms being used,
the information being exchanged, and the true state of the world. Leveraging such information,
adversarial agents can behave arbitrarily and in a coordinated manner, and can in particular, send
incorrect, potentially inconsistent information to their out-neighbors. In terms of their distribution
in the network, we will consider an f -local adversarial model, i.e., we assume that there are at
most f adversaries in the neighborhood of any non-adversarial agent.3 Finally, we emphasize that
the non-adversarial agents are unaware of the identities of the adversaries in their neighborhood.
As is fairly standard in the distributed fault-tolerant literature [15–20], we only assume that non-
adversarial agents know the upper bound f on the number of adversaries in their neighborhood.
The adversarial set will be denoted by A ⊂ V, and the remaining agents R = V \ A will be called
the regular agents.

Our objective in this paper will be to design a distributed learning rule that allows each regular
agent i ∈ R to identify the true state of the world almost surely, despite (i) the partially informative
signal structures of the agents, and (ii) the actions of any f -local Byzantine adversarial set. To this
end, we introduce the following notion of source agents.

Definition 1. (Source agents) An agent i is said to be a source agent for a pair of distinct
hypotheses θp, θq ∈ Θ, if D(li(·|θp)||li(·|θq)) > 0, where D(li(·|θp)||li(·|θq)) represents the KL-

1Whereas wi ∈ Si will be used to refer to a generic element of the signal space of agent i, si,t will denote the
random variable (with distribution li(·|θ

⋆)) that corresponds to agent i′s observation at time-step t.
2The approach in [6,7] applies to a more general setting where there may not exist such a true hypothesis.
3Note that the f -local adversarial model assumed here is more general than the f -total adversarial model considered

in [9], where the total number of adversaries in the entire network is upper bounded by f .
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divergence between the distributions li(·|θp) and li(·|θq), and is given by:

D(li(·|θp)||li(·|θq)) =
∑

wi∈Si

li(wi|θp) log
li(wi|θp)

li(wi|θq)
. (1)

The set of all source agents for the pair θp, θq is denoted by S(θp, θq).
4

In words, a source agent for a pair θp, θq ∈ Θ is an agent that can distinguish between the pair
of hypotheses θp, θq based on its private signal structure. In our developments, we will require the
following two definitions.

Definition 2. (r-reachable set) [16] For a graph G = (V, E), a set C ⊆ V, and an integer r ∈ N+,
C is an r-reachable set if there exists an i ∈ C such that |Ni \ C| ≥ r.

Definition 3. (strongly r-robust graph w.r.t. S(θp, θq)) For r ∈ N+ and θp, θq ∈ Θ, a graph
G = (V, E) is strongly r-robust w.r.t. the set of source agents S(θp, θq), if for every non-empty
subset C ⊆ V \ S(θp, θq), C is r-reachable.

3 Proposed Learning Rules

3.1 A Novel Belief Update Rule

In this section, we propose a novel belief update rule and discuss the intuition behind it. To
introduce the key ideas underlying our basic approach, we first consider a scenario where all agents
are regular, i.e., R = V. Every agent i maintains and updates (at every time-step) two separate
sets of belief vectors, namely, πi,t and µi,t. Each of these vectors are probability distributions over
the hypothesis set Θ. We will refer to πi,t and µi,t as the “local” belief vector (for reasons that
will soon become obvious), and the “actual” belief vector, respectively, maintained by agent i. The
goal of each agent i ∈ V in the network will be to use its own private signals, and the information
available from its neighbors, to update µi,t sequentially so that limt→∞ µi,t(θ

∗) = 1 almost surely.
To do so, for each θ ∈ Θ, and at each time-step t + 1, t ∈ N, agent i first generates πi,t+1(θ)
via a local Bayesian update rule that incorporates the private observation si,t+1 using πi,t(θ) as
a prior. Having generated πi,t+1(θ), agent i updates µi,t+1(θ) (up to normalization) by setting it
to be the minimum of its locally generated belief πi,t+1(θ), and the actual beliefs µj,t(θ), j ∈ Ni

of its neighbors at the previous time-step. It then reports its actual belief µi,t+1(θ) to each of
its out-neighbors.5 The belief vectors are initialized as µi,0(θ) > 0, πi,0(θ) > 0,∀θ ∈ Θ,∀i ∈ V.
Subsequently, these vectors are updated at each time-step t+ 1 (where t ∈ N) as follows:

• Step 1: Update of the local beliefs:

πi,t+1(θ) =
li(si,t+1|θ)πi,t(θ)

m∑
p=1

li(si,t+1|θp)πi,t(θp)
. (2)

• Step 2: Update of the actual beliefs:

µi,t+1(θ) =
min{{µj,t(θ)}j∈Ni

, πi,t+1(θ)}
m∑
p=1

min{{µj,t(θp)}j∈Ni
, πi,t+1(θp)}

. (3)

4Notice that S(θp, θq) = S(θq, θp), since D(li(·|θp)||li(·|θq)) > 0 ⇐⇒ D(li(·|θq)||li(·|θp)) > 0.
5Note that based on our algorithm, agents only exchange their actual beliefs, and not their local beliefs.
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Intuition behind the learning rule: Consider the set of source agents S(θ∗, θ) who can
differentiate between a certain false hypothesis θ and the true state θ⋆. Suppose for now that
this set is non-empty. We ask: how do the agents in the set S(θ⋆, θ) contribute to the process of
collaborative learning? To answer this question, we note that the signal structures of such agents
are rich enough for them to be able to eliminate θ on their own, i.e., without the support of their
neighbors. Thus, the agents in S(θ⋆, θ) should contribute towards driving the actual beliefs of
their out-neighbors (and eventually, of all the agents in the set V \ S(θ⋆, θ)) on the hypothesis θ to
zero. To achieve the above objective, we are especially interested in devising a rule that ensures
that the capability of the source agents S(θ⋆, θ) to eliminate θ is not diminished due to neighbor
interactions. As we shall see later, such a property will be particularly useful when certain agents
in the network are adversarial. It is precisely these considerations that motivate us to employ (i) an
auxiliary belief vector πi,t+1 generated via local processing (i.e., without any network influence) of
the private signals, and (ii) a min-rule of the form (3). Specifically, if i ∈ S(θ⋆, θ), then the sequence
of local beliefs πi,t+1(θ) will almost surely converge to 0 based on the update rule (2). Hence, for
a source agent i ∈ S(θ⋆, θ), πi,t+1(θ) will play the key role of an external network-independent
input in the min-rule (3). This in turn will trigger a process of belief reduction on the hypothesis
θ originating at the source set S(θ⋆, θ), and eventually propagating via the proposed min-rule to
each agent in the network reachable from such a source set. The above discussion will be made
precise in Section 6.

Remark 1. We emphasize that the proposed min-rule (3) does not employ any form of “belief-
averaging”. This feature is in stark contrast with existing approaches to distributed hypothesis
testing that rely either on linear opinion pooling [3–5], or log-linear opinion pooling [6–12]. As such,
the lack of linearity in our belief update rule precludes (direct or indirect) adaptation of existing
analysis techniques to suit our needs. Consequently, we develop a novel sample path based proof
technique in Section 6 to establish consistency of the proposed learning rule. As one of the main
outcomes of this analysis, we argue that our learning rule works under graph-theoretic conditions
that are in general weaker than strong-connectivity (see also Section 5).

3.2 A Byzantine-Resilient Belief Update Rule

As pointed out in the Introduction, a key benefit of our approach is that it can be extended to
account for the worst-case Byzantine adversarial model described in Section 2. A standard way to
analyze the impact of such adversarial agents while designing resilient distributed consensus-based
protocols (for applications in consensus [15, 16], optimization [17, 18], hypothesis testing [9], and
multi-agent rendezvous [21]) is to construct an equivalent matrix representation of the linear update
rule that involves only the regular agents [22]. In particular, this requires expressing the iterates of a
regular agent as a convex combination of the iterates of its regular neighbors, based on appropriate
filtering techniques, and under certain assumptions on the network structure. While this can indeed
be achieved efficiently for scalar consensus problems, for problems requiring consensus on vectors
(like the belief vectors in our setting), such an approach becomes computationally prohibitive [9].
To bypass such heavy computations, and yet accommodate Byzantine attacks, we now develop a
resilient version of the learning rule introduced in Section 3.1, as follows. Each agent i ∈ R acts as
follows at every time-step t+ 1 (where t ∈ N).

• Step 1: Update of the local beliefs: The local belief πi,t+1(θ) is updated as before, based
on (2).

5



• Step 2: Filtering extreme beliefs: If |Ni| ≥ (2f + 1), then agent i performs a filtering
operation as follows. It collects the actual beliefs µj,t(θ) from each neighbor j ∈ Ni and sorts
them from highest to lowest. It rejects the highest f and the lowest f of such beliefs (i.e., it
throws away 2f beliefs in all). In other words, for each hypothesis, a regular agent retains
only the moderate beliefs received from its neighbors.

• Step 3: Update of the actual beliefs: If |Ni| ≥ (2f + 1), then agent i updates µi,t+1(θ)
as follows. Let the set of neighbors whose beliefs on θ are not rejected by agent i (based
on the previous filtering step) be denoted by Mθ

i,t ⊂ Ni. The actual belief µi,t+1(θ) is then
updated as follows:

µi,t+1(θ) =
min{{µj,t(θ)}j∈Mθ

i,t
, πi,t+1(θ)}

m∑
p=1

min{{µj,t(θp)}j∈Mθp
i,t

, πi,t+1(θp)}
. (4)

If |Ni| < (2f + 1), then agent i updates µi,t+1(θ) as follows:

µi,t+1(θ) = πi,t+1(θ). (5)

As with the learning rule presented in Section 3.1, agent i transmits µi,t+1(θ) to each of its out-
neighbors on completion of the above steps. We will refer to the above sequence of actions as the
Local-Filtering based Resilient Hypothesis Elimination (LFRHE) algorithm.

4 Main Results

In this section, we state our main results, and then comment on them in Section 5; detailed proofs
of the results are presented in Section 6. Our first result establishes the correctness of the learning
rule proposed in Section 3.1.

Theorem 1. Suppose R = V, and that the following are true:

(i) For every pair of hypotheses θp, θq ∈ Θ, the corresponding source set S(θp, θq) is non-empty.

(ii) For every pair of hypotheses θp, θq ∈ Θ, V \S(θp, θq) is reachable from the source set S(θp, θq).

(iii) Every agent i ∈ V has a non-zero prior belief on each hypothesis, i.e., πi,0(θ) > 0, µi,0(θ) > 0
for all i ∈ V, and for all θ ∈ Θ.

Then, the learning rule described by equations (2) and (3) leads to collaborative learning of the true
state, i.e., µi,t(θ

⋆) → 1 almost surely ∀i ∈ V.

Our second result establishes the correctness of the LFRHE algorithm proposed in Section 3.2.

Theorem 2. Suppose the following are true:

(i) For every pair of hypotheses θp, θq ∈ Θ, the graph G is strongly (2f + 1)-robust w.r.t. the
corresponding source set S(θp, θq).

(ii) Each regular agent i ∈ R has a non-zero prior belief on each hypothesis, i.e., πi,0(θ) >

0, µi,0(θ) > 0 for all i ∈ R, and for all θ ∈ Θ.

6



Then, the LFRHE algorithm described by equations (2), (4) and (5) leads to collaborative learning
of the true state despite the actions of any f -local set of Byzantine adversaries, i.e., µi,t(θ

⋆) → 1
almost surely ∀i ∈ R.

Remark 2. For any pair θp, θq ∈ Θ, notice that condition (i) of Theorem 2 (together with the
definition of strong-robustness in Def. 3) requires |S(θp, θq)| ≥ (2f + 1), if V \ S(θp, θq) is non-
empty.

5 Discussion

(Assumptions in Theorem 1): While the first condition in Theorem 1 is a basic global iden-
tifiability condition, the second condition on the network structure is in general weaker than the
standard assumption of strong-connectivity made in [3,4,8,10–12]. To see why the latter statement
is true, consider a scenario where Θ = {θ1, θ2}. Clearly, any agent i ∈ S(θ1, θ2) can discern the
true state without neighbor interactions, precluding the need for incoming edges to such agents.6

Finally, the assumption of non-zero initial beliefs is fairly standard, and can be easily met by
maintaining a uniform support over the hypotheses set initially.

(Assumptions in Theorem 2): The first condition in Theorem 2 blends requirements on the
signal structures of the agents with those on the communication graph. To gain intuition about
this condition, suppose Θ = {θ1, θ2}, and let there exist at least one agent i ∈ V \ S(θ1, θ2). To
enable agent i to discern the truth despite potential adversaries in its neighborhood, one requires (i)
redundancy in the signal structures of the agents (see Remark 2), and (ii) redundancy in the network
structure to facilitate reliable information flow from S(θ1, θ2) to agent i. These requirements are
captured by condition (i), a point made apparent in Section 6.2.

(Complexity of Checking Condition (i) in Theorem 2): Given a network of agents with
associated signal structures, condition (i) in Theorem 2 can be checked in polynomial time. Specifi-
cally, for every pair θp, θq ∈ Θ, finding the source set S(θp, θq) can easily be done in polynomial time
via inspection of the agents’ signal structures. For a fixed source set S(θp, θq), checking whether G
is strongly (2f + 1)-robust w.r.t. S(θp, θq) amounts to simulating a bootstrap percolation process
on G, with S(θp, θq) as the initial active set, and (2f+1) as the threshold. This too can be achieved
in polynomial time, as discussed in [19].

(Analogy with Distributed State Estimation): Consider the problem of collaboratively
estimating the state of an LTI process based on information exchanges among agents that receive
partial measurements of the state. There are natural connections between this setting, and the
problem studied in this paper. For the state estimation scenario, one can fix an unstable mode of
the process, and define source agents for that mode to be agents that can detect the eigenspaces
associated with that mode. Interestingly, with source agents defined for each unstable mode in the
manner described above, [23, Theorem 3] and [19, Theorem 7] (in the context of distributed state
estimation) can be viewed as analogues of Theorem 1 and Theorem 2, respectively.

(Convergence Rate): Consider any false hypothesis θ 6= θ⋆. We conjecture that based on our
learning rules, the actual beliefs of all the regular agents on θ will almost surely decay exponentially
fast after a transient period, with the rate of decay lower bounded by mini∈S(θ⋆,θ)∩RD(li(·|θ

⋆)||li(·|θ)).

6For the problem under consideration, the argument that the strong connectivity assumption can be relaxed applies
to more general scenarios as well, where there does not necessarily exist any one agent that can identify the true state
based on just its private signal structure. The underlying reason for this stems from information heterogeneity and
information redundancy among agents [23], features shared by distributed estimation and detection type problems,
but lacking in a standard consensus setting.
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6 Proofs of the Main Results

We start with the following simple lemma that characterizes the asymptotic behavior of the local
belief sequences generated based on (2); we provide a proof (adapted to our notation) to keep the
paper self-contained.

Lemma 1. Consider an agent i ∈ S(θ⋆, θ) ∩ R. Suppose πi,0(θ
⋆) > 0. Then, the update rule (2)

ensures that (i) πi,t(θ) → 0 almost surely, and (ii) πi,∞(θ⋆) , limt→∞ πi,t(θ
⋆) exists almost surely,

and satisfies πi,∞(θ⋆) ≥ πi,0(θ
⋆).

Proof. Pick an agent i ∈ S(θ⋆, θ) ∩R, and define:

ρi,t(θ) , log
πi,t(θ)

πi,t(θ⋆)
, λi,t(θ) , log

li(si,t|θ)

li(si,t|θ⋆)
. (6)

Then, based on (2), we obtain the following recursion:

ρi,t+1(θ) = ρi,t(θ) + λi,t+1(θ),∀t ∈ N. (7)

Rolling out the above equation over time yields:

ρi,t(θ) = ρi,0(θ) +

t∑

k=1

λi,k(θ),∀t ∈ N+. (8)

Notice that {λi,t(θ)} is a sequence of i.i.d. random variables with finite means and variances. In par-
ticular, it is easy to verify that each random variable λi,t(θ) has mean7 given by −D(li(·|θ

⋆)||li(·|θ)).

Thus, based on the strong law of large numbers, we have 1
t

t∑
k=1

λi,k(θ) → −D(li(·|θ
⋆)||li(·|θ)) almost

surely. Dividing both sides of (8) by t, and taking the limit as t goes to infinity, we then obtain:

lim
t→∞

1

t
ρi,t(θ) = −D(li(·|θ

⋆)||li(·|θ)) almost surely. (9)

Finally, note that based on the definition of the set S(θ⋆, θ), D(li(·|θ
⋆)||li(·|θ)) > 0. It then

follows from (9) that ρi,t(θ) → −∞ almost surely, and hence πi,t(θ) → 0 almost surely. For any
θ ∈ Θθ⋆

i , observe that λi,t(θ) = 0,∀t ∈ N+. It then follows from (7) that for each θ ∈ Θθ⋆

i ,
ρi,t(θ) = ρi,0(θ),∀t ∈ N+. From the above discussion, we conclude that a limiting belief vector
πi,∞ exists almost surely, with non-zero entries corresponding to only those θ ∈ Θθ⋆

i for which
πi,0(θ) > 0. Part (ii) of the lemma then follows readily by noting that πi,0(θ

⋆) > 0.

We are now in position to prove Theorems 1 and 2.

6.1 Proof of Theorem 1

Proof. Let Ω̄ ⊆ Ω denote the set of sample paths along which for each agent i ∈ V, the following
hold: (i) for each θ ∈ Θ \ Θθ⋆

i , πi,t(θ) → 0, and (ii) πi,∞(θ⋆) , limt→∞ πi,t(θ
⋆) exists, and satisfies

πi,∞(θ⋆) ≥ πi,0(θ
⋆). Recall that Θθ⋆

i represents the set of hypotheses that are observationally
equivalent to the true state θ⋆ from the point of view of agent i. Hence, for each θ ∈ Θ \ Θθ⋆

i , we
have i ∈ S(θ⋆, θ). Based on the third condition in the statement of Theorem 1, and Lemma 1, we

7More precisely, the mean here is obtained by using the expectation operator E
θ⋆ [·] associated with the measure

P
θ⋆ .
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infer that Ω̄ has measure 1. Thus, to prove the desired result, it suffices to confine our attention to
the set Ω̄. Specifically, fix any sample path ω ∈ Ω̄, and pick any ǫ > 0. Our goal will be to establish
that along the sample path ω, there exists t(ω, ǫ) such that for all t ≥ t(ω, ǫ), µi,t(θ) < ǫ for all
i ∈ V, and for all θ 6= θ⋆ in the dynamics given by (3). This would be equivalent to establishing
that the actual beliefs of all the agents on the true state can be made arbitrarily close to 1 (since
the proposed min-rule (3) generates a valid probability distribution over the hypothesis set at each
time-step). We complete the proof in the following two steps.

Step 1: Lower bounding the actual beliefs on the true state: Consider the following scenario.
During a transient phase, certain agents see private signals that cause them to temporarily lower
their local beliefs on the true state. This in turn gets propagated via the min-rule (3) to the actual
beliefs of the agents in the network. For sample paths in the set Ω̄, we rule out the possibility
of such a transient phenomenon triggering a cascade of progressively lower beliefs on the true
state. To this end, define γ1 , mini∈V πi,0(θ

⋆). Notice that γ1 > 0 based on condition (iii) of the
theorem. Given the choice of the sample path ω, we notice that πi,∞(θ⋆) exists for each i ∈ V,
and that πi,∞(θ⋆) ≥ γ1. Pick a small number δ > 0 such that δ < γ1. The following statement
is then immediate. For each agent i ∈ V, there exists ti(ω, δ), such that for all t ≥ ti(ω, δ),
πi,t(θ

⋆) ≥ γ1 − δ > 0. Define t̄1(ω, δ) , maxi∈V ti(ω, δ). In words, t̄1(ω, δ) represents the time-step
beyond which the local beliefs of all the agents on the true state are lower-bounded by γ1 − δ.
We ask: At such a time-step, what is the lowest actual belief held by an agent on the true state?
More precisely, we define γ2(ω) , mini∈V{µi,t̄1(ω,δ)(θ

⋆)}. We claim γ2(ω) > 0. To see this, observe
that given the assumption of non-zero prior beliefs on the true state, and the structure of the
proposed min-rule (3), γ2(ω) can be 0 if and only if there exists some time-step t

′

(ω) ≤ t̄1(ω, δ)
such that πi,t′(ω)(θ

⋆) = 0, for some i ∈ V. However, given the structure of the local Bayesian

update rule (2), we would then have πi,t(θ
⋆) = 0, for all t ≥ t

′

(ω), contradicting the fact that
πi,t(θ

⋆) ≥ γ1 − δ > 0,∀t ≥ t̄1(ω, δ) ≥ t
′

(ω),∀i ∈ V (the latter fact has already been established
above). Having thus established that γ2(ω) > 0, define η(ω) , min{γ1 − δ, γ2(ω)} > 0. In other
words, η(ω) lower-bounds the lowest belief (considering both local and actual beliefs) on the true
state θ⋆ held by an agent at time-step t̄1(ω, δ). We claim the following:

µi,t(θ
⋆) ≥ η(ω),∀t ≥ t̄1(ω, δ),∀i ∈ V. (10)

To see why (10) is true, fix an agent i ∈ V, and consider the following chain of inequalities:

µi,t̄1(ω,δ)+1(θ
⋆)

(a)
=

min{{µj,t̄1(ω,δ)(θ
⋆)}j∈Ni

, πi,t̄1(ω,δ)+1(θ
⋆)}

m∑
p=1

min{{µj,t̄1(ω,δ)(θp)}j∈Ni
, πi,t̄1(ω,δ)+1(θp)}

(b)

≥
η(ω)

m∑
p=1

min{{µj,t̄1(ω,δ)(θp)}j∈Ni
, πi,t̄1(ω,δ)+1(θp)}

≥
η(ω)

m∑
p=1

πi,t̄1(ω,δ)+1(θp)

(c)
= η(ω),

(11)

where (a) is given by (3), (b) follows from the way η(ω) is defined and by noting that πi,t(θ
⋆) ≥

η(ω),∀t ≥ t̄1(ω, δ),∀i ∈ V, and (c) follows by noting that the local belief vectors generated via
(2) (at each time-step) are valid probability distributions over the hypothesis set Θ, and hence
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m∑
p=1

πi,t̄1(ω,δ)+1(θp) = 1. Since the above reasoning applies to every agent in the network, we can

keep repeating it to establish (10) via induction.
Step 2: Upper bounding the actual beliefs on each false hypothesis: The key observation that

guides the rest of the proof is as follows. While Step 1 of the proof ensures that the beliefs
(both local and actual) of each agent on the true state θ⋆ are lower-bounded by η(ω) > 0 after
a finite period of time (given by t̄1(ω, δ)), Lemma 1 guarantees that the local beliefs on any false
hypothesis θ will eventually become arbitrarily small (and in particular, smaller than η(ω)) for each
agent i ∈ S(θ⋆, θ), on the sample path ω ∈ Ω̄ under consideration. In what follows, we investigate
how this impacts the actual beliefs of the agents in the network. To this end, given an ǫ > 0, pick
a small ǭ(ω) > 0 such that ǭ(ω) < min{η(ω), ǫ}. Fix a hypothesis θ 6= θ⋆. By virtue of condition (i)
of the theorem, we know that |S(θ⋆, θ)| > 0. Let q = d(G) + 2, where d(G) represents the diameter
of the graph G. Then, based on Lemma 1, for each i ∈ S(θ⋆, θ), there exists tθi (ω, ǭ(ω)) such that
for all t ≥ tθi (ω, ǭ(ω)), πi,t(θ) ≤ ǭq(ω). Define

t̄θ2(ω, δ, ǭ(ω)) , max{t̄1(ω, δ), max
i∈S(θ⋆ ,θ)

{tθi (ω, ǭ(ω))}}. (12)

Throughout the rest of the proof, we suppress the dependence of t̄2 on θ, ω, δ and ǭ(ω) to avoid
cluttering the exposition. For any agent i ∈ S(θ⋆, θ), we obtain the following chain of inequalities:

µi,t̄2+1(θ)
(a)
=

min{{µj,t̄2(θ)}j∈Ni
, πi,t̄2+1(θ)}

m∑
p=1

min{{µj,t̄2(θp)}j∈Ni
, πi,t̄2+1(θp)}

(b)

≤
ǭq(ω)

m∑
p=1

min{{µj,t̄2(θp)}j∈Ni
, πi,t̄2+1(θp)}

≤
ǭq(ω)

min{{µj,t̄2(θ
⋆)}j∈Ni

, πi,t̄2+1(θ⋆)}

(c)

≤
ǭq(ω)

η(ω)

(d)
< ǭ(q−1)(ω) ≤ ǭ(ω) < ǫ,

(13)

where (a) is given by (3), (b) follows from the fact that for each i ∈ S(θ⋆, θ), we have πi,t(θ) ≤
ǭq(ω),∀t ≥ t̄2, (c) follows from (10) and (12), and (d) follows from the way ǭ has been chosen.
In particular, note that the above chain of reasoning used to arrive at (13) applies to subsequent
time-steps as well. We thus conclude:

µi,t(θ) < ǭ(q−1)(ω),∀t ≥ t̄2 + 1,∀i ∈ S(θ⋆, θ). (14)

We now wish to investigate how the effect of (14) propagates through the rest of the network. If
V \ S(θ⋆, θ) is empty, then we have reached the desired conclusion w.r.t. the false hypothesis θ. If
not, define

L
(θ⋆,θ)
1 , {i ∈ {V \ S(θ⋆, θ)} : |Ni ∩ S(θ⋆, θ)| > 0} (15)

as the set of immediate out-neighbors of the source set S(θ⋆, θ). By virtue of condition (ii) of the

theorem, if V \S(θ⋆, θ) is non-empty, then L
(θ⋆,θ)
1 as defined above is also non-empty. Consider any

10



agent i ∈ L
(θ⋆,θ)
1 . By definition, agent i has a neighbor in S(θ⋆, θ) satisfying (14). This observation

coupled with equations (10), (12) can be used to obtain a similar chain of inequalities as the ones
featuring in (13). Specifically, we obtain:

µi,t(θ) < ǭ(q−2)(ω),∀t ≥ t̄2 + 2,∀i ∈ L
(θ⋆,θ)
1 . (16)

With L
(θ⋆,θ)
0 , S(θ⋆, θ), the above arguments can be repeated by successively defining the sets

L
(θ⋆,θ)
r , 1 ≤ r ≤ d(G) as follows:

L(θ⋆,θ)
r , {i ∈ V \ {

r−1⋃

c=0

L(θ⋆,θ)
c } : |Ni ∩ {

r−1⋃

c=0

L(θ⋆,θ)
c }| > 0}. (17)

Whenever V \ {
⋃r−1

c=0 L
(θ⋆,θ)
c } is non-empty, condition (ii) of the theorem implies that L

(θ⋆,θ)
r will

also be non-empty. One can then easily verify via induction on r that:

µi,t(θ) < ǭ(q−(r+1))(ω),∀t ≥ t̄2 + (r + 1),∀i ∈ L(θ⋆,θ)
r , (18)

where 1 ≤ r ≤ d(G). Noting that q = d(G)+ 2, we obtain the desired result that µi,t(θ) < ǭ(ω) < ǫ,
∀t ≥ t̄2+ d(G)+ 1,∀i ∈ V. An identical argument as the one presented above can be made for each
false hypothesis θ 6= θ⋆. This completes the proof.

6.2 Proof of Theorem 2

Proof. Consider an f -local adversarial set A ⊂ V, and let R = V \A. We study two separate cases.
Case 1: Consider a regular agent i ∈ R such that |Ni| < (2f + 1). Based on condition (i)

of the theorem, we claim that i ∈ S(θp, θq), for every pair θp, θq ∈ Θ. We prove this claim via
contradiction. To do so, suppose there exists a pair θp, θq ∈ Θ, such that i ∈ V \ S(θp, θq). As
|Ni| < (2f + 1), the set {i} is clearly not (2f + 1)-reachable (see Def. 2). Thus, G is not strongly
(2f + 1)-robust w.r.t. the source set S(θp, θq), a fact that contradicts condition (i) of the theorem.
Thus, we have established that for networks satisfying condition (i) of the theorem, regular agents
with fewer than (2f + 1) neighbors can distinguish between every pair of hypotheses. Lemma 1
then implies that such agents can discern the true state θ⋆ by simply running the local Bayesian
estimator (2), and updating actual beliefs via (5).

Case 2: We now focus only on regular agents i satisfying |Ni| ≥ (2f + 1). For this case, the
structure of the proof mirrors that of Theorem 1; we thus only elaborate on details that are specific
to tackling the aspect of adversarial agents. A key property of the proposed LFRHE algorithm
that will be used throughout the proof is as follows. For any i ∈ R, and any θ ∈ Θ, the filtering
operation of the LFRHE algorithm ensures that at each time-step t ∈ N, we have:

µj,t(θ) ∈ Conv(Ψθ
i,t),∀j ∈ Mθ

i,t, (19)

where
Ψθ

i,t , {µj,t(θ) : j ∈ Ni ∩R}, (20)

and Conv(Ψθ
i,t) is used to denote the convex hull formed by the points in the set Ψθ

i,t. In other
words, any neighboring belief (on a particular hypothesis) that agent i uses in the update rule (4)
lies in the convex hull of the actual beliefs of its regular neighbors (on that particular hypothesis).
To see why (19) is true, partition the neighbor set Ni of a regular agent into three sets Uθ

i,t,M
θ
i,t,

and J θ
i,t as follows. Sets Uθ

i,t and J θ
i,t are each of cardinality f , and contain neighbors of agent i
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that transmit the highest f and the lowest f actual beliefs respectively, on the hypothesis θ, to
agent i at time-step t. The set Mθ

i,t contains the remaining neighbors of agent i, and is non-empty

at every time-step since |Ni| ≥ (2f + 1). If Mθ
i,t ∩ A = ∅, then (19) holds trivially. Thus, consider

the case when there are adversaries in the set Mθ
i,t, i.e., M

θ
i,t ∩ A 6= ∅. Given the f -locality of the

adversarial model, and the nature of the filtering operation in the LFRHE algorithm, we infer that
for each j ∈ Mθ

i,t ∩ A, there exist regular agents u, v ∈ Ni ∩ R, such that u ∈ Uθ
i,t, v ∈ J θ

i,t, and
µv,t(θ) ≤ µj,t(θ) ≤ µu,t(θ). This establishes our claim regarding equation (19).

With the above property in hand, our goal will be to now establish each of the two steps in the
proof of Theorem 1. To this end, let Ω̄ ⊆ Ω denote the set of sample paths along which for each agent
i ∈ R, the following hold: (i) for each θ ∈ Θ \Θθ⋆

i , πi,t(θ) → 0, and (ii) πi,∞(θ⋆) , limt→∞ πi,t(θ
⋆)

exists, and satisfies πi,∞(θ⋆) ≥ πi,0(θ
⋆). Based on condition (ii) of the theorem, and Lemma 1, we

infer that Ω̄ has measure 1. Thus, as in Theorem 1, fix a sample path ω ∈ Ω̄, and pick ǫ > 0.
Define γ1 = mini∈R πi,0(θ

⋆), pick a small number δ > 0 satisfying δ < γ1, and observe that for
each agent i ∈ R, there exists ti(ω, δ), such that for all t ≥ ti(ω, δ), πi,t(θ

⋆) ≥ γ1 − δ > 0. Define
t̄1(ω, δ) , maxi∈R ti(ω, δ) and γ2(ω) , mini∈R{µi,t̄1(ω,δ)(θ

⋆)}. As before, we claim γ2(ω) > 0. To
establish this claim, we need to answer the following question: Can an adversarial agent cause its
out-neighbors to set their actual beliefs on θ⋆ to be 0 by setting its own actual belief on θ⋆ to be 0?
We argue that this is impossible under the LFRHE algorithm. By way of contradiction, suppose
there exists a time-step t′(ω) satisfying:

t′(ω) = min{t ∈ N : ∃i ∈ R with µi,t(θ
⋆) = 0}. (21)

In words, t′(ω) represents the first time-step when some regular agent i sets its actual belief on
the true hypothesis to be zero. Clearly, t′(ω) 6= 0 based on condition (ii) of the theorem. Suppose
t′(ω) is some positive integer, and focus on how agent i updates µi,t′(ω)(θ

⋆) based on (4). Following
similar arguments as in the proof of Theorem 1, we know that πi,t(θ

⋆) > 0,∀t ∈ N,∀i ∈ R. At
the same time, every belief featuring in the set Ψθ⋆

i,t′(ω)−1 (as defined in equation (20)) is strictly

positive based on the way t′(ω) is defined. In light of the above arguments, and based on (19),
(20), we infer:

min{{µj,t′(ω)−1(θ
⋆)}j∈Mθ⋆

i,t′(ω)−1
, πi,t′(ω)(θ

⋆)} > 0. (22)

Thus, based on (4), we must have µi,t′(ω)(θ
⋆) > 0, yielding the desired contradiction. With η(ω) ,

min{γ1 − δ, γ2(ω)} > 0, one can easily verify the following:

µi,t(θ
⋆) ≥ η(ω),∀t ≥ t̄1(ω, δ),∀i ∈ R. (23)

In particular, (23) follows by (i) noting that for each i ∈ R, πi,t̄1(ω,δ)+1(θ
⋆) ≥ η(ω), and each belief

featuring in the set Ψθ⋆

i,t̄1(ω,δ)
is lower bounded by η(ω), (ii) leveraging (19), (20), and (iii) using a

similar string of arguments as those used to arrive at (11). This completes Step 1.
To proceed with Step 2 (i.e., upper-bounding the actual beliefs on each false hypothesis), given

an ǫ > 0, pick a small ǭ(ω) > 0 such that ǭ(ω) < min{η(ω), ǫ}. Fix a hypothesis θ 6= θ⋆, let
q = n+1, and note that based on Lemma 1, for each i ∈ S(θ⋆, θ)∩R, there exists tθi (ω, ǭ(ω)) such
that for all t ≥ tθi (ω, ǭ(ω)), πi,t(θ) ≤ ǭq(ω). Define

t̄2 , max{t̄1(ω, δ), max
i∈S(θ⋆ ,θ)∩R

{tθi (ω, ǭ(ω))}}, (24)

where we have suppressed the dependence of t̄2 on θ, ω, δ and ǭ(ω) as in the proof of Theorem 1.
For any agent i ∈ S(θ⋆, θ) ∩R, observe that

min{{µj,t̄2(θ
⋆)}j∈Mθ⋆

i,t̄2

, πi,t̄2+1(θ
⋆)} ≥ η(ω). (25)
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Combining the above with a similar line of argument as used to arrive at (13), we obtain:

µi,t(θ) < ǭ(q−1)(ω),∀t ≥ t̄2 + 1,∀i ∈ S(θ⋆, θ) ∩R. (26)

If V \ S(θ⋆, θ) is empty, then we are done. Else, define

L
(θ⋆,θ)
1 , {i ∈ {V \ S(θ⋆, θ)} : |Ni ∩ S(θ⋆, θ)| ≥ (2f + 1)}. (27)

Whenever V\S(θ⋆, θ) is non-empty, we claim that L
(θ⋆,θ)
1 (as defined above) is also non-empty based

on condition (i) of the theorem. To see this, note that if L
(θ⋆,θ)
1 is empty, then C = V \ S(θ⋆, θ)

is not (2f + 1)-reachable, violating the fact that G is strongly (2f + 1)-robust w.r.t. S(θ⋆, θ). We
claim

min
j∈Mθ

i,t̄2+1

µj,t̄2+1(θ) < ǭ(q−1)(ω),∀i ∈ L
(θ⋆,θ)
1 ∩R. (28)

To verify the above claim, pick any agent i ∈ L
(θ⋆,θ)
1 ∩R. When |Mθ

i,t̄2+1 ∩{S(θ⋆, θ)∩R}| > 0, the

claim follows immediately based on (26). Consider the case when |Mθ
i,t̄2+1 ∩ {S(θ⋆, θ) ∩ R}| = 0.

Since i ∈ L
(θ⋆,θ)
1 , it has at least (2f +1) neighbors in S(θ⋆, θ), out of which at least f+1 are regular

based on the f -locality of the adversarial model. Since the set J θ
i,t̄2+1 has cardinality f , it must

then be that |Uθ
i,t̄2+1 ∩ {S(θ⋆, θ) ∩ R}| > 0. Let u ∈ Uθ

i,t̄2+1 ∩ {S(θ⋆, θ) ∩ R}. Based on the way

Mθ
i,t̄2+1 is defined, it must be that µj,t̄2+1(θ) ≤ µu,t̄2+1(θ) < ǭ(q−1)(ω),∀j ∈ Mθ

i,t̄2+1, where the

last inequality follows from (26). This establishes our claim regarding (28). Consider the update
of µi,t̄2+2(θ) based on (4). In light of the above arguments (that apply identically to subsequent

time-steps as well), the numerator of the fraction on the RHS of (4) is upper-bounded by ǭ(q−1)(ω),
while the denominator is lower-bounded by η(ω). This leads to the following conclusion:

µi,t(θ) < ǭ(q−2)(ω),∀t ≥ t̄2 + 2,∀i ∈ L
(θ⋆,θ)
1 ∩R. (29)

With L
(θ⋆,θ)
0 , S(θ⋆, θ), we recursively define the sets L

(θ⋆,θ)
r , 1 ≤ r ≤ (n− 1) as follows:

L(θ⋆,θ)
r , {i ∈ V \ {

r−1⋃

c=0

L(θ⋆,θ)
c } : |Ni ∩ {

r−1⋃

c=0

L(θ⋆,θ)
c }| ≥ (2f + 1)}. (30)

We complete the proof by inducting on r. To this end, suppose the following holds for all 0 ≤ r ≤
(n− 2):

µi,t(θ) < ǭ(q−(r+1))(ω),∀t ≥ t̄2 + (r + 1),∀i ∈ L(θ⋆,θ)
r ∩R. (31)

The claim extends to the case when r = (n − 1) by noting that (i) L
(θ⋆,θ)
(n−1) is non-empty if V \

{
⋃(n−2)

c=0 L
(θ⋆,θ)
c } is non-empty (based on condition (i) of the theorem), (ii) any agent i ∈ L

(θ⋆,θ)
(n−1) ∩R

has at least (2f + 1) neighbors in the set
⋃(n−2)

c=0 L
(θ⋆,θ)
c , of which at least f + 1 are regular (based

on the f -locality of the adversarial model), and (iii) using the induction hypothesis and arguments

similar to those used for arriving at (29). Finally, note that the sets L
(θ⋆,θ)
r are constructed in a

way such that all agents in R are covered. The rest of the proof is identical to that of Theorem
1.
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7 Conclusion

In this paper, we introduced a distributed learning rule that differs fundamentally from those
existing in the literature, in the sense, that it does not rely on any consensus-based belief aggregation
protocol. Using a novel sample path based analysis technique, we established its consistency under
minimal requirements on the information structures of the agents and the communication graph.
We then showed that a significant benefit of the proposed learning rule is that it can be easily
and efficiently modified to account for the presence of misbehaving agents in the network, modeled
via the Byzantine adversary model. Ongoing work involves performing a detailed convergence rate
analysis to see how such rates compare with those existing in literature. Extensions to time-varying
graphs are also of interest.
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