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Abstract— In this paper we present an information theoretic
approach to stochastic optimal control problems for systems
with compound Poisson noise. We generalize previous work
on information theoretic path integral control to discontinuous
dynamics with compound Poisson noise. We also derive a
control update law of the same form using a stochastic optimiza-
tion approach. We develop a sampling-based iterative model
predictive control (MPC) algorithm. The proposed algorithm is
parallelizable and when implemented on a Graphical Processing
Unit (GPU) can run in real time. We test the performance of the
proposed algorithm in simulation for two control tasks using a
cartpole and a quadrotor system. Our simulations demonstrate
improved performance of the new scheme and indicate the
importance of incorporating the statistical characteristics of
stochastic disturbances in the computation of the stochastic
optimal control policies.

I. INTRODUCTION

Despite the maturity of the field of stochastic optimal con-
trol theory, the majority of the theoretical and computational
work considers stochastic systems with Gaussian stochastic
disturbances. This observation is valid if one considers the
lack of scalable and real time algorithms for control of high
dimensional stochastic systems with disturbances that are far
from being Gaussian and zero mean. Motivated by this lack
of theory and algorithm on control of systems with more
complex stochasticity, we consider dynamics with Gaussian
and the more general compound Poisson noise.

Compound Poisson process, also known as the marked-
jump process, is a doubly stochastic process where the
stochasticity arises from both the jump time and amplitude
[1]. For simplicity, we use the term jump noise for compound
Poisson noise. Processes with jumps have been widely used
to describe the random evolution of, e.g., brain dynamics
[2], of soil moisture dynamics [3], or of financial figures
such as stock prices, market indices, and interest rates [4].
For application on dynamical systems, jump stochastic terms
in the dynamics can capture the discontinuities that arise
due to phenomena such as gust or due to interactions of the
system in consideration with the environment. Therefore, it
is important that methods that deal with jump terms in the
dynamics are developed.

The contributions of this paper are as follows:
• We derive a novel algorithm for control of systems with

jump noise from an information theoretic point of view.
The new algorithm extends the capability of a previous
scheme to handle a more complex form of stochasticity
than the common Gaussian noise [5].
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• We show the connection of the resulting scheme with an
alternative approach to stochastic optimization that does
not rely on importance sampling. With this equivalence
established, convergence of the algorithm can be shown
using techniques common in optimization literature [6].

• We present an iterative MPC algorithm. The algorithm
can utilize the parallel computing capabilities of the
GPU, which means a large number of sampling trajecto-
ries can be propagated simultaneously and the algorithm
can be implemented in real time. We implement the
algorithm in simulation on a cartpole and quadrotor
system with Gaussian and jump noise added, and we
compare the performance of the algorithm against the
path integral control based information theoretic MPC
algorithm [5] that doesn’t account for the jump noise.

The information theoretic approach we take in this paper
is based on the path integral framework, which originated
from Kappen and Theodorou’s work [7], [8]. An iterative
path integral control method, developed by Williams [5], has
been implemented for autonomous racing. This method uses
the information theoretic notions of free energy and rela-
tive entropy, and obtains optimal control policy distribution
through minimization of the Kullback-Leibler divergence
(KL-Divergence) between a control induced probability mea-
sure and the optimal control policy induced probability
measure. This approach allows for a solution to the stochas-
tic optimal control problem using an importance sampling
scheme.

The stochastic optimization approach is motivated by the
lack of computational methods for stochastic optimal control.
This approach is based on the stochastic approximation
method [9] where noisy observations are used to approx-
imate stochastic functions. Optimization is then performed
based on this noisy approximation to iteratively improve
the solution. The derivation of this approach assumes a
parameterized sampling distribution of entire trajectories
based on system dynamics, reformulates the original problem
with respect to the parameters, and obtains an update rule
for these parameters through gradient descent.

The rest of this paper is organized as follows: in section
II we provide the problem formulation. In section III we
introduce the information theoretic approach to the stochastic
optimal control problem. In section IV we introduce the
stochastic optimization approach to the problem. Then we
provide the MPC algorithm in section V. The simulation
results are included in section VI. Finally, we conclude this
paper in section VII.
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II. PROBLEM FORMULATION

Consider a stochastic system with state xt ∈ Rn and
control ut ∈ Rm at time t. We assume the dynamics also has
additive noise from Brownian motion dw ∈ Rp and marked-
jump process dP ∈ Rq with constant jump rate. We define
U ∈ Rm×T as the control sequence and X ∈ Rn×T as the
state trajectory over the time horizon T . We can formulate
our stochastic optimal control problem as:

U∗ = arg min
U∈U

EQ

[
φ(xT , T ) +

∫ T

t0

L(xt,ut, t)dt
]

(1)

where U is the set of admissible control sequences, and the
expectation is taken with respect to the probability measure
Q induced by the controlled dynamics:

dxt = F(xt,ut, t)dt+ B(xt, t)dw(1) + H(xt,Q, t)dP(1)

(2)
with E[dP(1)] = ν(1)dt and ν(1) is the jump rate. We assume
zero mean normal distribution for the mark distribution,
φQ(q; t) ∼ N (0,ΣJ). For the cost function we consider
a state-dependent cost and a quadratic control cost:

L(xt,ut, t) = q(xt, t) +
1

2
uT
t R(xt, t)ut (3)

We consider dynamics affine in control:

F(xt,ut, t) = f(xt, t) + G(xt, t)ut (4)

The proof for existence and uniqueness of solution to the
problem we are considering can be found in [10].

III. INFORMATION THEORETIC APPROACH

In this section we present the derivation of our sampling
based stochastic trajectory optimization method for jump
diffusion processes using an information theoretic approach.

Before we start the derivation we need to introduce two
quantities from information theory that are the foundation to
our derivation. First we define the Free Energy of a system
as:

F(S(X)) = − log
(
EP

[
exp

(
− 1

λ
S(X)

)])
(5)

where λ ∈ R+ is called the inverse temperature, and S(X) is
the state-dependent cost of a trajectory, S(X) = φ(xT , T )+∫ T
t0
q(xt, t)dt. The expectation is taken with respect to P,

which is the probability measure induced by the uncontrolled
dynamics:

dxt = f(xt, t)dt+ B(xt, t)dw(0) + H(xt,Q, t)dP(0) (6)

with E[dP(0)] = ν(0)dt and the same mark distribution as
the controlled dynamics. Next let M,N be two probability
distributions that are absolutely continuous with each other.
Then the KL-Divergence between them is:

DKL(M ‖ N) = EM

[
log
(dM

dN

)]
(7)

The KL-Divergence provides a measure of how one proba-
bility distribution diverges from a second and can be roughly
thought of as the distance between two probability distribu-
tions, although it is not symmetric. The KL-Divergence is
useful for defining optimization objectives.

Now suppose probability distributions Q and P as defined
previously are absolutely continuous with each other, we can
make the following observation:

F(S(X)) = − log
(
EP

[
exp

(
− 1

λ
S(X)

)])
= − log

(
EQ

[
exp

(
− 1

λ
S(X)

) dP
dQ

]) (8)

where we changed the expectation by multiplying by 1 =
dQ
dQ . Since the negative logarithm is a convex function, we
can apply Jensen’s inequality and obtain:

F(S(X)) ≤ −EQ

[
log
(

exp
(
− 1

λ
S(X)

) dP
dQ

)]
(9)

The right hand side can be simplified as:

RHS =
1

λ
EQ

[
S(X) + λ log

( dP
dQ

)]
=

1

λ

(
EQ[S(X)] + λDKL(Q ‖ P)

) (10)

Substituting the terms back to (9):

λF(S(X)) ≤ EQ[S(X)] + λDKL(Q ‖ P) (11)

To find the KL-Divergence between Q and P, we need
dQ
dP , which can be found using Girsanov’s theorem [1]:

dQ
dP

= exp
(1

2

∫ T

t0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt

+

∫ T

t0

uT
t G(xt, t)

TΣ(xt, t)
−1B(xt, t)dw(1)

−
∫ T

t0

((γJ − 1)ν(0))dt
)
·
P(0)(t)∏
k=1

γJ(T−k )γM (Qk, T−k )

(12)

where Σ(xt, t) = B(xt, t)B(xt, t)
T , γJ(t) is

the ratio of jump rates in the two dynamics,∫ T
0
ν(1)dt =

∫ T
0
γJ(t)ν(0)dt, and γM (q; t) is the scaling

between the mark distributions,
∫
Q1
φ

(1)
Q (q; t)dq =∫

Q0
γM (q; t)φ

(0)
Q (q; t)dq = 1.

Here we consider the case where the change of measure
only includes changes in drift, and the jump rates and mark
distributions are the same. Therefore, both γJ and γM

have the value 1, and the last two terms can be dropped.
Additionally, since dw(1) is a Brownian motion with respect
to Q, we get EQ

[ ∫ T
0

dw(1)
]

= 0. The KL-Divergence then
simplifies to:



DKL(Q ‖ P) =

EQ

[1

2

∫ T

t0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt

] (13)

Using this result, if we assume the control cost matrix has
the form:

R(xt, t) = λG(xt, t)
TΣ(xt, t)

−1G(xt, t) (14)

we get the following form on the right hand side of equation
(11):

EQ[S(X)] + λDKL(Q ‖ P) =

EQ

[
S(X) +

1

2

∫ T

t0

uT
t R(xt, t)utdt

] (15)

Note that this is equivalent to the cost function in (1). With
this we have shown that the free energy serves as the lower
bound for our stochastic optimal control problem, and we
can rewrite (11) as a minimization problem:

λF(S(X)) = inf
Q

[
EQ[S(X)] + λDKL(Q ‖ P)

]
(16)

In this minimization problem we have a state cost and a
control cost in the form of KL-Divergence, which penalizes
deviation from the uncontrolled distribution. We now define
the optimal measure that achieves the lower bound as:

dQ∗

dP
=

exp(− 1
λS(X))

EP[exp(− 1
λS(X))]

(17)

This result can be easily verified by plugging it into (11)
and is derived in [9]. With this we can solve the minimization
problem defined by (16) by moving the probability distri-
bution Q induced by some control as close to the optimal
distribution as possible. The distance can be represented by
the KL-Divergence between the two distributions and the
problem becomes:

U∗ = arg min
U∈U

DKL(Q∗ ‖ Q) (18)

A. KL-Divergence Minimization
Applying the definition of KL-Divergence we have:

DKL(Q∗ ‖ Q) = EQ∗
[

log
(dQ∗

dQ

)]
= EQ∗

[
log
(dQ∗

dP
dP
dQ

)] (19)

We already have dQ∗
dP from its definition. For dP

dQ , we can
use Girsanov’s theorem:

dP
dQ

= exp
(1

2

∫ T

t0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt

−
∫ T

t0

uT
t G(xt, t)

TΣ(xt, t)
−1B(xt, t)dw(0)

)
(20)

Setting the terms inside the exponential as D(X,U) and
plugging the results back in (19) we have:

DKL(Q∗ ‖ Q) =

EQ∗
[
− 1

λ
S(X)− log(EP[exp(− 1

λ
S(X))]) +D(X,U)

]
(21)

Since S(X) is not dependent on the control we can drop
the first two terms from the minimization. Now we discretize
the control as step functions ut = uj if j∆t ≤ t < (j+1)∆t
with j = {0, 1, · · · , N − 1}. Then we have:

D(X,U) =
N−1∑
j=0

(
1

2
uT
j

∫ tj+1

tj

G(xt, t)dtuj − uT
j

∫ tj+1

tj

B(xt, t)dw(0)

)
(22)

where

G(xt, t) = G(xt, t)
TΣ(xt, t)

−1G(xt, t) (23)

B(xt, t) = G(xt, t)
TΣ(xt, t)

−1B(xt, t) (24)

N = T/∆t (25)

Note that each uj does not depend on the trajectory taken,
so we can taken them out of the expectation:

EQ∗
[
D(X,U)

]
=

N−1∑
j=0

(
1

2
uT
j EQ∗

[ ∫ tj+1

tj

G(xt, t)dt
]
uj

− uT
j EQ∗ [

∫ tj+1

tj

B(xt, t)dw(0)]

)
(26)

We can approximate the two integrals for small enough
∆t as:

∫ tj+1

tj

G(xt, t)dt ≈ G(xtj , tj)∆t (27)

∫ tj+1

tj

B(xt, t)dw(0) ≈ B(xtj , tj)ε
(0)
j

√
∆t (28)

where ε(0)
j is a vector with standard normal variable in each

entry, ε(0)
j ∼ N (0,ΣD). Then we can find u∗j by taking the

gradient with respect to uj , setting it to zero and solving for
uj . The optimal control is found as:

u∗j =
1

∆t
EQ∗

[
G(xtj , tj)

]−1

EQ∗
[
B(xtj , tj)ε

(0)
j

√
∆t
]

(29)



B. Importance Sampling

We have obtained the optimal control in the form of
expectation with respect to the optimal distribution. We
can’t sample from the optimal distribution, but we can
sample from the uncontrolled distribution P to approximate
the controls. Therefore, we need to change the expectation
through multiplying by dP

dP and using the Radon-Nikodym
derivative dQ∗

dP :

u∗j =
1

∆t
EP

[exp(− 1
λS(X))G(xtj , tj)

EP[exp(− 1
λS(X))]

]−1

· EP

[exp(− 1
λS(X))B(xtj , tj)ε

(0)
j

√
∆t

EP[exp(− 1
λS(X))]

] (30)

The equation can be further simplified since G(xtj , tj) and
B(xtj , tj) are deterministic at time tj :

u∗j =

1

∆t
G(xtj , tj)

−1B(xtj , tj)EP

[exp(− 1
λS(X))ε

(0)
j

√
∆t

EP[exp(− 1
λS(X))]

]
(31)

Note that the expectations are taken with respect to the
uncontrolled dynamics. This is not ideal since it means
waiting for random Gaussian and jump noise to generate
a meaningful trajectory. Therefore, we need to change the
sampling distribution to the control induced distribution.
In addition, we can also change the sampling variance
to Σ

(1)
D = cΣ

(0)
D to increase the state space explored.

To perform importance sampling we multiply by dQ
dQ and

change from the zero mean ε
(0)
j

√
∆t to the non zero mean

G(x)uj∆t+ ε
(1)
j

√
∆t:

u∗j = uj +
1

∆t
G(xtj , tj)

−1B(xtj , tj)

· EQ

[exp(− 1
λS(X))ε

(1)
j

√
∆t dP

dQ

EQ[exp(− 1
λS(X)) dP

dQ ]

] (32)

We can use Girsanov’s theorem again to get dP
dQ :

dP
dQ

= exp

(
− 1

2

N−1∑
j=0

(
uT
j G(xtj )

TΣ−1G(xtj )uj∆t

+ uT
j G(xtj )

TΣ−1B(xtj )ε
(1)
j

√
∆t

+ (1− c−1)ε
(1)T
j B(xtj )

TΣ−1B(xtj )ε
(1)
j ∆t

))
(33)

The last terms comes from the change of sampling vari-
ance and the detailed derivation can be found in [11]. The
addition of these terms can be added into the state cost:

S̃(X) = φ(xtN , tN ) +

N−1∑
j=0

q̃(xtj ,uj , tj)∆t (34)

q̃(xtj ,uj , tj) = q(xtj , tj) +
1

2
uT
j Ruj + λuT

j B
ε
(1)
j√
∆t

+
1

2
λ(1− c−1)ε

(1)T
j B(xtj )

TΣ−1B(xtj )ε
(1)
j /∆t

(35)

With the new state cost we can obtain the final expression
of optimal control update rule:

u∗j = uj+G(xtj , tj)
−1B(xtj , tj)

(EQ[exp(− 1
λ S̃(X))

ε
(1)
j√
∆t

]

EQ[exp(− 1
λ S̃(X))]

)
(36)

The term inside the square brackets is approximated as:∑M
m=1 exp(− 1

λ S̃(Xm))
εmj√
∆t∑M

m=1 exp(− 1
λ S̃(Xm))

(37)

using M sample trajectories.

IV. STOCHASTIC OPTIMIZATION APPROACH

A. Problem Reformulation

Consider a system with the same definition of state, control
and dynamics as in the previous section, the optimal control
problem can be defined in the same way:

U∗ = arg min
U∈U

E[J(X,U)] (38)

where J : Rn×T × Rm×T → R is an arbitrary cost
function. We can introduce an exponential shape function
L(y) = exp(y) to redefine the optimal control problem as a
maximization problem:

U∗ = arg max
U∈U

E
[
L
(
− 1

λ
J(X,U)

)]
(39)

The expectation is taken over the control policy, which
is parameterized by a set of parameters θ ∈ Θ that we
have control over. Finally, since ln : R+ → R is a strictly
increasing function, reformulating the maximization problem
does not change the solution to the original optimal control
problem:

θ∗ = arg max
θ∈Θ

ln
(
E
[
L
(
− 1

λ
J(X,U)

)])
= arg max

θ∈Θ
l(θ)

(40)

B. Probability Distribution Parameterization

Assume a time discretization of control policy with step
functions, and the stochastic control policy at each time
instant has additive Gaussian and jump noise around some
mean, uj = µj + εD,j + εJ,j∆P. We have the diffusion
term εD,j ∼ N (0,ΣD) and the jump term εJ,j ∼ N (0,ΣJ)
with known variances, and E[∆P ] = ν∆t with known jump
rate ν. Assuming stochasticity enters the system through the
control channels, the probability density/mass function of
each trajectory can be expressed as p(X,U ; θ) = p(U ; θ)
since the dynamics is deterministic. Assume the noise at each



time instant is i.i.d., then the pdf/pmf of each trajectory can
be expressed as:

p(U ; θ) =

N−1∏
j=0

p(uj ; θj) (41)

Although there is no closed form expression for the
pdf/pmf of the entire trajectory, the pdf/pmf at each time
instant can be written out explicitly. For small enough ∆t
such that ν∆t � 1, the zero-one jump law [1] applies and
the jump noise has Bernoulli distribution with probability
of jump being ν∆t. In addition, when jump occurs, uj ∼
N (µj ,ΣD + ΣJ) is normally distributed with the variance
as the sum of diffusion and jump noise since the sum of
two normally distributed random variable is still normal.
Therefore the pdf/pmf can be expressed as:

p(uj ; θj) = Ij(ν∆t)

(
1√

(2π)n|ΣD + ΣJ |

exp
(
− 1

2
(uj − µj)

T(ΣD + ΣJ)−1(uj − µj)
))

+ (1− Ij)(1− ν∆t)

(
1√

(2π)n|ΣD|

exp
(
− 1

2
(uj − µj)

TΣ−1
D (uj − µj)

))
= h(uj) exp

(
θT
j T (uj)−A(θj)

)
(42)

where

h(uj) = Ij(ν∆t)

(
1√

(2π)n|ΣD + ΣJ |

exp
(
− 1

2
uT
j (ΣD + ΣJ)−1uj

))

+ (1− Ij)(1− ν∆t)

(
1√

(2π)n|ΣD|

exp
(
− 1

2
uT
j Σ−1

D uj

))
A(θj) =

1

2
µT
j (ΣD + IjΣJ)−1µj

T (uj) = (ΣD + IjΣJ)−
1
2 uj

θj = (ΣD + IjΣJ)−
1
2µj

(43)

The term Ij term is an indicator function with Ij = 1
when jump occurs and Ij = 0 when there is no jump.

C. Gradient Descent
Now the gradient can be taken for the step direction at

each time step j:

∇θj l(θ) =

∫
L(− 1

λJ(X,U))∇θjp(U ; θ)dU∫
L(− 1

λJ(X,U))p(U ; θ)dU

=

∫
L(− 1

λJ(X,U))p(U ; θ)∇θj ln p(U ; θ)dU∫
L(− 1

λJ(X,U))p(U ; θ)dU
(44)

The term ∇θj ln p(U ; θ) can be calculated as:

∇θj ln p(U ; θ) = ∇θj
N−1∑
j=0

(
lnh(uj) + θT

j T (uj)−
1

2
θT
j θj
)

= T (uj)− θj
(45)

Plug it back into the gradient we have:

∇θj l(θ) =

∫
L(− 1

λJ(X,U))p(U ; θ)(T (uj)− θj)dU∫
L(− 1

λJ(X,U))p(U ; θ)dU
(46)

With the gradient the update rule for θ can be found as:

θk+1
j = θkj+

αk

(∫
L(− 1

λJ(X,U))p(U ; θ)(T (uj)− θkj )dU∫
L(− 1

λJ(X,U))p(U ; θ)dU

)

= θkj + αk

(
E
[
L(− 1

λJ(X,U))(T (uj)− θkj )
]

E
[
L(− 1

λJ(X,U))
] )

(47)

Then µj can be substituted in for θj :

(ΣD + IjΣJ)−
1
2µk+1

j = (ΣD + IjΣJ)−
1
2µkj

+ αk

(
E
[
L(− 1

λJ(X,U))(ΣD + IjΣJ)−
1
2 (uj − µkj )

]
E
[
L(− 1

λJ(X,U))
] )

(48)

The final update law can be obtained as:

µk+1
j = µkj + αk

(
E
[
L(− 1

λJ(X,U))(uj − µkj )
]

E
[
L(− 1

λJ(X,U))
] )

= µkj + αk

(
E
[

exp(− 1
λJ(X,U))(εkD,j + Ijε

k
J,j)
]

E
[

exp(− 1
λJ(X,U))

] )
(49)

The update law (49) is very close to the one (36) obtained
from the information theoretic approach. In the case of noise
entering the system through control channels only, B and
H matrices are the same as G, and the matrix transform
G−1B, which maps from state space to control space, goes
to identity. Taking step size α = 1, the two control laws differ
only in the extra terms resulted from importance sampling.

With this alternative derivation, convergence of the update
law can be shown using the ODE method as described in
[6].



V. MODEL PREDICTIVE CONTROL ALGORITHM

From both approaches, we get an iterative update law for
the optimal control policy at each timestep. This allows for
the algorithm to be implemented in a MPC fashion. In the
MPC setting, after the optimal control sequence is obtained,
only the first control action is executed and re-optimization
occurs from the new initial states. Since an entire optimal
control sequence is given at every timestep, we can keep the
un-executed control sequence to warm start optimization for
the next iteration. This is very important for increasing the
performance of the algorithm as we are reusing information
from previous optimization iterations.

Another key aspect of the algorithm is that its compu-
tationally involved parts, namely trajectory propagation and
cost computation for each sampled trajectory, can be done in
parallel on a GPU. Parallel computation allows us to sample
thousands of trajectories at the same time rather than in

Algorithm 1 MPPI Control on Jump Diffusion
Given:
M: Number of samples;
N: Number of timesteps;
(u0,u1, · · · ,uN−1): Initial control sequence;
x0: Initial states;
∆t, f ,G,B,H: System/sampling dynamics;
φ, q, λ,R: Cost function parameters;
c,ΣD,ΣJ , ν: Noise parameters
uinit: Value for new control initialization;
while task not completed do

for m = 0 to M − 1 do
Update x0;
Sample εm =

(
εm0 , · · · , εmN−1

)
, εmi ∈ N (0, cΣD);

for i = 0 to N − 1 do
p = U(0, 1);
if p < ν∆t then
εj = N (0,ΣJ)
xi+1 = xi + (f + Gui)∆t + Bεmi

√
∆t +

Hεj
√

∆t;
εmi = εmi + εj ;

else
xi+1 = xi + (f + Gui)∆t+ Bεmi

√
∆t;

end if
S̃(Xm) = S̃(Xm) + q̃(xi,ui, ε

m
i );

end for
end for
for i = 0 to N − 1 do

ui = ui +
∑M
m=1 exp

(
− 1
λ S̃(Xm)

)
εmi√
∆t∑M

m=1 exp
(
− 1
λ S̃(Xm)

) ;

end for
Execute control policy u0;
for i = 0 to N − 2 do

ui = ui+1;
end for
uN−1 = uinit;

end while

sequence, with the computation time for each iteration of
less than 20 miliseconds in our simulation, which satisfies the
real time requirement for a 50 Hz controller. The description
of the new Model Predictive Path Integral (MPPI) algorithm
is given in Algorithm 1.

The algorithm is based on the assumption that both
Gaussian and jump noise affect the states through the control
channels. Jump noise is simulated using the zero-one jump
law, which states that if ν∆t � 1, the probability of more
than one jump occuring at each timestep can be neglected. A
jump timer p is sampled from a uniform distribution to check
whether jump occurs at each timestep. When a jump occurs,
a zero mean Gaussian vector determines the magnitude of
jump noise in each control channel.

VI. SIMULATION RESULTS

We compare the MPPI algorithm for jump diffusion pro-
cesses against the old MPPI algorithm in [5] that doesn’t
account for jump noise on a cart pole and quadrotor in
simulation with artificial Gaussian and jump noise. To avoid
confusion, we refer to the algorithm presented in this paper
as the new MPPI algorithm and the algorithm without
jump noise in sampling as the old MPPI algorithm. In the
trajectory plots the mean trajectory and 95% confidence
interval are plotted. Note that the confidence intervals are not
labeled explicitly but shaded with the same color as mean
trajectories. The red line indicates the target state.

A. Cart Pole

We applied the new and old MPPI algorithm on a standard
cart pole system in simulation. The task is to swing up
and stabilize the cart pole. We used 1000 trajectories during
sampling and ran each algorithm for 100 trials. We tested
the robustness of both algorithms by varying the jump
amplitude and rate while keeping Gaussian noise the same.
In Table. I, we demonstrate the simulation results. The new
MPPI algorithm has a higher success rate in stabilizing the
cart pole. Specifically, with only small jump noise, both
algorithms managed to balance the cart pole. As the jump
amplitude increased, both algorithms started to fail, but the
new algorithm has a higher success rate of stabilizing the
pole than the old algorithm. For a fixed jump amplitude,
increasing the jump rate results in lower success rates in
both algorithms and vice versa.

Fig. 1 demonstrates the responses of both algorithms in a
trial when the old MPPI algorithm failed. The pole angle
plot and the Poisson noise plot show that the old MPPI
algorithm failed after a noise spike and had to restabilize
the pole. On the other hand, the new algorithm experienced
noise spikes of similar magnitude and maintained balance.
The cart position plot shows that the new algorithm managed
to maintain balance efficiently around the origin.

B. Quadrotor

We also applied both algorithms on a quadrotor system
in simulation. The task is to fly from an initial position
to a target position. Since it is a more complex system we



TABLE I
SUCCESS RATES OF OLD AND NEW ALGORITHM ON A CART POLE

Jump noise New MPPI Old MPPI
ν = 0.25,ΣJ = 1 100% 100%
ν = 0.25,ΣJ = 1.5 96% 91%
ν = 0.25,ΣJ = 2 96% 81%
ν = 0.25,ΣJ = 3 88% 61%
ν = 0.1,ΣJ = 2 97% 92%
ν = 0.5,ΣJ = 2 91% 73%

Fig. 1. Comparison of old and new algorithm on a cartpole. Top left: cart
position; Top right: pole angle; Botton left: Gaussian noise; Botton right:
Poisson noise.

increased the number of sampling trajectories to 3000 and
ran each algorithm for 100 trials. Again we varied the jump
amplitude and rate while keeping Gaussian noise the same.
Table. II lists the simulation results. Similar to the cartpole
simulation, we found that the new MPPI algorithm has a
higher success rate in completing the task. Specifically, with
only small jump noise, both algorithms could carry out the
task perfectly. As we increased the jump noise amplitude,
the failure rate of the old MPPI algorithm increased while
the new algorithm maintained perfect task completion rate.
Additionally, for a jump amplitude large enough that the old
MPPI algorithm has a non zero failure rate, increasing the
jump rate further increases the failure rate of the old MPPI
algorithm and vice versa.

In Fig. 2 and 3, we compare the response of the two
algorithms for one test case (ν = 0.2,ΣJ = 20). The
plots include the mean and 95% confidence region of the
responses. The x and y position plots show that the mean
of trajectories resulted from both algorithms follow a similar
path to the target, but the variance of trajectories resulted
from the old MPPI algorithm is much larger. From the z
position plot, we observe that the variance of trajectories
resulted from the old MPPI algorithm is significantly larger
than the new MPPI algorithm since there are three crash
runs. From the x and y velocity plots we find distinct areas
where the variance of both algorithms increase. These areas
correspond to the high variance regions of the position plots.

We also took two test cases (ν = 0.2,ΣJ = 5 and

TABLE II
SUCCESS RATES OF OLD AND NEW ALGORITHM ON A QUADROTOR

Jump noise New MPPI Old MPPI
ν = 0.2,ΣJ = 5 100% 100%
ν = 0.2,ΣJ = 10 100% 98%
ν = 0.2,ΣJ = 20 100% 97%
ν = 0.2,ΣJ = 30 100% 87%
ν = 0.1,ΣJ = 20 100% 98%
ν = 0.5,ΣJ = 20 100% 91%

Fig. 2. Comparison of old and new algorithm on a quadrotor with 3000
trajectories in sampling. Top left: x position; Top right: y position; Botton
left: z position; Botton right: roll angle.

ν = 0.2,ΣJ = 20) and ran both algorithms with 6000
sampling trajectories. Fig. 4 and 5 show the response of
both algorithms with high jump noise amplitude. Doubling
the sampling trajectories resulted in one less crash run for
the old MPPI algorithm, while the new MPPI algorithm
maintained perfect success rate. From the x and y position
plots, we observe that the variance for both algorithms are
smaller than the case with fewer sampling trajectories. There
is one region in the z position plot where the variance for
the old MPPI algorithm increases significantly due to the
crash runs. The results suggest that increasing the number
of sampling trajectories correspond to a decrease in variance
in generated trajectories. The decrease is resulted from better
approximation of the expectation with more samples.

In Fig. 6 we compare the total variance (sum of variance
in all states over the entire time horizon for all trajectories)
of both algorithms with two jump noise levels using 3000
and 6000 sampling trajectories. We find that with low jump
noise amplitude, the old MPPI algorithm results in slightly
lower variance than the new MPPI algorithm. The new MPPI
algorithm tends to generate trajectories that oscillate around
the target location since the dynamics is perturbed more
during sampling. For the case of high jump noise amplitude,
the difference in variance between the two algorithms is
significantly reduced with increased sampling trajectories.
This is due to the benefit of better exploration by including
jump noise is reduced with increased sampling trajectories.



Fig. 3. Comparison of old and new algorithm on a quadrotor with 3000
trajectories in sampling. Top left: x velocity; Top right: y velocity; Botton
left: z velocity; Botton right: roll rate.

Fig. 4. Comparison of old and new algorithm on a quadrotor with 6000
trajectories in sampling. Top left: x position; Top right: y position; Botton
left: z position; Botton right: roll angle.

VII. CONCLUSIONS
We presented an information theoretic model predictive

control algorithm that obtains the optimal control through
sampling with Gaussian and compound Poisson noise. We
provided an alternative stochastic optimization derivation,
from which convergence of the control update law can be
proven. We applied the algorithm on cart pole and quadrotor
systems with artificially introduced compound Poisson noise
and compared its performance to the previously developed
algorithm that doesn’t include compound Poisson noise in
sampling. We demonstrated superior performance of our new
algorithm than the old algorithm under large Poisson noise
level and comparable performance under low Poisson noise
level. Our results suggest that it is important to consider
the statistical characteristics of stochastic disturbances in the
computation of the optimal control policies.

REFERENCES

[1] Floyd B Hanson. Applied stochastic processes and control for Jump-
diffusions: modeling, analysis, and computation, volume 13. Siam,
2007.

Fig. 5. Comparison of old and new algorithm on a quadrotor with 3000
trajectories in sampling. Top left: x velocity; Top right: y velocity; Botton
left: z velocity; Botton right: roll rate.

Fig. 6. Comparison of total variance of trajectories resulted from old and
new algorithm under high (ΣJ=20) and low (ΣJ=5) levels of jump noise
amplitude with 3000 and 6000 trajectories in sampling (ν=0.2).

[2] Mehrnaz Anvari, M Reza Rahimi Tabar, Joachim Peinke, and Klaus
Lehnertz. Disentangling the stochastic behavior of complex time
series. Scientific reports, 6:35435, 2016.

[3] Edoardo Daly and Amilcare Porporato. Probabilistic dynamics of some
jump-diffusion systems. Physical Review E, 73(2):026108, 2006.

[4] Peter Tankov. Financial modelling with jump processes, volume 2.
CRC press, 2003.

[5] Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and
Evangelos A Theodorou. Aggressive driving with model predictive
path integral control. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 1433–1440. IEEE, 2016.

[6] Enlu Zhou and Jiaqiao Hu. Gradient-based adaptive stochastic search
for non-differentiable optimization. IEEE Transactions on Automatic
Control, 59(7):1818–1832, 2014.

[7] Hilbert J Kappen. Linear theory for control of nonlinear stochastic
systems. Physical review letters, 95(20):200201, 2005.

[8] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized
path integral control approach to reinforcement learning. Journal of
Machine Learning Research, 11(Nov):3137–3181, 2010.

[9] Vivek S Borkar. Stochastic approximation: a dynamical systems
viewpoint, volume 48. Springer, 2009.

[10] Bernt Karsten Øksendal and Agnes Sulem. Applied stochastic control
of jump diffusions, volume 498. Springer, 2005.

[11] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model
predictive path integral control using covariance variable importance
sampling. arXiv preprint arXiv:1509.01149, 2015.


	I INTRODUCTION
	II PROBLEM FORMULATION
	III Information Theoretic Approach
	III-A KL-Divergence Minimization
	III-B Importance Sampling

	IV Stochastic Optimization Approach
	IV-A Problem Reformulation
	IV-B Probability Distribution Parameterization
	IV-C Gradient Descent

	V Model Predictive Control Algorithm
	VI Simulation Results
	VI-A Cart Pole
	VI-B Quadrotor

	VII CONCLUSIONS
	References

