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A Moving Target Defense to Detect Stealthy Attacks
in Cyber-Physical Systems

J. Giraldo1, A. Cardenas2, and R. G. Sanfelice2

Abstract— Cyber-Physical Systems (CPS) have traditionally
been considered more static, with regular communication
patterns when compared to classical information technology
networks. Because the structure of most CPS remains un-
changed during long periods of time, they become vulnerable
to adversaries who can tailor their attacks based on their
precise knowledge of the system dynamics, communications,
and control. Moving Target Defense (MTD) has emerged as a
strategy to add uncertainty about the state and execution of a
system in order to prevent adversaries from having predictable
effects with their attacks. In this work we propose a novel type
of MTD strategy that randomly changes the availability of the
sensor data, so that it is harder for adversaries to tailor stealthy
attacks and at the same time it can minimize the impact of
false-data injection attacks. Using tools from switched control
systems we formulate an optimization problem to find the
probability of the switching signals that increase the visibility of
stealthy attacks while decreasing the deviation caused by false
data injection attacks.

I. INTRODUCTION

One of the traditional problems in security is that if the
adversary can predict the behavior of the system under attack,
then it is very likely that attacks will be successful. Moving
Target Defense (MTD) has emerged as a strategy to add
uncertainty about the state and execution of a system in
order to prevent adversaries from having predictable effects
with their attacks [1]. According to the National Science and
Technology Council, MTD “enables us to create, analyze,
evaluate, and deploy mechanisms and strategies that are
diverse and that continually shift and change over time to
increase complexity and cost for attackers, limit the exposure
of vulnerabilities and opportunities for attack, and increase
system resiliency.. . . The characteristics of an MTD system
are dynamically altered in ways that are manageable by the
defender yet make the attack space appear unpredictable
to the attacker.” [2]. Several authors have proposed MTD
approaches for state estimation in the smart grid [3]–[5],
where the main idea consists on changing the physical topol-
ogy of the power grid in order to reveal false data injection
attacks. Watermarking uses the addition of an external system
with linear time-varying dynamics that depend on the system
states and that is unknown to the attacker [6]. The detection
strategy measures those external states, making it harder for
an adversary to design stealthy attacks.
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In this paper we propose the use of MTD to achieve two
security properties:

1) Detect attacks with high accuracy; i.e., it should be
hard for the attacker to evade an intrusion detection
system (IDS). In Section IV we show how our MTD
algorithm can help us detect a strong type of stealthy
attacks introduced in [7], [8], even when the adversary
knows the system dynamics, the detection strategy, has
access to all control inputs, and all sensor readings.

2) Minimize the impact of a sensor compromise; i.e.,
even if the attacker compromises a sensor, once the
MTD defense is activated, the impact of the attack can
be attenuated. We present an optimization problem in
Section V to design an MTD algorithm that minimizes
the impact of attacks.

In addition, we want to prevent our MTD algorithm from
degrading (significantly) the behavior of the original control
system (when the system operates without MTD and without
attacks). To address this performance goal we first show
the conditions under which the new MTD system is stable
(Section III) and in Section V we include the performance
of the system as one of the constrained variables in the
optimization problem.

We note that our MTD defense does not have to be active
at all times. In fact, it might be activated only when there
are other external indications of an attack, and therefore by
activating the MTD defense, it can help us reveal previously
undetected attacks.

II. PROBLEM STATEMENT

We consider the control system depicted in Fig. 1 which
consists of a physical process, a moving target defense
(MTD) mechanism that randomizes which sensor values the
controller uses at a given time, an observer-based controller,
and an intrusion detection system (IDS). The main goal of the
MTD mechanism is to add uncertainty to the system so it is
harder for the attacker to hide its attacks and simultaneously
limit the impact of the attack; namely, how much control the
adversary gets over the plant.

A. System Description
We consider a continuous-time linear time-invariant sys-

tems of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) + δa(t)

ỹ(t) = Θ(t)y(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq are the states,
input, and output vectors, respectively. The signal δa(t) ∈ Rq
denotes the attack vector injected to the sensors. The signal
ỹ(t) ∈ Rq is the output received by the estimator, where
Θ(t) denotes the MTD mechanism.
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Fig. 1. Proposed MTD mechanism.

B. Moving Target Defense Mechanism
We propose an MTD approach that randomly changes

the availability of the sensors as depicted in Fig. 1.
Let Θ(t) be a diagonal matrix of the form Θ(t) =
diag(θ1(t), θ2(t), . . . , θq(t)) and let S = {1, 2, . . . , q} be
the sensor index set. Therefore,

ỹi(t) = θi(t)yi(t)

= θi(t)(Cix(t) + δi(t)), (2)

for all i ∈ S, where Ci ∈ R1×n denotes the ith row of
matrix C and θi(t) ∈ {0, 1} is a piecewise binary signal.
In particular, we focus our attention on random switching,
where we only need to define the probability distribution of
a group of Bernoulli random variables.

Let T = {t0, t1, . . . , tk, . . .} denote the set of time points
where the MTD strategy is updated with 0 < Tmin <
tk − tk−1 < Tmax and let (Sk)k∈Z+

be the sequence of
holding times where Sk+1 = tk+1 − tk. We can define
βj(tk) ∼ B(pj) as a random variable drawn from a Bernoulli
distribution such that βj(tk) = 1 with probability pj (and
zero otherwise) for all tk ∈ T . Therefore, we have that on
each time interval [tk, tk+1), k ∈ Z+,

θj(t) = βj(tk), ∀t ∈ [tk, tk+1).

Remark 2.1: We will see later that the sequence
(Sk)k∈Z+

= tk+1− tk is considered random, which adds an
extra level of uncertainty to the MTD strategy, making even
harder for an adversary to predict the system’s behavior.

C. State-Observer and Control with MTD Measurements
We assume that the pair (C,A) is detectable. Since the

elements of ỹ(t) are switching over time, we propose a state
observer described by

˙̂x(t) = Ax̂(t) +Bu(t) + LΘ(t)(ỹ(t)− Cx̂(t)), (3)

where L ∈ Rn×q . This observer knows which sensor read-
ings are active (which can be easily guaranteed by sending
θj(t) along with y(t)), and updates its estimation using
only those active readings. We define e(t) = x(t) − x̂(t)
as the estimation error. Combining (1) and (3), and since
Θ(t)Θ(t) = Θ(t) we obtain

ė(t) = (A− LΘ(t)C)e(t)− LΘ(t)δa(t), (4)

and the observer design becomes a stabilization problem
where L and Θ(t) have to be chosen in such a way that the

switched system in (4) has e = 0 globally asymptotically
stable when δa(t) = 0 for all t ≥ 0.

Finally, we consider that the pair (A,B) is controllable
and the output-feedback controller of the form

u(t) = Kx̂(t). (5)

D. Intrusion Detection

Taking advantage of the state estimator in (3), we can con-
struct anomaly detection modules that compare the estimated
sensor readings with the real ones to determine the presence
of an attack. Therefore, we define the residuals as

r(t) = y(t)− Cx̂(t)

= Ce(t) + δa(t). (6)

The anomaly detection then takes the vector of residuals r(t)
and computes a measure of how deviated the sensor readings
are from the estimation. There are different types of anomaly
detection strategies, such as the χ2-test, distributed bad-data
detection, and CUSUM [8]. For simplicity, we will focus
our attention on the distributed bad-data detection with the
detection statistic given by

h(t) = |r(t)|, (7)

where | · | is evaluated component-wise. If any hi(t) > τi,
for some fixed detection threshold τi > 0, then an alarm is
triggered.

E. Adversary Model

Capabilities and goals: the attacker has compromised a
set of sensors and wants to send false signals δa to drive the
system away from the operational states.

Knowledge: the attacker knows the non-MTD system
model; i.e., the attacker knows A,B,C,K, the estimation
gain L, and the detection threshold τ but does not know
the MTD mechanism Θ(t). These strong assumptions allow
us to consider worst-case scenarios, implying that our MTD
will be effective against weaker adversaries.

F. Motivational Example

To illustrate why our MTD approach can make difficult
for an adversary to design strong attacks and also minimize
the impact of an attack in the system states, we consider the
simple example where A = −0.1, B = 1, L = 0.2,K =
−0.3, C = 1, with an intrusion detection threshold of τi =
τ = 0.1.

a) Without MTD: Θ(t) = 1, and if δa = 0.3, then the
detection statistic in the limit converges to

lim
t→∞

h(t) = |C(A− LC)−1Lδa + δa| = 0.1,

and therefore the attack remains stealthy (undetected by our
residual-based IDS). We can measure the impact of the attack
in terms of how much the system state is deviated from the
origin. Without MTD, we have that

lim
t→∞

x(t) = (A+BK)−1BK(A− LC)−1Lδa = −0.15



b) With MTD: With the proposed MTD mechanism
where Θ(t) = θ(t) with p = 0.3, and δa = 0.3, we have
that

lim
t→∞

E[h(t)] = |C(A− LpC)−1Lpδa + δa| = 0.1875,

and the same attack is no longer stealthy. Furthermore, since
the IDS knows the MTD realization, the addition of MTD
does not increase the false positive rate.

Now, with the MTD mechanism, the expected state con-
verges to

lim
t→∞

E[x(t)] = (A+BK)−1BK(A−LpC)−1Lpδa = −0.084.

Note that for this particular example the random MTD
mechanism causes the residuals to increase while the state
deviation decreases which illustrates the double benefit that
can be achieved with our approach.

The cost of MTD can be observed in terms of the
convergence speed. In our example, the slowest (and only)
eigenvalue of the expected estimation error is λMTD =
A−LpC and without MTD is λnoMTD = A−LC. Clearly
λMTD > λnoMTD for any 0 ≤ p < 1 and therefore the
observer convergence is degraded when p is small.

In the next section we formulate our problem as a switched
system and derive conditions for stability.

III. STABILITY OF THE MTD SYSTEM

A. Switched System
In order to formulate our problem as a switched system

and exploit some existing tools, we define the family of non-
identical diagonal binary matrices {Θ1,Θ2, . . . ,Θs}, and the
finite index set Σ = {1, 2, . . . , s}, where s = 2q . Each Θi ∈
Rq×q describes one possible combination of {1, 0} for each
θ1, θ2, . . . , θq , where i ∈ Σ. We also define the piecewise
switching signal σ : [0,∞) → Σ, which is updated at the
time points tk ∈ T and remains constant in the time interval
(tk, tk+1). The signal σ(t) is used to specify, at each time
instant t, the index i ∈ Σ of each active subsystem.

Then, our MTD approach in (2) can be rewritten as

ỹ(t) = Θσ(t)y(t), (8)

where σ(t) randomly chooses among the index set Σ, ac-
cording to the probability mass function Ω : Σ → [0, 1],
where, for each i ∈ Σ,

Ω(i) = p̃i =
∏

j∈Σ
[Θi]jpj + (1− [Θi]j)(1− pj)

=
∏

j∈Σ
(1− pj − [Θi]j + 2[Θi]jpj), (9)

for [Θi]j refers to the jth diagonal element of matrix Θi.

Example: Let pi = p, and the number of sensors is
q = 2. Then there exist 4 possible matrices Θi, given
by Θ1 = diag(0, 0), Θ2 = diag(1, 0), Θ3 = diag(0, 1),
Θ4 = diag(1, 1), with a probability mass function
Ω(i) = {(1− p)2, p(1− p), p(1− p), p2}. for all i ∈ Σ

Having formulated our MTD strategy as a switched sys-
tem, we can rewrite the observer in (3) as follows

˙̂x(t) = Ax̂(t) +Bu(t) + LΘσ(t)(ỹ(t)− Cx̂(t)), (10)

and the estimation error can be described by

ė = (A− LΘσ(t)C)e− LΘσ(t)δ
a(t). (11)

Let us define FE,σ(t) = A − LΘσ(t)C, and let z(t) =
[x>(t), e>(t)]> denote the extended state vector, such that

ż =

[
A+BK −BK

0 FE,σ(t)

]
z +

[
0

−LΘσ(t)

]
δa

=: Fσ(t)z +Gσ(t)δ
a. (12)

Thanks to the separation principle, we can design K in-
dependently of the observer gain or the switching signal
(e.g., an LQR that satisfies specific performance conditions).
Therefore, if K is such that A+BK is stable, the stability
of (12) is dictated by FE,σ(t).

B. Stability Conditions
Assume δa(t) = 0 for t ≥ 0. Recall that we have the

family of matrices FE,i = A − LΘiC for all i ∈ Σ. When
Θ1 = diag(0, 0, . . . , 0) (which indicates the case when all
sensors are off at the same time), then FE,1 = A. Since A is
not necessarily Hurwitz, we need to define a general stability
condition for switched systems in the presence of unstable
subsystems and random switching.

We use the results in [9], where the authors establish
globally asymptotic stability conditions (GAS) for switched
systems with stable and unstable subsystems, where the
switching signal has specific random properties. In fact, it
only requires that the probability the unstable subsystems
are active to be small.

We are interested in the following definition of stability
introduced in [9].

Definition 3.1: The system (12) is said to be globally
asymptotically stable almost surely (GAS a.s.) if the fol-
lowing two properties are simultaneously verified:

Pr

(
∀ε > 0 ∃β > 0, such that ‖x0‖ < β =⇒ sup

t≥0
‖x(t)‖ < ε)

)
= 1.

Pr

(
∀r, ε′ > 0 ∃T ≥ 0 such that ‖x0‖ < r =⇒ sup

t≥T
‖x(t)‖ < ε′

)
= 1

Definition 3.1 indicates that the trajectories of x(t) converge
to an equilibrium with probability 1 from any bounded initial
condition x0.

The conditions for stability under random switching intro-
duced in [9] employ a family of Lyapunov functions, one for
each subsystems FE,i for i ∈ Σ, that possesses the following
properties.
Assumption A1: There exist a family of continuously dif-
ferentiable real-valued functions Vi(x) ∈ R for all i ∈ Σ,
functions α1, α2 ∈ K∞, numbers µ ≥ 1, λi ∈ R such that

(A1.1): α1(‖x‖) ≤ Vi(x) ≤ α2(‖x‖), ∀x ∈ Rn,∀i ∈ Σ.
(A1.2): V̇i(x) ≤ −λiVi(x), ∀x ∈ Rn,∀i ∈ Σ,
(A1.3): Vi(x) ≤ µVj(x), ∀x ∈ Rn,∀i, j ∈ Σ.

We also impose some assumptions on the switching signal.
Assumption A2: The switching signal σ(t) satisfies the
following properties:
• The sequence (Sk)k∈N, Sk+1 = tk+1 − tk of holding

times is a sequence of i.i.d. uniform random variables
with parameter Tmax > 0 and Tmin = 0.

• The probability that the ith subsystem is active is
Pr(σ(tk) = i) = p̃i.



• Sk and σi are mutually independent.
The following theorem follows [9, Theorem 3.4], and

introduces sufficient conditions for GAS a.s. of the switched
system in (12) according to Definition 3.1.

Theorem 3.1: Suppose that Assumptions A1 and A2 hold
where σ(t) has parameter Tmax and probabilities p̃i = Ω(i)
for all i ∈ Σ according to (9). If

µ
∑
i∈Σ

p̃i

(
1− e−λiTmax
λiTmax

)
< 1, (13)

then the switched system is GAS a.s..
Theorem 3.1 is an adaptation of [9, Theorem 3.4] for linear

systems, where σi(tk) follows the probability distribution Ω
defined in (9). The proof is omitted due to space constraints.

Remark 3.1: If λi < 0 (which is related to the unstable
matrices) and it has large magnitude, the term

(
1−e−λiTmax
λiTmax

)
may be greater than one, such that the probability associated
to that term has to be small enough; on the other hand,
if λi > 0, the term

(
1−e−λiTmax
λiTmax

)
is positive and it gets

closer to zero when the magnitude of λi increases. Therefore,
in order to guarantee that (13) holds, p̃i has to be chosen
such that the unstable subsystems are selected with low
probability.

IV. DETECTING STEALTHY SENSOR ATTACKS

One of the main advantages of MTD is that it makes
harder for an adversary to tailor stealthy attacks due to the
uncertainty added by the MTD mechanism. In particular,
with our proposed sensor MTD, the adversary fails to predict
how his attack affects the IDS, such that the attacks that are
stealthy under normal conditions, are visible with the MTD
strategy.

We will focus our attention on a very powerful type of
stealthy attack that has been introduced in [7], [8], [10].
Then, we will show how, by appropriately selecting the
probabilities pi, it is possible to make these attacks visible,
even when the adversary has access to the control inputs,
all sensor readings, knows A,B,L,C,K, and knows the
thresholds τ of the detection mechanism.

While we could try to define a similar non-stochastic
defense by changing C deterministically, this would give the
adversary more chances of finding the deterministic changes
and adapt its attack accordingly. The uncertainty presented
to the adversary is one of the advantages of MTD.

A. Construction of Stealthy Attacks
Suppose the attacker has access to all sensor readings

and computes its own estimation of the system states x̂a(t)
in order to forge powerful cyber-attacks. The attacker’s
estimator is described by

˙̂xa(t) = Ax̂a(t)+Bu(t)+L(Cx(t)−Cx̂a(t)+δa(t)). (14)

Let s(t) = x̂(t)− x̂a(t) denote the error between the system
estimation used by the controller and the attacker estimation.
We introduce the following lemma.

Lemma 4.1: Suppose there is no MTD mechanism, i.e.,
Θσ(t) = I , and L is such that A−LC is Hurwitz. Then, the
error s(t) converges in the limit to limt→∞ s(t) = 0 and the
attacker is able to compute an estimation that converges to
the one used by the IDS.

Proof: Notice that ṡ(t) = ˙̂x(t)− ˙̂xa(t). Combining (10) and
(14) we get

ṡ(t) = FE,σ(t)s(t) + L(Θσ(t) − I)Ce(t)

− L(Θσ(t) − I)Cs(t) + L(Θσ(t) − I)δa(t). (15)

Since Θσ(t) = I , we have that ṡ(t) = (A−LC)s(t), which is
stable independently of δa(t) and the trajectories will always
converge to 0. �
W.l.o.g., in the reminder of this section we will assume that
the system is in steady state before the attack, such that
x(0) = 0, s(0) = 0.

In the following lemma we will introduce a type of stealthy
attack that uses x̂a(t) to bypass the IDS algorithm. This
attack does not depend on the zero-dynamics, which makes
it suitable for more general applications.

Lemma 4.2: Suppose that the detection strategy corre-
sponds to the bad-data detection introduced in (7) with
detection thresholds τ = [τ1, . . . , τq]

>. If there is no MTD
mechanism and the adversary launches an attack of the form

δa(t) = −y(t) + Cx̂a(t) + τ (16)

then the attack remains stealthy.
Proof: Replacing (16) in (6), we obtain

r(t) = C(x(t)− x̂(t))− C(x(t)− x̂a(t)) + τ

= −Cs(t) + τ (17)

Without MTD, s(t) = 0 and the residuals are then r(t) =
τ . As a consequence, h(t) = |τ | and the alarm is never
triggered. �

Remark 4.1: This type of attack is very powerful when
the matrix A is not stable. If we apply the attack in (16)
to (12), the dynamics of the estimation error become ė(t) =
Ae(t)+LΘσ(t)Cs(t)+Lσ(t)τ . If we define the extended state
w = [x>, e>, s>]>, it is easy to see from ẇ = Hw+Jτ that
part of the eigenvalues of H correspond to the eigenvalues of
A. If A is not stable, the attack causes that the entire system
becomes unstable without being detected.

B. Revealing Stealthy Attacks
We assume that the adversary does not know the MTD

mechanism, such that he launches the stealthy attack in (16).
The following theorem introduces the conditions to reveal the
stealthy attack.

Theorem 4.1: Suppose that the conditions in Theorem 3.1
are satisfied and an adversary launches the stealthy attack
described in (16) for the bad-data detection strategy. Let
E[Θσ(t)] = P = diag(p1 . . . , pq) such that F̄E = A−LPC
is Hurwitz. The stealthy attack is revealed if any of the
following conditions holds for at least one j ∈ S,

CjF̄
−1
E L(P − I)τ > 0,

CjF̄
−1
E L(P − I)τ < −2τj .

(18)

Proof: Replacing the attack in (16) with the dynamics of the
error in (15), we obtain

ṡ(t) = (A− LΘσ(t)C)s(t) + L(Θσ(t) − I)τ. (19)

Since τ is finite and constant, and since when δa(t) = 0,
(12) is GAS a.s. according to Theorem 3.1, then the term
L(Θσ(t) − I)τ will cause an accumulation of the error
between the real effect of the attack and the effect estimated



by the attacker. To facilitate the analysis, and since s(t)
is independent of Θσ(t), we define E[s(t)] = s̄(t). Then,
˙̄s(t) = F̄E s̄(t) + L(P − I)τ . Therefore, the following limit
exists

lim
t→∞

s̄(t) = −F̄−1
E L(P − I)τ,

which with E[r(t)] = r̄(t) and (17) leads to limt→∞ r̄(t) =(
CF̄−1

E L(P − I) + I
)
τ. Applying the absolute value, with

E[h(t)] = h̄(t) leads to

lim
t→∞

h̄(t) = |CF̄−1
E L(P − I)τ + τ |. (20)

such that the attack is reveled when at least one hj(t) > τj ,
which is ensured if any of the conditions in (18) hold. �.

Notice that the conditions for revealing the attack depend
on P . As a consequence, in the next section we show how
to impose constraints on P during the design process to
guarantee that this type of strong stealthy attacks are always
revealed.

Remark 4.2: With our proposed MTD, the attacker is
not able to estimate the system states subject to his own
attack. Therefore, any attack that depends on the attackers
estimation can be potentially revealed. Furthermore, as it was
shown in the Motivation example in Section II-F, other types
of stealthy attacks can be also revealed.

V. MTD DESIGN

So far, Theorem 3.1 provides conditions for almost sure
asymptotic stability of the system subject to the proposed
MTD strategy. In Theorem 4.1 we derived conditions for
revealing a powerful type of stealthy attacks. In this section
we introduce a methodology to design the probability matrix
P that satisfies the conditions introduced in Theorems 3.1
and 4.1, while increasing the system resiliency to any type
of attack (not only stealthy attacks).

Recall that P = E[Θ(t)] = diag(p1, p2, . . . , pq), and let
z̄(t) = E[z(t)] = [x̄>(t), ē>(t)]>. Applying the expectation
operator E[·] to (12), we obtain

˙̄z(t) = F̄ z̄(t) + Ḡδ̄a(t), (21)

where E[δa(t)] = δ̄a(t), and

F̄ =

[
A+BK −BK

0 A− LPC

]
, Ḡ =

[
0
−LP

]
.

Impact of the Attack: We can define the impact of the attack
in terms of how much an attack can deviate the convergence
of the trajectories with respect to the nominal conditions in
expectation. To this end, for concreteness we assume that
δ̄a(t) is constant, such that

lim
t→∞

z̄(t) = −F̄−1Ḡδ̄a, (22)

leading to limt→∞ x̄(t) = (A + BK)−1BK(A −
LPC)−1LP δ̄a. Therefore, we can quantify the impact of
the attack as follows:

I(δ̄a) = ‖Mδ̄a‖,

for M = (A+BK)−1BK(A− LPC)−1LP .

Performance under MTD: Notice from (12) and (21),
that if A is Hurwitz, the trivial solution P = 0, completely
eliminates any effect of an attack in the system. However, this

will eliminate the observer altogether and therefore, prevent
us from building an estimate of the system state and generate
adequate control actions. Therefore, we need to impose a
performance criteria that the MTD must satisfy in the attack-
free case (e.g., convergence speed).

In order to quantify the degradation caused by the MTD
mechanism in the system, we use as a performance index the
slowest eigenvalue of F̄E = A − LPC, which is related to
the convergence speed of the observer. Therefore, our goal
is to design an MTD strategy that guarantees

λmax(A− LPC) ≤ γ,

where γ < 0, and where λmax(X) is the maximum real part
of the eigenvalues of X .

Finally, since we want to find P to reveal stealthy attacks
according to Theorem 4.1, let Ψ+

j = CjF̄
−1
E L(P − I)τ and

Ψ−j = CjF̄
−1
E L(P − I)τ + 2τj . Thus, we can define

Ψ =
∑
j∈S

max{Ψ+
j , 0} −min{Ψ−j , 0},

such that at least one hj > τj when Ψ > 0.
The optimization problem to find P that guarantees GAS

a.s., ensures that the type of stealthy attacks are revealed,
and that minimizes the impact of the attack is described as
follows:

min
P
‖M‖

s.t.

0 < pj ≤ 1, ∀j ∈ S
Ψ > 0,

(9), (13)

λRmax(F̄E) ≤ γ. (23)

Note that this is a nonlinear optimization problem that,
at times, can be solved using interior-point or active-set
algorithms.

Remark 5.1: The gain L can also be included as a design
parameter in the proposed optimization problem, but it makes
(23) non-convex, such that the optimal solution is not unique.
In this case, it would be necessary to use different approaches
to find a good combination of L, and P . On the other hand,
L can also be chosen to decrease the number of unstable
subsystems such that it could be possible to find smaller
probabilities pj for the same performance degradation.

VI. CASE STUDY

In order to verify the viability of our approach, we
consider the LTI system with matrices

A =

[
1 0.5 0
0.3 −2 −0.5
0.1 1 −2

]
, B =

[
0
1
1

]
, C =

[
1 0 0
0 1 0

]
.

The feedback control gain is K =
[−16.3262,−2.5487, 0.4054] and L corresponds to the
steady state Kalman filter gain

L =

[
2.0726 0.1846
0.1846 0.0348
0.1312 0.0362

]
.

Since the number of sensors is q = 2, there are four possible
subsystems i.e., s = 4. Therefore, Assumption A1 is satisfied



for λ = [2.09,−2.07, 2.05,−2.1], and the Lyapunov function
for all i ∈ Σ is Vi(x) = V = x>Qx, where

Q =

[
0.2098 −0.0168 −0.0294
−0.0168 0.7087 −0.0906
−0.0294 −0.0906 0.3963

]
,

such that µ = 1. Let γ = −1, Tmax = 0.1 and the
detection thresholds τ = [0.01, 0.01]>. The solution of the
optimization problem in (23) is found using the interior-point
algorithm and corresponds to P ∗ = diag([0.98, 0.503]).

Suppose that an adversary injects the attack δa(t) =
[−0.1, 1.7]> after 20 s. Figure 2 illustrates the Montecarlo
simulation of the trajectories of the states and the norm
‖x(t)‖. Clearly, the MTD approach is able to decrease the
impact of this attack when compared to the case without
MTD.
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Fig. 2. System states without MTD (top left), and with the MTD strategy
(top right). The shaded area indicate the maximum/minimum deviation of
the Montecarlo simulation at each time instant. Notice that our approach
decreases the deviation caused by the attack, and since γ = −1 and p1 =
0.98, the performance degradation is small.

Now, suppose that an adversary launches a stealthy attack
as described in (16) for the anomaly detection threshold
τ . Figure 3 shows how without MTD, the attack remains
completely stealthy. However, thanks to the random MTD
mechanism, the attack is easily revealed.

VII. CONCLUSIONS

We have proposed and analyzed the security of an MTD
strategy for improving the detectability of attacks, while at
the same time minimizing the power that an adversary has
when compromising a sensor signal. We showed that our
strategy is effective against very powerful stealthy attacks
even when the adversary knows the system dynamics, the
detection strategy, and has access to all sensors and control
inputs. We derived conditions for the MTD strategy to
keep the system stable and defined an optimization problem
that allows us to find the probability at which each sensor
transmits its information that guarantee the detection of
stealthy attacks and that minimize the impact caused by the
attack. In practice the MTD strategy can be activated when
we notice indicators of attacks, or if we notice that the system
is deviating from the desired space without explanation; if the
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Fig. 3. Bad-data detection with thresholds τi = τ = 0.01 in the presence
of a stealthy attack. The attack is never detected without MTD (top), but
the addition of uncertainty makes possible to reveal the attack (bottom).

MTD is activated then, it will be able to mitigate the attack
while at the same time revealing a previously undetected
attack. Future work includes extending the results to the case
of recurring attacks using the hybrid systems techniques used
in [11]
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