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Abstract— We propose a safe exploration algorithm for de-
terministic Markov Decision Processes with unknown transi-
tion models. Our algorithm guarantees safety by leveraging
Lipschitz-continuity to ensure that no unsafe states are visited
during exploration. Unlike many other existing techniques,
the provided safety guarantee is deterministic. Our algorithm
is optimized to reduce the number of actions needed for
exploring the safe space. We demonstrate the performance
of our algorithm in comparison with baseline methods in
simulation on navigation tasks.

I. INTRODUCTION

Guaranteeing safety is a vital issue for many modern
robotics systems, such as unmanned aerial vehicles (UAVs),
autonomous cars, or domestic robots [1], [2], [3]. One
approach is to attempt to specify all potential scenarios
a robot may encounter a priori. However, this is usually
impractical due to the fact that such solutions are either
computationally expensive to compute or that robots today
need to deal with uncertain and diverse environments. Hence,
we need to design algorithms for robots that can safely and
autonomously learn about the uncertain environment they live
in, which can potentially address both problems [4], [5].

Reinforcement learning algorithms autonomously perform
exploration, and they have shown promising results in many
fields of artificial intelligence. Therefore, it is natural to ex-
plore the implications of reinforcement learning in robotics.
Unlike most applications in artificial intelligence, where
unsafe outcomes from learning can occur in simulation,
in robotics, we would need to avoid unsafe scenarios at
all costs. Therefore, safe learning, which is the process
of applying a learning algorithm such as reinforcement
learning while still satisfying a set of safety specifications,
has attracted great interest in recent years. Safety usually
has two main interpretations: one is related to stochasticity
of the environment, where the goal is to guarantee staying
in a given performance bound as is commonly studied in
robust control [6], [7], [8], [9], [10], [11], [12]. The second
interpretation is due to the system falling in an undesirable
physical state, which is a common interpretation used in
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robotics [13], [14], [15], [16], [17]. In this paper, we focus
on safe learning and exploration as the avoidance of ‘unsafe’
- physically undesirable - states. We refer to [18] for a survey
on safe reinforcement learning.

To perform exploration in safety-critical systems, prior
knowledge of the task is often incorporated into the ex-
ploration process. In [19] and [20], the authors proposed a
method to safely explore a deterministic Markov Decision
Process (MDP) using Gaussian processes. In their work, they
assumed the transition model is known and that there exists
a predefined safety function. Both of these assumptions can
be quite restrictive when the system is going to operate in
unknown environments. In our work, we plan to address
both of these challenges by considering unknown transition
models, and no access to a predefined safety function.
Similarly, other work has considered reachability analysis
as well as Gaussian processes to perform safe reinforcement
learning [17], [21], and used a safety metric to improve their
algorithm. However, it is not trivial to derive an appropriate
safety metric in many robotics tasks. Other techniques utilize
teacher demonstrations to avoid unsafe states [13], [14], [22].
However, teaching demonstrations are usually difficult to
capture as operating robots with high degrees of freedom
can be challenging, especially if the system dynamics are
unknown due to the existing uncertainty in the environment.

In our work, we propose an algorithm to safely and
autonomously explore a deterministic MDP whose transition
function is unknown. We take a natural definition of safety,
similar to [23]: If we can recover from a state s, i.e. we can
move from it to a state that is known to be safe, then the
state s is also safe. Instead of relying on Gaussian processes
or other estimation procedures, our exploration algorithm
directly leverages the underlying continuity assumptions, and
so guarantees safety deterministically. We demonstrate our
algorithm in simulation on two different navigation tasks.

II. PROBLEM DEFINITION

Our goal in this project is to design an algorithm for a
robot to safely and efficiently explore uncertain parts of the
environment. We want an algorithm that deterministically
ensure safety and expand the size of the known safe state
set. The theoretical work in this section will build towards
formalizing this goal in equation (7).

A. Introductory Assumptions

First, we begin by formalizing our interactions with the
environment.
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Assumption 1: We model the dynamical system living in
an unknown environment as a deterministic MDP [24]. Such
an MDP is a tuple 〈S,A, f(s, a)〉 with a set of states S, a set
of actions A, and an unknown deterministic transition model
f : S ×A → S . Let s0 ∈ S be the initial state of the MDP.

For example, for a quadrotor, the states in S might be
the quadrotor’s pitch, yaw and roll, the quadrotor’s angular
and linear velocities, and its height from the ground, all
concatenated together to form a vector in Rk1 . The actions in
A could be the fixed rotation speeds of the rotors (a vector in
Rk2 ), and the transition function f would apply those speeds
to the rotors over a fixed interval of duration dt.

The algorithm we will develop is applicable to finite
state and action spaces. When S or A are fundamentally
continuous, our algorithm can be applied to finite, fine-
grained discretizations of those space. We show in Section IV
how to handle this discretization.

We now make a few definitions that will help us reason
about our knowledge of the environment and our ability
to take a sequence of actions to efficiently explore the
environment.

Definition 1: We denote knowledge the actor has about
the transition function f as a set T ⊂ S ×A× S such that
the following implication relation holds:

(s, a, s′) ∈ T =⇒ f(s, a) = s′ (1)
Definition 2: Let A, with appropriate superscripts when

necessary, denote a sequence of actions; Ai the ith action in
the list and |A| the cardinality. We overload the transition
function f such that f(s,A) = s′ if and only if taking the
actions A1, A2, . . . , A|A| sequentially from state s yields the
final state s′. Lastly, A denotes the set of all possible ordered
sequences of actions A.

Without further assumptions about f , it is not possible to
perform safe exploration from s0, because we cannot take
any action from the initial state with limited knowledge of
the action’s safety. Therefore, we assume we are given an
initial safe set S0 ⊆ S such that the initial state of the system
is in this set, i.e. s0 ∈ S0. Furthermore, we assume as in [19]
that for any s, s′ ∈ S0, we are given a list of actions A such
that f(s,A) = s′.

Assumption 2: Formally, we assume we are given an ini-
tial safe set S0 ⊆ S such that s0 ∈ S0, an initial knowledge
set T0, and restate the above assumption as:

∀s, s′ ∈ S0,∃k ∈ Z≥0,∃a1, . . . , ak ∈ A,∃s1, . . . , sk−1 ∈ S
(s, a1, s1), (s1, a2, s2), . . . , (sk−1, ak, s

′) ∈ T0
We further make a set of assumptions on Lipschitz conti-

nuity of the transition function to enable safe exploration.
Assumption 3:
• f(s, a) is Ls-Lipschitz continuous over the states with

some distance metric ds : S × S → R:

ds(f(s, a), f(s′, a)) ≤ Lsd
s(s, s′) (2)

• Similarly, f(s, a) is La-Lipschitz continuous over the
actions with ds and the additional distance metric da :

A×A → R:

ds(f(s, a), f(s, a′)) ≤ Lad
a(a, a′) (3)

Practically, the Euclidean distance is often used for both ds

and da.
Note that these requirements are mild and naturally satis-

fied in most domains: If we take the same action from two
similar states, we will end up in similar states; and if we take
similar actions from the same state, we will again end up in
similar states. For this algorithm, we assume that Ls and La

have been estimated via some prior methodology, and we
note that larger than optimal values of these constants, while
leading to less efficient algorithms, still satisfy Assumption
3.

With this setup, we can now define our notion of safety.
Definition 3: We define s ∈ S to be safe with respect to

S0 and knowledge set T if there exists a recovery algorithm
that can use the information in T and the Lipschitz assump-
tions to confidently produce actions which will transition the
MDP from s into S0 after a finite number of steps. We define
that action a is safe at state s if all possible outcomes of
f(s, a), with respect to T and Lipschitz assumptions, are
safe. When calling a set safe, the choice of S0 should be
clear from context.

For instance, in our quadrotor example, S0 might include
various hovering states, and thus we consider any state to be
safe if we can return to a hovering position from that state.
We note that our notion of safety is similar to the safety
definition of [23].

This definition of safety, while theoretically satisfying, is
not computable in its current form, as we have not described
what it means to “use information to confidently produce
actions”. With a bit more work, we will do so in Definition
7 below.

We now state some important observations about our
definition of safety.

Remark 1: Suppose S is a safe set with respect to some
knowledge set T . Then:

S ⊆ S̄ := {s ∈ S|∃A ∈ A s.t. f(s,A) ∈ S0} (4)
However, this upper bound on the safe set cannot normally
be calculated, as f is unknown.

Remark 2: Suppose S is safe with respect to some T , and
that T ⊆ T ′. Then S is safe with respect to T ′.

B. Computing the Safe Set

We now utilize the knowledge set T to determine which
states and actions are safe.

Definition 4: In order to handle unknown states, we de-
fine an uncertain transition function fu, parameterized by
knowledge T , that maps each state-action pair to all of its
possible outcomes:

fu(s, a; T ) :=
⋂

(s′,a′,s′′)∈T

φ(s′′, Lsd
s(s′, s)+Lad

a(a′, a))

where φ(s, x) := {s′ ∈ S|ds(s, s′) ≤ x} denotes the
hypersphere centered at s with radius x over the distance
metric ds. A visualization of fu-function is shown in Fig. 1.
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Fig. 1. A visualization of Lipschitz assumption and fu-function has been
shown. Top left. We are given two state transitions: f(s′, a) = s′′ and
f(s′′, a′) = s′′′. We want to know the possible outcomes when we take
action a from state s. Top right. Considering the first transition, the outcome
of f(s, a) must be within a circle of radius Lsd1 from s′′, where d1 =
ds(s′, s). Bottom left. Similarly, when we consider the second transition,
we note that the outcome must be within a circle of radius Lsd2 + Lad3
from s′′′, where d2 = ds(s′′, s) and d3 = da(a, a′). Bottom right. The
states that satisfy both of those conditions lie on the intersection, which is
shown as the shaded area. It is exactly equal to fu(s, a; T ) where T =
{(s′, a, s′′), (s′′, a′, s′′′)}.

Definition 5: If S is a safe set with respect to knowledge
T , then we define the expansion function as:

ET (S) := S ∪ {s ∈ S|∃a ∈ A s.t. fu(s, a; T ) ⊆ S} (5)

We also let E(k)
T (S) = ET (E

(k−1)
T (S)) with E

(1)
T (S) =

ET (S). Moreover, we denote ĒT (S) = limk→∞E
(k)
T (S) to

be the fixed point of the expansion function.
Using these definitions, we make the following crucial

observation that is similar to Eq. (4):
Theorem 1: If S is safe with respect to T , then so is

ET (S).
Proof: Let s ∈ ET (S). Then, at least one of the

following is true:
• s ∈ S
• ∃a ∈ A such that fu(s, a; T ) ⊆ S

If s ∈ S, then since S is safe with respect to T , so is s.
Otherwise, since there exists an a such that fu(s, a; T ) ⊆ S,
even if f(s, a) is still unknown, we do know f(s, a) ∈ S,
which is safe. From there we can use the recovery algorithm
provided by Definition 3 for S to return to S0.

Definition 6: If we take action ai from the state si at some
time step i ≥ 0, then we recursively define our knowledge
after taking step i to be Ti+1 = Ti ∪ {(si, ai, f(si, ai))}.

Definition 7: For timestep i ≥ 0, recursively define the
safe set after step i to be

Si+1 = ĒTi(Si) (6)
Using Theorem 1, we see that this definition is justified,

i.e. Si+1 is safe with respect to Ti for all i. We now have a
computable set which we can pair with our more theoretical
definition of safety, Definition 3.

Remark 3: At step i, a state s is safe if and only if ∃a ∈ A
such that the action a is safe at s.

We are now ready to state our goal:
Problem 1: Our goal is to maximize the rate of safe

exploration over the number of actions taken, given an initial
safe set S0 and state s0 ∈ S0. Formally,

max
a1,a2,...,am

|Sm|
m

subject to sk+1 = f(sk, ak+1) ∈ Sk ⊆ S̄ ⊆ S,
ak+1 ∈ A, for k = 0, 1, . . . ,m− 1 (7)

where m is the total number of actions taken, and Si is
the set of states deterministically known to be safe by the
algorithm after i actions, and S̄ is as defined in Eq. (4).

III. ALGORITHM

In order to present our algorithm that efficiently expands
the safe set, we first introduce some notations and functions.

A. Preliminaries

Definition 8: We define the path-knowledge function q :
S × S → {0, 1} parametrized with T that carries the
transition triplets:

q(s, s′; T ) =


1 if ∃A : (s,A1, f(s,A1)),

(f(s,A1), A2, f(f(s,A1), A2)), · · · ∈ T
∧ f(s,A) = s′

0 otherwise

That is, q(s, s′; T ) = 1 if and only if there exist triplets in T
that let us move from s to s′, and q(s, s′; T ) = 0 otherwise.

While performing safe exploration, it is both desirable and
useful to learn the transition function. While T implicitly
performs this, it is useful to denote it as a function.

Definition 9: We therefore denote the transitions that have
been learnt with certainity (without ambiguity) as function
fc : S ×A → S ∪ {γ}:

fc(s, a; T ) :=

{
s′ if (s, a, s′) ∈ T
γ otherwise

where γ is a placeholder that represents “an unknown state”.
Since the MDP is deterministic, fc is a properly defined
function, i.e.

(s, a, s′) ∧ (s, a, s′′) ∈ Ti =⇒ s′ = s′′

We also overload the fc function as S×A→ S∪{γ} similar
to f .

Definition 10: We define the path-planning function g :
S × S → A:

g(s, s′; T ) :=

{
arg minA:fc(s,A;T )=s′ |A| if q(s, s′; T ) = 1

∅ otherwise

That is, g(s, s′; T ) gives the smallest list of actions that
moves from s to s′ if such a transition is known in T . In
the case that there exist several such sequences, we assume
g(s, s′; T ) gives any one of them.



Remark 4: Due to the assumption that we know how to
move from one state to another inside the initial safe set, we
have the following two relations for ∀i:

s, s′ ∈ S0 =⇒ q(s, s′; Ti) = 1

s, s′ ∈ S0, s 6= s′ =⇒ g(s, s′; Ti) 6= ∅
B. Efficient Exploration

In order to efficiently expand the safe set, we must
optimize for the list of actions that will lead to the largest
safe set expansion with minimum number of actions. We will
do this in two steps:

1) We first define a measure that corresponds to the
possible safe set expansion from taking a new action.

2) We then greedily optimize to take actions which are
considered efficient under that measure.

The most straightforward approach for defining a measure
that corresponds to safe set expansion is to measure the
amount of safe set expansion for each possible outcome
of an action, and compute an expected value over all such
possibilities. We call this the safe set expansion measure.

However, as we will practically demonstrate in our re-
sults, this approach can be highly suboptimal especially for
continuous dynamics. Instead, we develop a second measure
that quantifies the uncertainty reduction on the outcomes of
all state-action pairs by taking an action. This prioritizes
exploration towards the safe set boundary in addition to
exploring actions which will expand the boundary.

Definition 11: We define the uncertainty reduction mea-
sure:

∆(s, a; Ti) :=∑
s′′∈U

p(s′′;U)
∑
{s′,a′}

|fu(s′, a′; Ti) \ fu(s′, a′; Ti∪{s, a, s′′})|

where the inner summation is over all state-action pairs,
U = fu(s, a; Ti), and p(s′′;U) is the modeled probability
that action a will move from state s to s′′.

While the underlying MDP is deterministic, for some
actions we only know that they will end up in a specific
set of points, thus it makes sense to model our uncertainty
as a probability distribution over that set. While different
probability models can be employed for p(s′′;U), we are
going to use uniform distribution over U for simplicity.

To show that our measure is well defined, we have the
following theorem.

Theorem 2: The uncertainty does not increase when some
more actions are taken. In fact, the updated uncertainty is a
subset of the previous one. Formally, for all s ∈ S, a ∈ A,
we have Ti ⊆ Tj =⇒ fu(s, a; Ti) ⊇ fu(s, a; Tj) and thus
∆(s, a; Ti) ≥ 0.

Proof: fu(s, a; Tj) = fu(s, a; Ti) ∩ fu(s, a; Tj \ Ti) ⊆
fu(s, a; Ti) for all s and a.

By Theorem 2, we can write:

∆(s, a; Ti) =∑
s′′∈U

p(s′′;U)
∑
{s′,a′}

|fu(s′, a′; Ti)|−|fu(s′, a′; Ti∪{s, a, s′′})|

Our goal is now to take steps to maximize the reduction in
uncertainty. We realize that it is computationally difficult to
maximize this reduction over sequences of multiple uncertain
actions, so instead we will greedily optimize for the best
immediate reduction in uncertainty. However, we still cannot
directly maximize ∆(s, a; Ti) over all s and a, because at
any step i we are at a fixed state si and getting to state
s may require many intermediate actions. Thus we must
optimize over paths of actions A ∈ A starting at si. A second
realization is that though it may be more efficient in some
circumstances to try to get near a state s via paths containing
uncertain actions, it is difficult to optimize over such paths,
thus we only consider paths to s which consist of certain
actions.

The following theorem will be useful for our algorithm:
Theorem 3: Taking actions that are already in the col-

lection of knowledge, Ti, does not lead to any safe set
expansion.

Proof: We first note that the update rule depends only
on the uncertainty function fu, which depends on s, a and
Ti. Suppose (s, a, s′) ∈ Ti. When we take the action a from
state s, we do not add a new element to Ti. Since Ti does
not change, there will be no change in fu(s, a; Ti) for any s
and a, so we will not be able to expand the safe set.

Due to Theorem 3, if we take a path of certain actions from
si to s and then take an uncertain action at s, we know that
the entire safe set expansion will come from the last uncertain
step. Thus, we wish to perform the following optimization:

max
A∈A,a∈A

1

|A|+ 1
∆(s, a; Ti)

subject to s = fc(si, A; Ti),
fu(s, a; Ti) ⊆ Si+1 (8)

Again due to Theorem 3, if two different action lists lead
to the same state from state si, then the one with smaller
cardinality is better off in the optimization. This means, we
can just optimize over the shortest paths between state si
and the optimization variable state s. The optimization can
then be reformulated as follows:

max
s∈S,a∈A

1

|g(si, s; Ti)|+ 1
∆(s, a; Ti)

subject to q(si, s; Ti) = 1,

fu(s, a; Ti) ⊆ Si+1 (9)

This optimization is over finite variables for finite discrete
MDPs.

C. Overall Algorithm

We first present the pseudocodes for the algorithm blocks
that we so far formalized. Algorithm 1 is the pseudocode for
computing ĒTi(Si), which corresponds to the procedure that
we use for expanding the safe set at iteration i.

In order to perform the optimization for efficient ex-
ploration, we compute expected total uncertainty reduction
as in Algorithm 2. Then, Algorithm 3 benefits from that
procedure to optimize for uncertainty reduction. Note that



Algorithm 1 Safe Set Expansion
1: procedure EXPANDSAFESET(Si, Ti, fu)
2: Si+1 ← Si

3: while Si+1 not converged do
4: Si+1←Si+1∪{s|fu(s, a; Ti)⊆Si+1 for ∃a∈A}
5: return Si+1

in Algorithm 2, we use the scaling factor of 1
|U | in line 7,

since we are using a uniform distribution over the possible
outcomes of an action.

Algorithm 2 Expected Uncertainty Reduction Computation
1: procedure EXPECTEDREDUCTION(fu, s, a, Ls, La)
2: U ← fu(s, a; Ti)
3: v ← 0
4: for s′′ ∈ U do
5: f ′u(s′, a′; Ti)←fu(s′, a′; Ti)∩φ(s′′, Lsd

s(s, s′)+
Lad

a(a, a′)) (∀s′ ∈ S,∀a′ ∈ A)
6: ∆(s′, a′)←|fu(s′, a′; Ti)|−|f ′u(s′, a′; Ti)| (∀s′ ∈
S,∀a′ ∈ A)

7: v ← v + 1
|U |

∑
s′∈S,a′∈A∆(s′, a′)

8: return v

Algorithm 3 Optimization for Uncertainty Reduction
1: procedure OPTIMIZEGREEDILY(Si+1,si, Ti,fu, Ls,La)
2: V ← 0
3: for s ∈ Si+1 do
4: G← g(si, s; Ti) . Shortest-path algorithm
5: if G = ∅ and si 6= s then
6: continue
7: for a ∈ A do
8: v ← EXPECTEDREDUCTION(fu, s, a, Ls, La)
9: v ← v/(|G|+ 1)

10: if v > V then
11: V ← v
12: G∗, a∗ ← G, a

13: return G∗, a∗

Lastly, we note that it is possible to have state-action pairs
that are not in the current knowledge set, but have only one
possible outcome. Adding these pairs to the knowledge in
each iteration can possibly increase efficiency. We present
this procedure in Algorithm 4. Note we check if |U | = 1 for
discrete MDPs. For continuous MDPs, where we can sample
state and action spaces as we will describe in Section IV, we
check if U is a singleton.

We present the complete algorithm as a pseudocode in
Algorithm 5.

IV. SIMULATIONS AND RESULTS

We call the algorithm developed above Safe Exploration
Optimized For Uncertainty Reduction. We developed the
following alternative methods as baselines to compare our
algorithm against:

Algorithm 4 Knowledge Expansion (Discrete MDPs)
1: procedure EXPANDKNOWLEDGE(Ti, fu)
2: for s ∈ S do
3: for a ∈ A do
4: U ← fu(s, a; Ti) . U1 is the first element
5: if |U | = 1 then
6: Ti ← Ti ∪ {(s, a, U1)}
7: return Ti

Algorithm 5 Efficient and Safe Exploration (Discrete MDPs)
Require: n . Iteration count
Require: Ls, La . Lipschitz-continuity constants
Require: S0 ⊆ S . Initial safe set
Require: T0 ⊂ S×A×S . Initial knowledge
Require: s0 ∈ S0 . Initial state

1: Compute fu(s, a; T0) for ∀s ∈ S, ∀a ∈ A
2: for i← 0 to n− 1 do
3: Ti ← EXPANDKNOWLEDGE(Ti, fu)
4: Si+1 ← EXPANDSAFESET(Si, Ti, fu)
5: G∗,a∗←OPTIMIZEGREEDILY(Si+1,si,Ti,fu,Ls,La)
6: s∗ ← f(si, G

∗) . Take the certain actions
7: si+1 ← f(s∗, a∗) . Take the uncertain action
8: Ti+1 ← Ti ∪ (s∗, a∗, si+1)
9: fu(s, a; Ti+1)←fu(s, a; Ti)∩φ(si+1, Lsd

s(s, si+1)+
Lad

a(a, a∗)) (∀s ∈ S,∀a ∈ A)

Random Exploration. In this method, we perform the safe
set expansion as in our algorithm. However, each action taken
is chosen randomly from the set of all possible actions, and
is not necessarily safe.
Safe Exploration with No Optimization. In this method,
we again perform the safe set expansion as in our algorithm.
However, each action taken is chosen randomly from the set
of actions that are classified as safe at the current state.
Safe Exploration Optimized for Safe Set Expansion. This
is similar to Safe Exploration Optimized for Uncertainty Re-
duction. However, instead of optimizing for the uncertainty
reduction measure, we optimize for the safe set expansion
measure described earlier. If the maximum expected safe set
expansion amount is zero, we take the safe action that will,
expectedly, push the system to its closest safety boundary at
that time, so that it can possibly expand the safe set later.

We simulated two different environments with continuous
state and action spaces, described below, to analyze the
performance of our algorithm. In each environment, we used
Euclidean distance for both ds and da. We used breadth-first
search (BFS) for the g function.

For both environments, we began by uniformly sampling
the state and action spaces. We used only those original sam-
ples when calculating the ∆-function, and not any new states
we might have encountered since starting the simulation, so
that the optimization would not be biased towards already
visited states.

To quantitatively assess the performance of our algorithm
in comparison with the baselines, we defined and used the



following metrics:
• Safe Set Size. We plot the number of actions vs. |Si|

to evaluate the safe set expansion efficiency.
• Total Uncertainty. We plot the number of actions vs.∑

s∈S,a∈A|fu(s, a; Ti)| to analyze how fast the total
uncertainty decreases. For consistency among the itera-
tions, we sum only over states in the original sampling,
i.e. we do not consider other states encountered since
starting the simulation.

A. Muddy Jumper

We simulated a simple system with the transition model:

f(s, a) = s+ a(1− ψ(s))

where a ∈ A = [−C,C], s ∈ S = R, and ψ(s) is the
dampening factor. We simulated it as:

ψ(s) =


0 if |s| < A
|s|−A
B−A if A ≤ |s| < B

1 otherwise

which is plotted in Fig. 2. This environment was inspired
by the idea of a robot jumping on muddy ground. When the
dampening factor is 1, the robot is not able to move anymore,
so those states are unsafe.

-B -A 0 A B
0

0.2

0.4

0.6

0.8

1

Fig. 2. Dampening factor for the Muddy Jumper environment. The regions
that are inside [−A,A] are not muddy, so the robot can move without any
dampening. The outer regions have increasing amount of mud, which causes
the robot’s movements to be dampened. The robot becomes completely
immobile outside (−B,B).

With these, we can take La = 1 and Ls = C+B−A
B−A .

For our simulations, we used A = 3, B = 9 and C =
12. We sample S as {−10,−9.8, . . . , 9.8, 10} and A as
{−12,−11.8, . . . , 11.8, 12}. Hence, the largest safe set is
the interval between −8.8 and 8.8. We set S0 = [−3, 3] and
s0 = 0. We present the results of our algorithm in Fig. 3.

It can be seen that random exploration leads to fast un-
certainty reduction, because the allowed actions include very
large jumps. However more importantly, it terminates upon
reaching unsafe states after only a few actions. Other ex-
ploration techniques tackle this problem by taking only safe
actions. However, our algorithm outperforms the baselines in
terms of efficiency. It is better than the safe exploration with
no optimization as it optimizes the uncertainty reduction per
action. It can be seen that optimizing for safe set expansion
yields good results initially; however becomes highly subop-
timal afterwards. In this case, the superiority of our algorithm
can be due to that reducing overall uncertainty leads to larger

Fig. 3. Results of Muddy Jumper environment with our algorithm and the
three other baselines. For safe exploration with no optimization, 10 runs
have been averaged. The crosses at the end of random exploration lines
indicate the system reached to an unsafe state. Left. Number of actions vs.
safe set size. Dashed line shows the size of largest possible safe set. Right.
Number of actions vs. total uncertainty.

safe set expansion in future iterations, whereas a greedy
optimization for the expansion cannot achieve this. As a side
note, it is also interesting to see that the safe exploration with
no optimization outperformed the safe exploration optimized
for safe set expansion in later iterations. This might be
because optimizing for expansion may often get stuck at
states that are not amongst the original state samples, so the
optimization becomes only over the immediate next action.

B. Hilly Jumper

We simulate another environment with the following tran-
sition model:

f(s, a) = s+ a− h′(s)

where a ∈ A = [−C,C], s ∈ S = R, and h(s) is an
environment-dependent function. We simulated it as:

h(s) =


− (s+A)4

4B4 + (s+A)2

2B2 if s < −A
0 if −A ≤ s < A

− (s−A)4

4B4 + (s−A)2

2B2 otherwise

Then, we have

h′(s) =


− (s+A)3

B4 + s+A
B2 if s < −A

0 if −A ≤ s < A

− (s−A)3

B4 + s−A
B2 otherwise

This environment was inspired by a robot jumping on
hilly ground where h(s) is the elevation function. Both the
elevation function and its derivative are plotted in Fig. 4.
When |s| > A+ B and C < |h′(s)|, the robot is on a very
steep terrain, so it cannot return to the safe set, which is
around 0-state.

With these, we can take La = 1. While this problem does
not have a single Lipschitz-continuity constant over all states,
as the slope increases without bounds in each direction, it lo-
cally satisfies Lipschitz-continuity around the central region.
For our simulations, we used A = 1.2, B = 4, C = 0.3 and
Ls = 1.4. We sample S as {−6.9,−6.8, . . . , 6.8, 6.9} and A
as {−0.3,−0.2, . . . , 0.2, 0.3}. Hence, the largest safe set is
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Fig. 4. Elevation function and its derivative are plotted for the Hilly Jumper
environment. The robot has a constant maximum power, which prevents it
from returning to the central region when it reaches points which are too
steep.

Fig. 5. Results of Hilly Jumper environment with our algorithm and the
three other baselines. For both random exploration and safe exploration
with no optimization methods, 10 runs have been averaged. Left. Number
of actions vs. safe set size. Dashed line shows the size of largest possible
safe set. Right. Number of actions vs. total uncertainty.

the interval between −6.6 and 6.6. We set S0 = [−1.2, 1.2]
and s0 = 0. We present the results of our algorithm in Fig. 5.

Unlike the Muddy Jumper environment, random explo-
ration does not lead to very fast uncertainty reduction,
because the action set contains only very short jumps. Due
to the same reason, it does not crash —it is unlikely for the
robot to leave the safe set with random small jumps. It is even
harder due to the fact that the regions A < |s| < A+B have
a slope towards the central region. Safe exploration with no
optimization performs even worse than random exploration,
because it enforces safety constraint.

Similar to Muddy Jumper experiments, the baseline which
optimizes over safe set expansion initially gives good per-
formance; and later becomes suboptimal. In this case, the
reason is the following: After the algorithm expands the
safe set up to −6.2 on the negative side, it cannot expand
further due to the sampling of state space. It also could
not expand the positive side further from 1.7, because the
algorithm gets stuck near the negative limit. This is because
when the system is at a new state near −6.2, all actions
have some level of uncertainty, so the optimization is only
over the immediate actions. And when the system is near the
limit, it does not leave that region; because if it finds some
possibility of safe set expansion, it explores; if it cannot find
a possible expansion, it still goes toward the boundary. In
fact, we ran this algorithm up to 2000 actions, and observed

that the system was always in states [6.10, 6.20] after 220th

action. This baseline would require the following additional
mechanisms to perform well: 1) to spot when to be confident
that there is no possibility of expansion, and 2) to make
sure the system moves to unexplored state regions when that
confidence is obtained.

On the other hand, our algorithm, safe exploration opti-
mized for uncertainty reduction, outperforms all the baseline
methods in terms of efficiency. It can be noted that none
of the algorithms reaches the maximum expandable safe set
within 600 actions. While the explored safe set might be
expanded further with more iterations, it is also limited due to
the sampling of state space —denser sampling could increase
this limit; however it causes a significant computational
burden.

V. DISCUSSION

For safe exploration tasks, computational cost is a problem
in general. Our algorithm has polynomial complexity in the
number of states and actions. While the use of Gaussian pro-
cesses enables faster computation, directly using Lipschitz-
continuity makes the algorithm computationally heavier,
though we do note that our algorithm is parallelizable. For
reference, we initially sample 101 states, 121 possible actions
in Muddy Jumper; and 139 states, 7 possible actions in
Hilly Jumper. However, the number of states increases during
algorithm execution as the system visits states that are not
amongst the initial samples. Additionally, it can be a concern
for low-memory systems that our framework requires the
storage of Ti that grows linearly with the number of uncertain
actions taken.

Both our example environments had 1-dimensional state
spaces. We note that in higher dimensional problems, the
number of states necessarily grows exponentially in the
dimension of state space. In particular, the number of states
on the boundary of the safe set at any step is likewise
exponential in the dimension of the state space. Since our
algorithm does not extrapolate from data in order to produce
its safety guarantees, it by design must explore this expo-
nentially sized safe set boundary.

For some specific applications, our algorithm’s require-
ment that how to move from one state to another is known
inside the initial safe set can be too restrictive. In such cases,
our algorithm can be readily applied provided that there exist
some uncertain but safe actions for each state in the initial
safe set. While this may hurt efficiency, it will enable the
use of our algorithm in broader configurations.

In this formulation, our algorithm is limited to determin-
istic environments. Further research could generalize it to
stochastic MDPs and to systems with disturbances. Similarly,
our framework requires prior knowledge of the Lipschitz
continuity parameters Ls and La. In settings where it is
impractical to provide estimates of these parameters prior
to running this algorithm, this algorithm could be modified
to learn them online. However, either of these generaliza-
tion would come at the expense of losing the algorithm’s
deterministic guarantees.



As long as Lipschitz-continuity assumptions can be made,
our algorithm can be applied to both linear and nonlinear
systems, as well as to systems where safe state set boundaries
are very complex. We have demonstrated our algorithm on
two simulated environments, and we are planning to design
real robotics experiments to showcase our algorithm.

Lastly, in each iteration of our algorithm, we currently
take only actions we are certain about before taking a final,
uncertain, action that we learn from (see the first constraint in
(9)). This algorithm could potentially be improved by having
it optimize over and learn from paths that include several
uncertain actions in sequence rather than just one.

VI. CONCLUSION

In this paper, we presented an algorithm to safely explore
safety-critical deterministic MDPs that is efficient in terms of
the number of actions it takes. Unlike some previous works,
our algorithm does not require the transition function to be
known a priori, except for some little prior knowledge.

Future work will demonstrate our algorithm’s use in
practice. In addition, future work can be done to further
improve the efficiency of our algorithm by allowing it to plan
along sequences of multiple uncertain actions. We are also
planning to relax the determinism requirement on the MDP
and apply our algorithm to stochastic environments. And
lastly, exploration is needed into combining this Lipschitz
grounded approach with model-based approaches to handle
higher dimensional state and action spaces.

Finally, we will study different methods for transferring
from a source (e.g., simulation) domain to a target (e.g.,
real-world) domain. In order for a robotic system to adapt to
a new domain, the system must often explore the parameters
of the new environment, but must also do so safely. In the
future work, we will leverage our work on safe exploration in
MDPs and the Delaunay-based optimization [25] to address
this problem.
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