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Abstract— We consider the problem of rejection of a sinu-
soidal disturbance of unknown frequency, phase and magnitude
acting on an uncertain internally stable SISO linear system. We
present a solution that extends our previous work on adaptive
feedforward control of uncertain systems by disposing of the
need to know the frequency of the harmonic disturbance.
The proposed methodology reposes upon a switching-based
combination of an adaptive feedforward control algorithm and
a deadbeat frequency estimator. The method accounts for the
presence of bounded sensor noise as well as imprecise frequency
estimation; it is shown that the regulation error is bounded by
a function of the norm of the noise that depends on the choice
of the controller and the estimator gains.

I. INTRODUCTION AND PROBLEM FORMULATION

The paper addresses the harmonic disturbance rejection
problem for SISO LTI plant models, modeled by

ẋ = A(µ)x+B(µ)[u(t)− d(t)] , x(0) = x0 ∈ Rn

y = C(µ)x, yd = y + ν (1)

where x ∈ Rn is the state of an internally stable uncertain
plant model, u ∈ R is the control input, y ∈ R is the
regulated output, yd ∈ R is the measured output and ν ∈ R
is a bounded additive measurement noise, ‖ν(·)‖∞ ≤ ν̄ <
∞. System (1) is affected by a sinusoidal disturbance (of
unknown frequency, ω? ∈ R>0)

d(t) = a sin(ω?t+ φ0) (2)

The vectors µ ∈ Rp and µd := col(a, ω?, φ0) ∈ R3

collect the uncertain parameters of the plant model and
the disturbance, respectively. It is assumed that µ ranges
on a given known compact set, P ⊂ Rp. Moreover, the
disturbance d(t) satisfies the following assumption:

Assumption 1.1: The unknown amplitude a and frequency
ω∗ of the disturbance d(t) are bounded respectively by

0 ≤ a ≤ ā, 0 < ω∗ ≤ ω̄

for some known positive constants ā, ω̄.

The transfer function from u to y of system (1) is denoted
by W (s) := C(µ)(sI −A(µ))−1B(µ), where I denotes the
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identity matrix. System (1) is assumed to be internally stable,
robustly with respect to µ ∈ P , in the following sense:

Assumption 1.2: There exist positive constants a1, a2 and
λ such that the solution Px : Rp → Rn×n of the Lyapunov
equation Px(µ)A(µ) + AT (µ)Px(µ) = −I satisfies a1I ≤
Px(µ) ≤ a2I for all µ ∈ P . Moreover, −Re{%} ≥ λ for all
% ∈ specA(µ) and all µ ∈ P . /

As the harmonic disturbance is generated by the exosystem

ẇ = Sw, w(0) = w0 ∈ R2

d = Γw (3)

with S := ω?T , T :=

(
0 1

−1 0

)
and Γ =

(
1 0

)
, the

problem is recast as follows:
Problem 1: (Output Regulation Problem) For system (1),

design a dynamic output-feedback controller of the form

ξ̇ = fa(ξ, yd) , ξ(0) = ξ0 ∈ Rm

u = ha(ξ, yd) (4)

such that, for all µ ∈ P and ω? ∈ (0, ω̄], the trajectories of
the closed-loop system (1), (3) and (4) are bounded, and the
output of the plant satisfies the following properties:

(a) limt→∞ |y(t)| = 0 when ‖ν(·)‖∞ = 0;
(b) lim supt→∞ |y(t)| ≤ r(‖ν‖∞) when ‖ν(·)‖∞ 6= 0,

where r(·) is a class-N function1 that depends on the
gain parameters of (4). /

The vast majority of the works in the area of adaptive feed-
forward control (AFC) as the methodology of choice to ad-
dress Problem 1 assumes knowledge of Re{W (jω?)} and/or
Im{W (jω?)} (or their sign) as a prerequisite for controller
design [1]–[3]. Subsequent works have attempted an adaptive
estimation of said quantities within AFC schemes [4], [5];
however, issues related to asymptotic stability and interac-
tion with the plant dynamics were left open, as the plant
response was considered as a steady-state map. In [6], [7],
it is shown that knowledge of either sign Re{W (jω)} or
sign Im{W (jω)} is a sufficient condition for solvability of
the problem, even in the presence of uncertain frequencies
of excitation. Persistence of the sign of Re{W (jω?)} or
Im{W (jω?)} over the range of frequencies of interest,
required by the applicability of the methods in [6], [7], is
termed an SPR-like condition. The recent contributions [8],
[9] have proposed respectively multiple-model adaptive con-
trol and switched-based strategies that completely remove the

1A class-N function r(·) : R+ 7→ R+ is a non-negative, continuous and
strictly increasing function, but not necessarily satisfies r(0) = 0.



necessity of knowing a prior SPR-like condition, assuming
knowledge of ω?.

In this paper, we consider the more difficult case in-
volving both uncertainties on the plant and the disturbance
model, and seek a solution that avoids resorting to SPR-
like conditions. Moreover, we account for the presence of
bounded sensor noise, which negatively impacts the ability of
obtaining an accurate (or asymptotically accurate) estimate of
the frequency of excitation. In [10] and [11] a similar prob-
lem was addressed under the assumption that the system is
minimum phase with known relative degree. This assumption
is relaxed in [7], but an SPR-like condition is still employed.

Building on prior work in [8] and [12], a sequential
estimation / control strategy is adopted to solve Problem 1.
Specifically, over a certain time interval, only one of two
distinct actions is performed: in the first one, the controller
operates in identification mode. During this phase, the con-
troller is disconnected from the plant (i.e., u(t) = 0) and
the frequency of the disturbance is estimated in finite time
via the deadbeat method of [12]. A norm-estimator of the
state trajectory is employed to obtain a suitable time where
the response of the system has reached steady-state in order
for the estimation algorithm to provide a reliable estimate of
the frequency. In the second phase, the controller operates
in regulation mode, providing disturbance compensation on
the basis of the estimated frequency. When the controller
operates in regulation mode, the frequency estimate is held
constant while the plant is connected with a certainty-
equivalence version of the AFC of [8] designed on the basis
of the frequency estimate. The transition between the two
modes is commanded by the binary switching signal σ(t):{

regulation if σ(t) = 1

identification if σ(t) = 0.
(5)

A similar approach is pursuit in [13], where the analysis is re-
stricted to minimum-phase systems of known relative degree,
unaffected by measurement noise. Furthermore, in the cited
reference no formal proof of convergence of the switching
mecahnism is offered, apart from heuristic arguments.

II. IDENTIFICATION PHASE: DEADBEAT ESTIMATION

Let the controller be in the identification mode during the
time interval [ta, tb), that is, σ(t) = 0 for all t ∈ [ta, tb),
where 0 ≤ ta < tb and tb is a constant to be determined later.
During the identification phase, the output y(t) is related to
the sinusoidal disturbance d(t) through W (s). By virtue of
Assumption 1.2, the plant output satisfies

yd(t) = yss(t) + ι(t) + ν(t) (6)

for all t ∈ [ta, tb), where yss(t) = a|W (jω?)| sin(ω?t +
φ0 + ∠W (jω?)) is the steady state response and ι(·) is an
exponentially decay term, represents the transient response.
The objective is to estimate the unknown frequency ω? in
finite time using the robust parametric finite-time estima-
tion methodology proposed in [12]. According to [12], the
deadbeat estimator is designed for pure sinusoidal signal

and the frequency estimation error ω̃ := ω̂ − ω∗ is ISS
with respect to any additive norm-bounded noise, which,
in our case, is given by the sum of the transient response
ι(t) and the measurement noise ν(t). Therefore, to obtain an
accurate frequency estimate, the deadbeat estimator should
be activated and fed by yd(t) when

|ι(t)| ≤ ε0 (7)

for a given small constant ε0 ∈ R>0. It is obvious that, for
any ε0 > 0, there exists a finite instant Tss such that (7) is
verified for all t ∈ [ta + Tss, tb) with tb > ta + Tss.

A. State-Norm Estimator

First, we will show how to determine Tss via constructing
a state-norm-estimator for x(t). For ease of notation, let

σ1 := max
µ∈P
||A(µ)||, σ2 := max

µ∈P
||B(µ)||, σ3 := max

µ∈P
||C(µ)||

(8)

and fix, arbitrarily, r0 > 0 such that x0 ∈ X := {x0 ∈ Rn :
|x0| ≤ r0}. In the light of this choice, the subsequent results
will be valid in a semi-global sense, that is, on the basis of
an arbitrary (but fixed) choice of a compact set for the initial
conditions of the plant model.

Next, the plant model (1) is viewed as a non-minimal re-
alization given by the parallel interconnection of the systems

Σa :

{
ẋ1 = A(µ)x1 +B(µ)u(t), x1(0) = x0

y1 = C(µ)x1

(9)

Σb :

{
ẋ2 = A(µ)x2 −B(µ)d(t), x2(0) = 0

y2 = C(µ)x2

(10)

with x(t, x0) = x1(t, x0)+x2(t, 0) and y(t) = y1(t)+y2(t).
Note that u(t) = d̂(t) for the regulation phase and u(t) = 0
for the identification phase.

A possible choice of the state-norm estimator of x1(t) is

Σne : ż(t) = − 1

2a2
z(t) + 2a2

2σ
2
2 |u(t)|2 , z(0) = 0 (11)

where a2, σ2 are defined in Assumption 1.2 and equation (8).
Lemma 2.1: There exist a class -KL function β(·, ·) and

a class-K∞ function ρ(·) such that

|x1(t)| ≤ β(r0, t) + ρ(|z(t)|), t ≥ 0 (12)

where z(t) is given by the state-norm estimator (11), and

ρ(|z(t)|) :=

√
1

a1
(|z(t)|) , β(r0, t) := e−

1
4a2

t

√
a2

a1
r0.

A detailed proof based on Lyapunov analysis can be found
in [14], and is omitted due to space limitation.

Subsystem Σb generates the forced response of the plant
to the disturbance d(t). Since d(t) is not available for
measurement, one can only derive a bound of the transient
response. Using integration by parts, one can easily obtain

x2(t) = x2,ss(t) + x2,tr(t) (13)



x2,ss(t) := a[A(µ)2 + ω∗2In]−1
{
A(µ) sin(ω∗t+ φ0)

+ ω∗In cos(ω∗t+ φ0)
}
B(µ)

x2,tr(t) := −a[A2(µ) + ω∗2In]−1
{
A(µ) sin(φ0)

+ ω∗In cos(φ0)
}
eA(µ)tB(µ)

where In is an n-by-n identity matrix. The terms x2,ss(t) and
x2,tr(t) represent the steady-state response and the transient
response, respectively. A bound for the transient response is
readily obtained as

|x2,tr(t)| ≤ āκ(λ)(σ1 + ω̄)σ2e
−λt , t ≥ 0 (14)

where we have taken advantage of the fact that

||[A(µ)2+ω∗2In]−1|| ≤ κ(λ) := 2(n−2)/2
√
n(ω̄2 + σ2

1)/λ2n

In summary, during the identification phase [ta, tb), the
transient response can be written as

ι(t) = C(µ)x1(t) + C(µ)x2,tr(t)

= C(µ)eA(µ)(t−ta)x1(ta) + C(µ)x2,tr(t) (15)

for all t ∈ [ta, tb). Thanks to (12) and (14), a bound for ι(t)
is found to be

|ι(t)| ≤ e−λ(t−ta)σ3∆(ta) + e−λtāκ(λ)(σ1 + ω̄)σ2σ3

≤ e−λ(t−ta)K(ta), ∀t ∈ [ta, tb) (16)

where ∆(ta) = β(r0, ta) + ρ(|(z(ta)|) and K(ta) =
σ3∆(ta)+(ω̄+σ1)āκ(λ)σ2σ3e

−λta . Consequently, selecting

Tss ≥ ln
[K(ta)

ε0

] 1
λ

then the condition (7) is verified for all t ∈ [ta + Tss, tb).

B. Frequency Estimator

Given Tss, ω̂(t) is given by the non-asymptotic estimator
presented in [12].

Let the estimator be driven by the steady-state output
yd(t), in absence of measurement noise, the estimator pro-
vides an exact estimate of ω? after tε units of time, while in
the presence of measurement noise , the estimated frequency
ω̂(t) enters into a neighborhood of the true value ω? in finite
time, and the frequency estimation error ω̃(t) is ISS with
respect to ν̄ + ε0.

Without loss of generality, set ε0 ≤ ν̄. Then as shown in
Section 5 of [12], there exist class-K∞ functions γ(·),γ

′
(·)

such that, at the end of the identification phase, ω̃ in the
presence of the measurement noise ν satisfies

|ω̃(tb)| ≤ γ
′
(‖ν(·)‖∞) + γ

′
(‖ι(·)‖[ta+Tss,tb]) ≤ γ(ν̄).

where ‖ · ‖J denotes the supremum norm on an interval J .

III. REGULATION MODE: MULTIPLE MODEL AFC

The multiple-model AFC scheme of [8] is selected as the
baseline controller for the regulation phase of the proposed
strategy. This controller does not require knowledge of the
frequency response of the plant at the frequency of excitation,
nor of the sign of their real and imaginary parts. This
feature makes it amenable to deal with a disturbance of un-
known frequency, as sign-definiteness of either Re{W (jω?)}
or Im{W (jω?)} is not required. As the controller in [8]
achieves L2 stability and convergence of y(t) under perfect
knowledge of ω? and perfect output measurements, enhance-
ments to the baseline control algorithm must be made to
account for frequency estimation mismatch and the presence
of measurement noise considered in the present setup. The
stability analysis shall also be modified accordingly.

Assume that σ(t) = 1 for t ∈ [tb, tc), that is, the controller
is in regulation mode during that time interval. Redefine, for
simplicity, the time variable as t := t − tb, and consider
t ∈ [0, tc − tb). For system (1)-(3), an internal-model based
controller is selected as

˙̂w = Ŝŵ +Gua , ŵ(0) = ŵ0 ∈ R2

d̂ = Γŵ (17)

where G := ΓT , ua is a control input to be defined and
Ŝ = ω̂T being ω̂ the constant estimated frequency obtained
in the identification phase.

Let Π(µ) ∈ Rn×2 and ΣA ∈ Rn×2 be the unique
solutions of the Sylvester equations

Π(µ)Ŝ = A(µ)Π(µ) +B(µ)Γ

ΣA(µ)S = A(µ)ΣA(µ)− ω̃Π(µ)T

where ω̃ := ω̂−ω? is constant as well. Changing coordinates
as ζ := ŵ−w and z := x−Π(µ)ζ −ΣA(µ)w, one obtains

ż = A(µ)z −Π(µ)Gua , z(0) = z0 ∈ Rn

ζ̇ = Sζ +Gua + ω̃Tw , ζ(0) = ζ0 ∈ R2

y = C(µ)z + ϑT (µ)ζ + C(µ)ΣAw , yd = y + ν (18)

Next assumption replaces SPR-like conditions by requiring
that the pair (Ŝ, ϑT (µ)) be observable for all µ ∈ P:

Assumption 3.1: The unknown plant parameter vector
ϑT (µ) :=

(
Re{W (jω̂)} Im{W (jω̂)}

)
=C(µ)Π(µ) verifies

ϑ(µ) ∈ intΘ , Θ :=
{
ϑ ∈ R2 | ∆2

1 ≤ ϑ2
1 + ϑ2

2 ≤ ∆2
2

}
for all µ ∈ P , for given real numbers 0 < ∆1 < ∆2. /

The coordinate transformation ζo = M−1
o ζ, where

Mo :=
ϑ1

ϑ2
1 + ϑ2

2

I − ϑ2

ϑ2
1 + ϑ2

2

T

is applied to system (18), yielding

ζ̇o = Ŝζo + θ ua + ω̃M−1
o Tw

ya = Γζo (19)



θ1

θ2

∆2

∆1

Θ1Θ2

Θ3

Fig. 1. Finite covering of Θ using three convex sets, Θi i = 1, 2, 3.

where θ =
(
ϑ1 − ϑ2

)T
. Note that Assumption 3.1 holds

for the re-parameterized vector θ as well. The feedforward
controller consists of the adaptive observer

˙̂
ζo = Ŝζ̂o+ θ̂ua− εG[Γ ζ̂o− yd] , ζ̂o(0) = ζ̂o0 ∈ R2 (20)

and the control

ua = −ε θ̂T (t)ζ̂o (21)

where θ̂ ∈ R2 is a vector of parameter estimates and ε > 0
is a gain. The following result is proven in [8]:

Theorem 3.2: Assume that ω̃ = 0. Then, there exists ε? >
0 such that the adaptive controller (20)–(21) solves Problem 1
for all ε ∈ (0, ε?) if there exists an update law ˙̂θ(t) such that:

(i.) θ̂(t) ∈ Θ for all t ≥ 0;

(ii.) ‖ ˙̂
θ(t)‖ ≤ ε2ρ for all t ≥ 0, for some ρ > 0.

Multiple Model Estimator

To satisfy the requirements spelled out in Thm 3.2, bound-
edness of ˙̂

θ(·) can easily be enforced by normalization,
whereas constraining the estimates within the set Θ requires
convexification of the parameter set itself. This is achieved
using the finite covering Θ̄ :=

⋃3
i=1Θi shown in Fig. 1, and

replacing Θ with Θ̄. This choice prompts for a multiple-
model implementation of the baseline controller, where dif-
ferent parameter estimate vectors θ̂i ∈ R2, i = 1, 2, 3,
governed by their own update laws, are projected on Θi. At
each time, only one estimator for θ out of the three available
is connected in closed-loop with the controller.

Let the active parameter estimate θ̂j , j ∈ {1, 2, 3} be
governed by the update law

˙̂
θj = Pj

(
θ̂j , ϕ(ξ̂1, ỹ)

)
, θ̂j(0) ∈ intΘj (22)

where Pj(·) is the standard projection on Θj [15] and ỹ :=
Γ ζ̂o − yd. The unconstrained update law is selected as the
normalized law

˙̂
ξ1 =

(
Ŝ − εGΓ

)T
ξ̂1 +Gua (23)

ϕ(ξ̂1, ỹ) = −ρε2 ξ̂1ỹ

m2
(24)

where m := 1 + ‖ξ̂1‖2 + |ỹ|2 ensures that ‖ϕ‖ < ρε2. Using
the arguments in [8], the following result can be proven
(details are omitted for reason of space):

Theorem 3.3: There exists at least one stabilizing con-
troller ua = −εθ̂iT ζ̂o with estimate θ̂i ∈ Θi, i ∈ {1, 2, 3}

that solves Problem 1 for all ε ∈ (0, ε?). Furthermore, the
measured output satisfies

lim sup
t→∞

|yd(t)| ≤ β0 + (1 +
√
ε+

1√
ε

)β1r0(ν̄) (25)

where β0, β1 are positive constants and r0(·) ∈ N .

The choice of the active controller is determined by
a supervisor system that employs a pre-routed switching
logic [16]–[18]. The controller keeps adjusting j through the
index {1, 2, 3} along a pre-specified path until the output is
small in a suitable sense. The supervisor system consists of
the cascade connection of two modules: a scheduling logic
Σn and a routing function h(·).

1) Scheduling Logic Σn: The scheduling logic Σn is a
hybrid dynamical system whose output n is a piecewise-
constant signal taking values in the set of positive integers.
Σn is responsible for determining the timing of switch
and n can be regarded as a counter for the number of
switching. The performance index J(t) evolves according
to the equation:

J̇(t) =

{
β(|yd| − σy)2 , if |yd(t)| > σy

0 , if |yd(t)| ≤ σy
(26)

where β > 0 and σy ≥ δβ0 + (1 +
√
ε + 1√

ε
)β1r0(ν̄) are

positive constants set by the designer, and is re-set to zero
after each switching. The switching occurs when J(t) ≥
αnJ0, where α > 1 and J0 > 0 are predefined constants.

Remark 3.1: In (26), the signal yd(t) is processed through
a dead-zone characterized by β and σy to counteract the
effect of ν and potential frequency mismatch ω̃.

2) Routing function h: The input of the routing function
is the counter n and the output is the label of the active
controller j. Here, we define the routing function as:

j(t) := h(n) = mod (j0 + n+ 1, 3) + 1, ∀t ≥ 0 (27)

where j0 is the label of the active controller that is selected
at the beginning of the regulation mode. The routing function
in (27) guarantees that each controller associated with Θi,
i ∈ {1, 2, 3} will be revisited infinitely often, if the switching
does not stop. Let the time sequence {tn}Nn=1 denote the
instants at which the controller switching takes place. Thanks
to Lemma 3.3 and the fact that αnJ0 keeps increasing as the
switching goes on, there exists a sufficient large integer n̄
such that J(t) ≤ αn̄J0, for all t ≥ tn̄. This fact indicates that,
if the regulation phase lasts sufficiently long (i.e. tb+ tn̄ <<
tc), the switching sequence will terminate after t ≥ tn̄, hence
|yd(t)| ≤ σy for all t ∈ (tn̄, tc − tb].

Remark 3.2: It worth emphasizing that, when the con-
troller switches back to the identification mode, the controller
dynamics and the pre-routed switching mechanism are reset
to their initial values, except for the parameter estimate θ̂j ,
whose value is kept and used as the initial condition of θ̂(·)
for the next regulation mode.
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Fig. 2. Flowchart of the switching mechanism between the identification
and the regulation modes.

IV. MAIN SWITCHING MECHANISM

In this section, we present the main switching mecha-
nism between the identification and regulation modes of
the controller. It is shown that the proposed scheme solves
Problem 1(a) if the estimate ω̂ is equal to ω?, which is
achievable in absence of measurement noise. In the pres-
ence of measurement noise, semi-global uniform ultimate
boundedness, as specified in Problem 1(b), is attained. The
supervisor system that governs the switching between the
two controller modes is a hybrid dynamical system whose
input is yd(t) and output is the binary switching signal σ(t)
in (5). The mechanism of the scheduling logic is illustrated
by the flowchart in Fig. 2.

Let {Tm}Nm=0 denote the sequence of time instants at
which the switching signal σ(t) changes. After the initial-
ization, the condition K(t) ≤ %m+1K0 with m = 0 and
% > 1 is valid, and the controller enters the regulation mode,
during which the performance index K(t) is increased from
0 according to

K̇(t) =

{
0 , if |yd(t)| ≤ σy
β(|yd(t)| − σy)2 , if |yd(t)| > σy.

(28)

where t ∈ [T2i, T2i+1]. The signal yd(t) in (28) is filtered
by the same dead-zone function in (26). So long as K(t) ≤
%m+1K0, K(t) is updated continuously according to (28)
and the controller remains in regulation mode. If and when
K(t) > %m+1K0, the controller switches to the identification
mode of Section II by setting σ(t) = 0 and m := m+1. The
identification phase stops after Te+Tss units of time (where
Te is set by the designer and Tss is defined in Section II),
and the new frequency estimate ω̂ is acquired. A resetting
mechanism is introduced at the end of the identification phase
to reduce the effect of the measurement noise: If the absolute
error between the current and previous frequency estimate,
ω̂p, is sufficiently small, that is if |ω̂−ω̂p| < εω , then σ is set
to 1 and the controller switches to the regulation mode with
the new frequency estimate ω̂ (which is then held constant).
The condition |ω̂(t) − ω̂p| ≥ εω and m > 1 indicates that
ω? has changed, in which case all variables in the switching
mechanism are reset, and the entire process is restarted.

TABLE I
TUNING PARAMETERS AND INITIAL CONDITIONS OF THE ALGORITHM

Identification Regulation Main

µ = 0.5, tε = 0.5, ε = 0.4, ρ = 0.5, α = 2, J0 = 50, % =
√

2

ω̂0 = 0 β1 = 10, ∆1 = 0.5, ∆2 = 3 , θ̂1(0) = (1, 1)T , K0 = 50,

β2 = 20, β̄ = 30 θ̂2(0) = (−1, 1)T ,θ̂3(0) = (0,−1)T εω = 0.1

Remark 4.1: The threshold εω is introduced to avoid false
positives triggered by the estimation error caused by the
noise ν, thus need to be chosen accordingly, for instance
such that εω ≥ 2γ(ν̄).

The following result establishes the fact that the switching
sequence for the controller modes terminates with a stabi-
lizing controller that solves the robust regulation problem
defined in Problem 1.

Lemma 4.1: If the frequency of the disturbance is constant
(or ultimately constant), there exists a finite integer m̄ such
that σ(t) = 1 for all t ≥ Tm̄.

Proof: As shown in Section III, for any regulation
phase starting at Tm, there exists n̄ ∈ N such that J(t) ≤
αn̄J0 for all t ≥ Tm + tn̄−1. This indicates that, for the
performance index K(t), there also exists an integer c such
that K(t) ≤ c for all t ≥ Tm+tn̄−1. If the switching criteria
%m+1K0 ≤ c is attained, then the controller will switch back
to the identification mode at a certain point. Note that the
switching criterion %m+1K0 increases with the number of
the switching m occuring between two modes. Therefore,
there always exists a sufficiently large integer m̄ satisfying
%m+1K0 ≥ c, which guarantees that K(t) ≤ %m̄+1K0 for
all t ≥ Tm̄ + tn̄−1.

V. ILLUSTRATIVE EXAMPLE

The performance of the proposed algorithm is illustrated
in simulation using the stable non-minimum phase plant
model described by the transfer function W (s) = 2(s−1)

s2+2s+5
and disturbance signal given by d(t) = 5 sin(ω?t), with
ω? = 2 [rad/s], and ν(t) is a random noise with uniform
distribution within the interval [−0.01, 0.01]. The tuning
parameters and initial conditions are shown in Table I, and
Te = 10, σy = 1 and ε0 = 0.01.

As shown in Fig. 3, switching between the regulation and
identification modes terminates after 4 switches at around
250 seconds. Under the influence of noise and frequency
mismatch, the output of the plant is significantly attenuated
and confined within a tolerable range. Due to the robust
design of the switching mechanism (mainly the dead-zone
process), infinite switching and false resetting are avoided.

Next, we consider a more complex case in which the
disturbance model undergoes a step change, namely d(t) =
10 sin(3t − π) when t > 400. Similarly to the previous
examples, from Fig. 4, it is seen that the output is regulated
to a neighborhood of zero in about 200 seconds before
the frequency changes. After the frequency changes at t =
400 [s], the controller automatically detects this change at
t ≈ 510 [s] and switches back to the identification mode, at
which point the whole algorithm is automatically restarted.
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Fig. 3. Closed-loop system behavior in a noisy scenario: Switching
signal σ(t) (top plot), norm-estimate of the transient response (second plot),
frequency estimate ω̂(t) (third plot) and regulated output y(t) (bottom plot).
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Fig. 4. Closed-loop system behavior in noisy scenario with step change
in the frequency of the harmonic disturbance: Switching signal σ(t) (top),
frequency estimate ω̂(t) (middle) and regulated output y(t) (bottom).

After another 50 seconds, the output is brought back within
a neighborhood of zero.

VI. CONCLUDING REMARKS

In this paper, a novel switching-based solution is proposed
to provide a reliable disturbance rejection in presence of
additive measurement noise, under the assumption that the
unknown frequency is constant or changes slowly in a
discrete-time manner. The rationale behind the method is to
decouple adaptive regulation and frequency estimation, that
is, to obtain an accurate frequency estimation in open-loop,
followed by regulation on the basis of the acquired frequency
estimation. The process is repeated according to the decisions

provided by a supervisor, in such a way that the controller
reverts back to the identification phase once a change in
the frequency of the disturbance is detected. A possible
drawback of the algorithm is its reliance on a pre-routed
switching criterion, which may require a long time before
the switching between modes terminates. The complexity of
the algorithm also may hinder the extension of the method to
more general cases, such as MIMO systems. How to resolve
these issues is the object of current investigations.
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